
Copyright: International Joint Conference on Artificial Intelligence (IJCAI)

Self-Organized Neural Learning of Statistical Inference
from High-Dimensional Data
Johannes Bauer, Stefan Wermter

Department of Informatics
University of Hamburg

Germany
Email: {bauer,wermter}@informatik.uni-hamburg.de

Abstract
With information about the world implicitly em-
bedded in complex, high-dimensional neural popu-
lation responses, the brain must perform some sort
of statistical inference on a large scale to form hy-
potheses about the state of the environment. This
ability is, in part, acquired after birth and often
with very little feedback to guide learning. This
is a very difficult learning problem considering the
little information about the meaning of neural re-
sponses available at birth. In this paper, we ad-
dress the question of how the brain might solve
this problem: We present an unsupervised artifi-
cial neural network algorithm which takes from the
self-organizing map (SOM) algorithm the ability to
learn a latent variable model from its input. We ex-
tend the SOM algorithm so it learns about the dis-
tribution of noise in the input and computes prob-
ability density functions over the latent variables.
The algorithm represents these probability density
functions using population codes. This is done
with very few assumptions about the distribution of
noise. Our simulations indicate that our algorithm
can learn to perform similar to a maximum likeli-
hood estimator with the added benefit of requiring
no a-priori knowledge about the input and comput-
ing not only best hypotheses, but also probabilities
for alternatives.

1 Introduction
All information the brain receives about the outside world is
coded in the same kind of neural responses to sensory stim-
uli. In order to make sense of this information the brain needs
knowledge about the statistics of these responses. It needs in-
formation about the relationship between specific responses
and the state of the world. Some of this knowledge is present
at birth, but a vast amount is acquired during a lifetime of
learning. How this knowledge is learned, represented, and
used for information processing is still an open research ques-
tion.

Specific decoding schemes for population responses im-
plicitly answer the question of the representation of infor-
mation at least for some cases: Often, a single quantity

is encoded in the activity of an ensemble of neurons in a
population code. Decoding schemes for population codes
have been proposed and evaluated using neurophysiological
data and computer simulations [Georgopoulos et al., 1986;
Seung and Sompolinsky, 1993; Deneve et al., 2001]. A spe-
cial case of population codes encode probability density func-
tions (PDFs) [Pouget et al., 2003]. Recent approaches have
addressed the question of how the brain might process in-
formation in this special case [Cuijpers and Erlhagen, 2008;
Beck et al., 2008]. These studies were inspired by biologi-
cal findings showing that humans and other animals perform
Bayes-optimally in sensory processing and multi-sensory in-
tegration tasks [Ernst and Banks, 2002; Landy et al., 2011;
Gori et al., 2012]. The focus of these studies is on integrating
information from multiple population codes, paying special
attention to sensory and neural noise. They assume that the
input already codes for a PDF.

Consider, however, the problem of locating the center of a
blob of light. The population response of the retina will code
for the distribution of light, which is not generally equiva-
lent to a PDF for the position of the stimulus (see Fig. 1).
There has been less work on how a PDF can be computed
from neural input initially, and how computing such a PDF
can be learned under plausible constraints. The architecture
due to Deneve et al. does compute an estimate from primary
input, but it does not compute a PDF, and its network dynam-
ics are hard-coded [2001]. Barber et al. describe a framework
for creating networks which compute PDFs [2003]. Simi-
larly, Jazayeri and Movshon propose an artificial neural net-
work (ANN) model which recovers a PDF from noisy in-
put [2006]. However, in both cases, there is no learning in-
volved and knowledge of the response and noise properties of
the input is required. In this paper, we propose an algorithm
which lets a neural population learn to compute a PDF for a
stimulus from sensory input. The network then encodes the
PDF in a population code. The algorithm is self-organized
and unsupervised. It does not require implicit knowledge of
the nature of the stimulus, of how the stimulus is represented
by the input, or of the distribution of noise. These features
make ours a very versatile machine learning algorithm and a
new model of natural learning and information processing.

The structure of this paper is as follows: In Section 2 we
first analyze the problem of interpreting neural input from a
statistical perspective. We briefly explain population coding

Figure 1: Difference between Light Distribution and PDF.
left: stimulus, right: PDF for position of center.

and self-organization. In Section 3, we describe an algorithm
based on the self-organizing map (SOM) [Kohonen, 1982]
which combines statistical learning, population coding, and
self-organization to learn how to compute and represent PDFs
from neural input. In Section 4 we report on simulations car-
ried out to validate our approach. Finally, we discuss the
properties of our algorithm as a machine learning approach
and as a model of neural learning. We also point out other
ANN models which may help implement some of the mech-
anisms of our algorithm in a biologically plausible manner.

2 Theoretical Considerations
One approach to understanding biological systems is analyz-
ing their presumed function, and what a good solution could
be. Comparing the result with what one finds in nature can
then give insight into how the system works, or what the task
really is, or what the constraints are [Jacobs and Kruschke,
2011; Landy et al., 2011]. In this section, we will present
the problem faced by a single neuron interpreting sensory in-
formation and an abstract solution to that problem. We will
extend the problem and the solution to the case where a pop-
ulation of neurons collaborate, and discuss how a population
can self-organize without external feedback.

Generally, the goal of processing sensory information is
learning about properties of the world. Such properties can
be the position of a stimulus, or its size, or its identity. A neu-
ron taking part in such a computation uses information from
thousands of synapses connecting it to that many neurons in
different parts of the brain. A fundamental problem in this is
that initially a neuron has no way of knowing what the rela-
tionship is between its input activity and anything outside the
skull. Some connection properties of course are hard-wired
and present at birth. However, perception sharpens drastically
with experience after birth [King, 2004; Gori et al., 2008;
Stein, 2012]. Thus, neurons performing perceptual process-
ing have to learn this relationship from experience and over
time.

2.1 The Statistical Approach
Given enough data about past activity of input neurons in
different situations, the problem described above becomes a
matter of simple statistics. Consider an output neuron o re-
ceiving as input activity a from some input neuron i. Let us
say that it is o’s task to calculate whether or not some propo-
sition A is true. The statistical solution to this is to compare
how often i’s activity was a when A was true in the past to
when A was false. To make this more precise, assume for
a moment we have a data set D of the previous activity of
i in cases when A was true and in cases when A was false.

If Da and DA are the subsets of only those data points in D
where the activity was a and where A was true, respectively,
and Da,A = Da ∩ DA, then we can estimate the following
probabilities:

P (a | A) ≈ |Da,A|
|DA|

, P (a) ≈ |Da|
|D| , P (A) ≈ |DA|

|D| . (1)

The probability of A given i’s activity a is (by Bayes’ the-
orem):

P (A | a) = P (a | A)
P (a)

P (A). (2)

Inserting the probability estimates from Eq. 1, we get

P (A | a) ≈ |Da,A|
|DA|

|D|
|Da|

|DA|
|D| =

|Da,A|
|Da|

. (3)

Now consider the case in which our neuron receives input
from a population of input neurons i1, i2, . . . , il whose joint
activity is ~a = a1,a2, . . . ,al. Assuming noise in these input
neurons is uncorrelated, it is easy to extend our considerations
above for this case. For one, Eq. 2 becomes

P (A | ~a) = P (A)

P (~a)

l∏
k=1

P (ak | A). (4)

We can estimate the probability P (A | ~a) as we did in Eq. 3:

P (A | ~a) ≈ |DA|
|D|

|D|
|D~a|

l∏
k=1

|Dak,A|
|DA|

, (5)

where Dak
and Dak,A are defined analogous to Da and Da,A

above and D~a is the intersection of all Dak
, 1 ≤ k ≤ l. Note

that, for large l, it can take a very big data set to make D~ak

representative. Fortunately, this will not be a problem in our
case as we will explain below.

2.2 Population Coding and PDF
Often, hypotheses about properties of the world are not en-
coded in the activities of single neurons. Instead, population
codes seem to be involved in many areas of the brain and have
become an important modeling paradigm [Seung and Som-
polinsky, 1993; Pouget et al., 2003; Beck et al., 2008]. In a
population code, each neuron’s response aS to a stimulus S
is a stochastic function of S:

aS = f(S) + ν(S),

where ν(S) models random noise whose distribution may or
may not be dependent on S. Each neuron nj in the pop-
ulation has a different tuning function fj , and the noise in
each neuron’s response is generally assumed to be indepen-
dent. Usually, the neurons in a population n1,n2, . . . ,nl

are thought to be spatially ordered. The tuning function
fk, 1 ≤ k ≤ l of neuron nk then often differs from that of
other neurons only in some parameter θk which depends on
the position of the neuron. In this paper, we assume that the
input to our network is a population code for some perceived
property of the world.

In a second use of the concept, we want to population-code
a PDF for the property represented by the input: In a popu-
lation code encoding a PDF [Barber et al., 2003] for a value

output

logical input

visual input auditory input

PDF
Population

Codes

Figure 2: Population-coded PDF Computed from Multiple Physical
Input Populations

p of a property P of the outside world, each neuron nk has
a preferred value pk and codes with its activity aS for the
probability of pk being the true value of P given stimulus S:

aS = g(P (P = pk | S)) + ν(S),

where g is some function which encodes probabilities in sin-
gle neural responses. To stick with the terminology of the
previous section, we can also say that each neuron nk codes
for the probability of the proposition Ak that P = pk:

aS = g(P (Ak | S)) + ν(S).

Assuming that neurons can somehow implement the statis-
tical calculations of Section 2.1, a population of output neu-
rons can compute and represent a PDF from their input: Each
neuron has its own preferred value p, determines the proba-
bility P given the input, and encodes that probability in its
output. This idea becomes especially interesting if we take
the population of input neurons as a logical population in-
stead of a physical one: In a biological context, some of the
neurons of the input population might code for the position
of an object in visual space, and others for its position in au-
ditory space (see Fig. 2).

2.3 Self-Organization
Let us point out the following two observations about what
we have discussed so far. First, Section 2.1 assumed a data set
of previous pre-synaptic activity values of a neuron and truth
values of the proposition for whose probability that neuron
is to code. Obviously, information about the input activity is
immediately available to a neuron. However, in many cases
of neural learning, it is hard to argue for a teaching signal
which would give a neuron information about the true value
of a world property.

Second, Section 2.2 assigned each neuron in a population
code a preferred value of the property whose PDF was be-
ing encoded. This poses the question of what mechanism
could organize a population of neurons in such a way that
they each respond to different stimuli. The development of
neural connectivity is guided prenatally by chemical gradi-
ents. Such gradients could configure neurons in a population
to respond to different inputs. However, it is not immedi-
ately clear that such a configuration could be fine enough.

p p̂

Figure 3: Value to Curve to Value:
The value p of a world property P is mapped to a curve

(out of a set) from which p can be estimated.

Also, it has been found in nature that the preferred values will
shift with postnatal experience [Wallace and Stein, 2007]. We
therefore prefer a model which produces an ordered distribu-
tion of preferred values over output neurons without requiring
either pre-configuration or a teaching signal.

Let us recall the task we are trying to solve: Implicitly, we
are assuming that a low-dimensional latent variable P is the
cause of our high-dimensional observation, the input popula-
tion’s response. And it is our aim to learn to recover probabil-
ities for different values of that latent variable. That means,
we are trying to learn a latent-variable model. Assume, for
example, that input neurons i1, i2, . . . , il respond to the value
p of a world property P and p ∈ R. If these neurons en-
code the value of P as a noisy sine wave, say, then it is our
task to learn this relationship and to transfer a sine wave back
to an estimate of p (see Fig. 3). The unsupervised SOM al-
gorithm has been shown to be able to learn low-dimensional
latent-variable models for observations in high-dimensional
spaces [Yin, 2007; Klanke, 2007]: a SOM learns a topology-
preserving mapping from points in a data space of dimen-
sion m to its units (or ‘neurons’), which are ordered in an
n-dimensional grid, typically with m > n.

The SOM algorithm uses three mechanisms to accomplish
learning of latent-variable models: through a form of Heb-
bian learning, it gradually moves the mapping of its units
from their starting position closer and closer and finally into
the subspace of data points. Through competitive learning,
the algorithm distributes the units within that subspace. And
through neighborhood interaction, ie. by always adapting not
only one neuron, but also its neighbors in the grid, it preserves
the topological order of that subspace in the mapping.

In the following, we will explain how the statistical con-
siderations from Section 2.1 can be combined with self-
organized learning of latent-variable models to produce pop-
ulation codes for PDFs.

3 Implementation
This section will deal with the implementation of the ideas
laid out so far. We will describe verbally the process of learn-
ing how to population-code PDFs and how the mechanism re-
lates to the ideas above. For a summary, consult Algorithm 1.

Data Structures. In Section 2.1 we explained our ideas in
terms of data sets. However, since only the sizes of these
sets are necessary for probability computations, we imple-
ment our algorithm using counters. Let o1,o2, . . . ,om and

Algorithm 1 The Full Algorithm
function LEARN(D : the data set)

for n = 0→ N do
select d← (d1, d2, . . . , dl) ∈ D
b← argmaxk(RESPONSE(k, d))
for j = 1→ m do

UPDATENEURON(j, b, d, σn, sn)
end for

end for
end function

function UPDATENEURON(k, b, d, σ, s)
η ← h(δk,b, σ)
for i = 1→ l do

onk,i[di]← onk,i[di] + s ∗ η
end for
coffk ← coffk + s
conk ← conk + s ∗ η

end function

function RESPONSE(k, d)
r = (coffk/conk)

p

for i = 1→ l do
r ← r · onk,i[di]

sum(onk,i)
end for
return r

end function

Definitions:
N Number of training steps.
l,m Size of input, output population.
σn Neighborhood interaction width

(decreasing with n, eg. linear with softmin).
sn Update strength (increasing with n, eg.

√
n).

δk,j Grid distance between output neurons ok,oj .

h(δ, σ) Gaussian exp(−δ2/
√

1
2
πσ2).

p ∈ O(l) Spread exponent.
coffj , conj Update counters for output neuron oj .
onj,k list of activity counters for output oj , input neuron ik.

Π
coff

p
j

con
p
j

oj

ib

onj,b

: Σ

ia

onj,a

: Σ

ic

onj,c

: Σ

Figure 4: Output Neuron oj Computes Its Activity from that of
Input Neurons ia, ib, ic.

o1,o2, . . . ,om be our population of input and output neu-
rons, respectively. Then, each output neuron oj maintains
two counters, conj and coffj , and a list onj,k of counters per
input neuron ik.

How these counters and lists are maintained will be ex-
plained below. As a guiding intuition, assume some neuron
oj has the preferred value pj . This means that the neuron’s
job is to code for the probability of proposition Aj = (P =
pj) being true. The reader may think of entry onj,k[a] as a
count of the number of occasions where the activity of in-
put neuron ik was a and Aj was true. It will therefore serve
instead of

∣∣Daj ,Aj

∣∣ as used in Section 2.1.

The individual counters conj and coffj are similar; it is their
role to approximate |DA| and |D|, respectively. Thus we can
implement Eq. 5 and given activities ~a = a1,a2, . . . ,al of
the input neurons i1, i2, . . . , il, the probability of P being pj

can be calculated approximately as

P (P = pj |~a) ≈
1

P (~a)

conj

coffj

l∏
k=1

onj,k[ak]∑
(onj,k)

. (6)

where
∑

(onj,k) denotes the sum of all entries of list onj,k.
The evidence P (~a) is independent of pj and thus the same
for all neurons oj . It can therefore be replaced by a constant,
becoming part of the PDF encoding.

The Algorithm. We will now explain how the counters and
lists of counters of our output neurons introduced above can
be updated such that after learning each output neuron on

has its own preferred value pk of P and that the population
response will represent a PDF over the possible values of P.

In the SOM algorithm, competitive learning is imple-
mented by updating SOM units depending on their grid dis-
tance from the so-called best-matching unit (BMU). The
BMU is that unit which reacts most strongly to the data point.
The further away from the BMU, the less strongly a unit is
updated. On average, units are updated in such a way that
they become more responsive to the data points with which
they are updated and less responsive to data points which are
very different from them. This leads to specialization of units
and their distribution in data space. We, too, use this strategy
for our learning algorithm.

Assume neuron oB was most responsive to the data point
represented by input activity a1,a2, . . . ,al of the input units
i1, i2, . . . , il at some time t. Then each neuron oj , 1 ≤ j ≤ m
is updated with a strength st and with a neighborhood in-
teraction ηt = ht(B, j) where ht(B, j) is a zero-centered
Gaussian function of the distance between oB and oj . The
width of the Gaussian neighborhood interaction function ht
decreases over time, whereas st increases sublinearly to allow
for continued learning. Updating a neuron oj with an input
activity a1,a2, . . . ,al, strength st and neighborhood interac-
tion η means updating conj and coffj as well as onj,k, for every

input neuron ik. coffj and conj are updated by adding st and
stη, respectively. onj,k is updated by updating the entry cor-
responding to the input neuron’s activity ak: We add stη to
onj,k[ak]. We refer to Algorithm 1 for details.

What is left is to explain how an output neuron computes
its activity from the input and thus how the BMU is selected.
Our aim is to population-code a PDF, therefore it would be
natural to set a neuron pj’s response proportional to the com-
puted probability density at its preferred value pj . However,
we have found that noise and the complex mechanisms for
calculation of activation and neuron updates can lead to an
anomalous situation: Suppose during the learning process
one neuron is adapted so strongly that it is much closer to the
data space than all others. Then, in the next learning steps, it
may be so much closer to all data points that no other unit is
ever again selected as BMU and updated. Usually, this can be
prevented by using a very small learning step length.

There is no such thing as a learning step length in our al-
gorithm. Therefore, we employ another mechanism which
promotes competition between neurons even if only a small
number of neurons are updated: By multiplying the activity

of each neuron oj by the spread factor bj =
(

coffj

conj

)p
for some

large p, we artificially increase the neurons’ responses if they
have not been BMU (or close to a BMU) for a long time.
Thus, whenever some neuron oj gets too much better than the
others at representing the input, it becomes BMU very often
and bj becomes smaller. Other neurons’ responses are mag-
nified and they are updated more often such that their chances
at being BMU for some inputs are increased. An equilibrium
is reached when bj is equal for all neurons oj . This is the
case if, over many data points, every neuron has been BMU
approximately the same number of times. Assuming that the
data set is representative, this happens if the possible values p
of P are distributed over the neurons such that their accumu-
lated probability is approximately equal across neurons.

4 Experiments
We conducted two sets of experiments to validate our algo-
rithm. In the first set, we simulated one large, noisy input
population. These experiments were designed to be simple
and easy to benchmark against an artificial, optimal maxi-
mum likelihood estimator (MLE) read-out mechanism. In
the second set of experiments, we simulated two input pop-
ulations. These populations were smaller and somewhat less
noisy. They were meant to stand for input from different sen-
sory modalities. We therefore refer to our different sets of ex-
periments as ‘uni-sensory’ and ‘multi-sensory’ experiments.
We report numbers and show figures for one run of the simu-
lations for each set. These runs were representative and other
runs with different parameters went qualitatively similar.

4.1 Uni-sensory Experiments
In our uni-sensory experiments, we simulated a network con-
sisting of an input population I = (i1, i2, . . . , i100) and an
output population O = (o1,o2, . . . ,o110). The output popu-
lation was arranged in a one-dimensional grid. Stimuli were
random decimals p ∈ [0, 1] and the tuning function fk() of

each input neuron ik with preferred value pk = k/100 was a
Gaussian function of p:

fk(p) = a exp

(−(pk − p)2

1
2σ

2

)
.

with a = 3, σ = 0.3. The actual neural response of each
input neuron ik was then Poisson distributed around fk(p).

Without optimizing the parameters of the network and sim-
ulation for fast convergence, the network learned a rough
mapping after a thousand training steps. This mapping sharp-
ened and stabilized within the next few thousand steps (see
Fig. 5d). After 100 000 learning steps, we first analyzed our
network. The mapping from neurons to input values realized
by the network cannot be predicted beforehand because of the
process of self-organization. Therefore, we simulated inputs
at each position pl = l/100 000 for l ∈ [1 .. 100 000] and
recorded the neurons with the strongest response. The pre-
ferred value pk of each output neuron ok was then defined as
the mean of all positions pl for which ok was the BMU.

This mapping was then used to analyze the performance
of the network. Again, we simulated inputs at regular inter-
vals il = l/12 000, this time for l ∈ [1 .. 12 000]. We then
calculated the mean squared error (MSE) as the mean of the
squared difference between the simulated input and the pre-
ferred value of the BMU determined in the previous step.

As a benchmark, we implemented recovering the PDF di-
rectly from the input activity (see Fig. 5b). This is possi-
ble knowing the distribution of inputs i, the transfer func-
tions of the input neurons, and the noise model. The net-
work does not have access to any of these. By recover-
ing the PDF for test inputs and selecting the maximum,
we obtained an MLE to which we could compare our net-
work’s performance. We found that the MSE of the net-
work was msen = 8.829× 10−4 and that of the MLE was
msemle = 7.425× 10−4. Since MLE is the optimal decoding
scheme for this kind of input [Seung and Sompolinsky, 1993;
Deneve et al., 1999], this shows that our network is capable
of learning how to near-optimally combine the information
contained in a population response without knowledge of the
specifics of the code. Figs. 5a, 5b, and 5c show an activity
profile of the input population, the PDF recovered externally,
and the response of the network. The activity of each neuron
is plotted at the position we assigned when we analyzed the
network organization. The population response was normal-
ized such that the sum of activities was 1. Fig. 5d shows how
input stimuli were mapped to neurons during testing: The fig-
ure indicates which value of P was mapped to which neuron
how often during testing.

4.2 Multi-sensory Experiments
In a second set of experiments, we simulated two input pop-
ulations representing different sensory modalities. Accord-
ingly, neurons in these input populations had different tuning
functions: Neurons in both populations had Gaussian tuning
functions, but the width and amplitude were different. The
amplitudes in population 1 and population 2 were a1 = 8 and
a2 = 4, resp. The widths were σ1 = 0.2 and σ2 = 0.3. Also,
the size of the input population differed. Population 1 con-
tained 20, whereas population 2 contained only 10. Finally,

0.0 0.2 0.4 0.6 0.8 1.0
neuron position

0

2

4

6

8

ac
tiv

ity

(a) Noisy Input Activity.

0.0 0.2 0.4 0.6 0.8 1.0
Values p of P

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

P
(p
)

(b) Recovered PDF.

0.0 0.2 0.4 0.6 0.8 1.0
neuron position

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

ac
tiv

ity

(c) Network Output.

0 20 40 60 80 100
neuron index

0

20

40

60

80

100

gr
ou

nd
tr

ut
h
p

0
10
20
30
40
50
60
70
80
90

(d) Mapping.

Figure 5: Uni-sensory Trials.

0.0 0.2 0.4 0.6 0.8 1.0
neuron position

−2
0
2
4
6
8
10
12
14

ac
tiv

ity

(a) Activity in Population 1.

0.0 0.2 0.4 0.6 0.8 1.0
neuron position

−1
0
1
2
3
4
5
6

ac
tiv

ity

(b) Activity in Population 2.

0.0 0.2 0.4 0.6 0.8 1.0
neuron position

0.00
0.02
0.04
0.06
0.08
0.10
0.12

ac
tiv

ity

(c) Network Output.

0 20 40 60 80
neuron index

0

20

40

60

80

gr
ou

nd
tr

ut
h
p

0
50
100
150
200
250
300
350
400
450

(d) Mapping.

Figure 6: Multi-Sensory Trials.

to demonstrate that the order of neurons did not matter, we
switched the orientation of population 2: An input neuron ik
in population 2 had the preferred value pk = 1 − k/10 as
opposed to k/20 in population 1.

Both populations were combined into one logical popula-
tion as shown in Fig. 2. The output neurons and learning algo-
rithm had no access to either the population an input neuron
belonged to or the input neurons’ position in the population.
As expected, the network learned to combine the information
from the different input populations. Figs. 6a and 6b show the
noisy activities in populations 1 and 2. Fig. 6c shows the PDF
recovered by the network and Fig. 6d shows the mapping.

5 Discussion
We have presented a well-motivated ANN model which uses
self-organization to learn a latent variable model for a high-
dimensional population response. The network computes a
PDF and represents it as a population code. The model needs
no embedded knowledge about the specific code of the input
population or the noise properties. There are two require-
ments for this algorithm to succeed: one is that the noise is
uncorrelated between input neurons (or correlation at least
be low). In theory, this can be a serious limitation. However,
Naïve Bayes algorithms like ours have proven surprisingly ef-

fective in practice. In fact, Zhang has shown that Naïve Bayes
is optimal under certain realistic conditions, even if noise is
correlated [2005]. The second requirement is that the noise
must be low enough so the topological structure of the data
space can still be recognized. Both requirements are inherited
from the SOM algorithm to which ours is closely related.

As a general machine learning algorithm, our algorithm is
applicable wherever a small number of latent variables of the
domain manifest themselves in many noisy observables. It is
unsupervised and therefore especially useful where the kind
of noise and the relationship between latent variables and ob-
servables is either unknown or difficult to model precisely.
The algorithm can be used both for learning of statistical in-
ference and for extracting and exploring the statistics of large
stochastic datasets. It is hard to predict in advance the final
spatial organization of the network. This can be seen as a lim-
itation in some applications. However, as we have shown, it is
easy to extract the organization of the network after learning,
which should be sufficient in most cases.

As a model of neural information processing, the approach
presented here has the potential to explain several cognitive
phenomena and capabilities found in developing and adult an-
imals. One example at the behavioral level is multi-sensory
integration [Ernst and Banks, 2002]: As we have shown, our
model can learn how to combine information from different
sensory modalities. On the neurophysiological level, there is
a wealth of data about neural responses eg. in multi-sensory
integration [Stein and Meredith, 1993] in the superior col-
liculus (SC). Some of the properties of these responses have
been explained theoretically within a probabilistic framework
(eg. [Anastasio et al., 2000]). A detailed discussion of how
behavioral or neurophysiological phenomena can be accom-
modated in our model will be the topic of future work.

Our neural model makes use of counters and lists of coun-
ters. Of course, biological neurons do not have such data
structures—at least not explicitly. Soltani and Wang showed
how synapses could learn probabilistic inference from single
binary cues through reward-dependent learning [2010]. Ex-
tensions of this or similar work for multiple, continuous cues
and unsupervised learning could be used to implement the
mechanisms used here in a biologically plausible way.

In the future, we will further develop our model towards
various instances of natural sensory processing. Initial results
indicate that our model can well be used to build upon recent
approaches to bio-mimetic sound source localization [Dávila-
Chacón et al., 2012]. Also, we will explore applications in
multi-sensory integration. Since our network learns to pro-
cess input without a notion of where that input comes from it
seems a promising candidate for modeling eg. multi-sensory
integration in the integrative deep layers of the SC.

Acknowledgements

This work is funded by the DFG German Research Founda-
tion (grant #1247) – International Research Training Group
CINACS (Cross-modal Interactions in Natural and Artificial
Cognitive Systems).

References
[Anastasio et al., 2000] Thomas J. Anastasio, Paul E. Pat-

ton, and Kamel Belkacem-Boussaid. Using Bayes’ rule to
model multisensory enhancement in the superior collicu-
lus. Neural Computation, 12(5):1165–1187, May 2000.

[Barber et al., 2003] Michael J. Barber, John W. Clark, and
Charles H. Anderson. Neural representation of probabilis-
tic information. Neural Computation, 15(8):1843–1864,
August 2003.

[Beck et al., 2008] Jeffrey M. Beck, Wei J. Ma, Roozbeh
Kiani, Tim Hanks, Anne K. Churchland, Jamie Roitman,
Michael N. Shadlen, Peter E. Latham, and Alexandre
Pouget. Probabilistic population codes for bayesian deci-
sion making. Neuron, 60(6):1142–1152, December 2008.

[Cuijpers and Erlhagen, 2008] Raymond H. Cuijpers and
Wolfram Erlhagen. Implementing Bayes’ rule with neural
fields. In Proceedings of the 18th international conference
on Artificial Neural Networks, Part II, ICANN ’08, pages
228–237, Berlin, Heidelberg, 2008. Springer-Verlag.

[Dávila-Chacón et al., 2012] Jorge Dávila-Chacón, Stefan
Heinrich, Jindong Liu, and Stefan Wermter. Biomimetic
binaural sound source localisation with ego-noise cancel-
lation. In Alessandro E. Villa, Włodzisław Duch, Péter
Érdi, Francesco Masulli, and Günther Palm, editors, Ar-
tificial Neural Networks and Machine Learning – ICANN
2012, volume 7552 of Lecture Notes in Computer Science,
pages 239–246. Springer Berlin Heidelberg, 2012.

[Deneve et al., 1999] Sophie Deneve, Peter E. Latham, and
Alexandre Pouget. Reading population codes: a neural
implementation of ideal observers. Nature Neuroscience,
2(8):740–745, August 1999.

[Deneve et al., 2001] Sophie Deneve, Peter E. Latham, and
Alexandre Pouget. Efficient computation and cue integra-
tion with noisy population codes. Nature Neuroscience,
4(8):826–831, August 2001.

[Ernst and Banks, 2002] Marc O. Ernst and Martin S. Banks.
Humans integrate visual and haptic information in a statis-
tically optimal fashion. Nature, 415(6870):429–433, Jan-
uary 2002.

[Georgopoulos et al., 1986] Apostolos P. Georgopoulos, An-
drew B. Schwartz, and Ronald E. Kettner. Neuronal
population coding of movement direction. Science,
233(4771):1416–1419, September 1986.

[Gori et al., 2008] Monica Gori, Michela Del Viva, Giulio
Sandini, and David C. Burr. Young children do not inte-
grate visual and haptic form information. Current Biology,
18(9):694–698, May 2008.

[Gori et al., 2012] Monica Gori, Giulio Sandini, and David
Burr. Development of visuo-auditory integration in space
and time. Frontiers in Integrative Neuroscience, 6, 2012.

[Jacobs and Kruschke, 2011] Robert A. Jacobs and John K.
Kruschke. Bayesian learning theory applied to human
cognition. Wiley Interdisciplinary Reviews: Cognitive Sci-
ence, 2(1):8–21, 2011.

[Jazayeri and Movshon, 2006] Mehrdad Jazayeri and An-
thony A. Movshon. Optimal representation of sensory
information by neural populations. Nature Neuroscience,
9(5):690–696, May 2006.

[King, 2004] Andrew J. King. Development of multisensory
spatial integration. In Crossmodal Space and Crossmodal
Attention, chapter 1, pages 1–24. Oxford University Press,
USA, May 2004.

[Klanke, 2007] Stefan Klanke. Learning Manifolds with
the Parametrized Self-Organizing Map and Unsupervised
Kernel Regression. PhD thesis, University of Bielefeld,
March 2007.

[Kohonen, 1982] Teuvo Kohonen. Self-organized formation
of topologically correct feature maps. Biological Cyber-
netics, 43(1):59–69, January 1982.

[Landy et al., 2011] Michael S. Landy, Martin S. Banks, and
David C. Knill. Ideal-observer models of cue integration.
In Julia Trommershäuser, Konrad Körding, and Michael S.
Landy, editors, Sensory Cue Integration, chapter 1, pages
5–29. Oxford University Press, Oxford, August 2011.

[Pouget et al., 2003] Alexandre Pouget, Peter Dayan, and
Richard S. Zemel. Inference and computation with pop-
ulation codes. Annual review of Neuroscience, 26(1):381–
410, 2003.

[Seung and Sompolinsky, 1993] H. Sebastian Seung and
Haim Sompolinsky. Simple models for reading neuronal
population codes. In Proceedings of the National Academy
of Sciences, volume 90, pages 10749–10753, AT&T Bell
Laboratories, Murray Hill, NJ 07974., November 1993.

[Soltani and Wang, 2010] Alireza Soltani and Xiao-Jing
Wang. Synaptic computation underlying probabilistic in-
ference. Nature Neuroscience, 13(1):112–119, January
2010.

[Stein and Meredith, 1993] Barry E. Stein and M. Alex
Meredith. The Merging Of The Senses. Cognitive Neu-
roscience Series. MIT Press, 1 edition, January 1993.

[Stein, 2012] Barry E. Stein. Early experience affects the de-
velopment of multisensory integration in single neurons of
the superior colliculus. In Barry E. Stein, editor, The New
Handbook of Multisensory Processing, chapter 33, pages
589–606. MIT Press, Cambridge, MA, USA, June 2012.

[Wallace and Stein, 2007] Mark T. Wallace and Barry E.
Stein. Early experience determines how the senses will
interact. Journal of neurophysiology, 97(1):921–926, Jan-
uary 2007.

[Yin, 2007] Hujun Yin. Learning nonlinear principal man-
ifolds by self-organising maps. In Principal Manifolds
for Data Visualization and Dimension Reduction, Lecture
Notes in Computational Science and Engineering, chap-
ter 3, pages 68–95. Springer, Dordrecht, 2007.

[Zhang, 2005] Harry Zhang. Exploring conditions for the
optimality of Naïve Bayes. International Journal of Pat-
tern Recognition and Artificial Intelligence, 19(2):183–
198, 2005.

