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Abstract—We present an algorithm based on the self-orga-
nizing map (SOM) which models multi-sensory integration as
realized by the superior colliculus (SC). Our algorithm differs
from other algorithms for multi-sensory integration in that it
learns mappings between modalities’ coordinate systems, it learns
their respective reliabilities for different points in space, and
uses mappings and reliabilities to perform cue integration. It
does this in only one learning phase without supervision and
such that calculations and data structures are local to individual
neurons. Our simulations indicate that our algorithm can learn
near-optimal integration of input from noisy sensory modalities.

I. INTRODUCTION

The superior colliculus (SC) is a mid-brain area which
receives input from a number of sensory modalities and
integrates it to localize a possible common origin of the
individual cues. The SC uses this integrated localization to
generate motor commands. For instance, hearing a bird sing
and perceiving its motion in the periphery of our visual field
e.g. might lead to a saccade, i.e. a fast eye movement which
directs our eyes towards the origin of the stimuli, the bird [1].

Two main challenges arise in this task: first, the conceptual
coordinate systems in which sensory modalities code their out-
put must be aligned. Second, noisy, sometimes contradictory
information from different modalities needs to be integrated
taking into account their reliabilities.

In the context of the SC, uni- and multi-sensory localizations
are coded spatiotopically: ganglion cells from the retina,
e.g., project to different locations in the SC depending on
where in the retina they originate. Auditory localization cues
also reach the SC spatiotopically organized via the external
nucleus (ICx) of the inferior colliculus (IC), with the different
cues leading to horizontal and vertical localization already
integrated [2]. Thus, a biological formulation of the problem
of alignment is how to group neurons pertaining to different
sensory modalities by the direction in real space for which they
stand. For example, there may be two neurons, one carrying
information from the retina, one from the ICx, which both fire
most strongly whenever a stimulus in their modality is located
at 5◦ right and 10◦ upwards from the center of the field of
view. In order for their signals to be integrated, these neurons
must project to the same location in the SC.

A more abstract, algorithmic formulation assigns each neu-
ron from one modality coordinates in a modality-specific
coordinate system. The problem then becomes transforming

coordinates from these modality-specific coordinate systems
into one unified coordinate system.

The problem of integrating cues from different, noisy sen-
sory modalities can, again, be described taking vision and
hearing as an example: say, an audio-visual stimulus is right
in front of us. Then vision will provide us with a very exact
estimate of the location of that, while hearing may be off
even in the best of cases by a degree or more [3]. If both
cues are to be integrated—and they should be, because hearing
does provide valuable information [4]—then they need to be
weighted differently. Exactly how reliable cues from different
modalities are is not equal throughout space, as e.g. accuracy
of vision is much greater at the center of the visual field than
in the periphery [5].

The effects of sensory deprivation on the spatial organiza-
tion of the SC described by e.g. Knudsen and Brainard [6],
the observation that sensory accuracy is different between
individuals [7], [8], and the fact that neurophysiological and
behavioral evidence for cue integration are not found until
considerable time after birth [9], [10] suggest that both co-
ordinate transformation and integration of multi-sensory cues
are subject to learning in the early stages of development.

Various modeling approaches have been proposed for co-
ordinate transformation, integration, and their learning, at
different levels of abstraction from biological reality. Mathe-
matically, the maximum likelihood estimator (MLE) has been
a very successful means of modeling and explaining biological
multi-sensory integration in a variety of tasks including in
object localization [4], [10]–[12]. In that setting, and un-
der certain simple and plausible assumptions, its application
amounts to a simple linear combination of two or more sensory
estimates of an object’s location. For the MLE to be used
in this way, the reliability of each sensory modality must
be known and be equal at every point in space. Depending
on the situation, statistical learning methods like the EM
algorithm [13], [14] can be used to learn these reliabilities.

Most of the current artificial neural network (ANN) models
at levels of high biological plausibility focus on replicating
neurophysiological observations like the well-known suppres-
sion and enhancement effects and inverse effectiveness [1],
spatiotopic organization, as well as interaction of the SC
with higher cortical areas ([15]–[18], see also Rowland and
Stein [19] for a review). Some develop coordinate transforma-
tion using SOM or SOM-like algorithms [17], [18]. None of
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these models, however, consider the different reliabilities of
the input modalities.

Weisswange et al. [20] on the other hand apply ANN
learning to the problem of learning optimal cue combination.
Their version of the cue combination task is more complex
than the one we are considering in this paper in that cues from
different modalities may or may not originate from one event.
Weisswange et al. show that their learner performs similar
to Bayesian model averaging in this task. Their approach,
however, requires a teaching signal in order to develop spatial
organization, and learn coordinate transformation and modal-
ities’ reliabilities.

Ghahramani [21] proposes an unsupervised learning al-
gorithm in which units in a grid—like the neurons in the
SC—adapt their Gaussian receptive fields with respect to two
sensory modalities such that they map and integrate input
from these modalities. His algorithm is firmly grounded in
information theory and, like ours, motivated by multi-sensory
integration in the SC. However, it requires knowledge of
coordinate transformation as input. Also, as the author notes,
calculations are quite involved and non-local in this algorithm
and it does not immediately support more than two sensory
modalities.

We will show in this paper how an unsupervised neural
network algorithm based on Kohonen’s SOM can learn to
integrate cues from three or more sensory modalities for object
localization, modeling multi-sensory integration in the SC. The
algorithm will be introduced in Section II. In Section III, we
will report on our simulations which show that, our algorithm
can learn statistically near-optimal integration. The discussion
in Section IV of our model, our results, and how our approach
may be extended with ideas from related work will conclude
this paper.

II. MULTI-SENSORY INTEGRATION USING SOMS

After briefly reviewing the SOM algorithm in Section II-A,
establishing some of the concepts and notation used through-
out this paper, we will, in Sections II-B and II-C, describe
how it can in general solve the two great problems arising in
multi-sensory localization: transformation between coordinate
systems, and optimally combining signals from modalities
with different reliabilities. In Section II-D, we will present the
main contribution of this article: an extension of the original
SOM algorithm which lets the SOM learn what the reliability
of each input modality is and how it varies in space.

A. SOM

Self-organizing feature maps (SOM), or Kohonen maps
([22], [23]), are an abstract neural network algorithm which
has been very successfully applied to various problems since it
was introduced in 1982. In short, a SOM is a mapping i from
some input domain D with a distance measure dist between
elements into a one- or multidimensional, finite grid U of SOM
units, and a mapping e from U to D such that

e(u) = v ⇒ i(v) = u.

and, for all u, u′ ∈ U , v ∈ D

i(v) = u ⇒ dist(e(u), v) ≤ dist(e(u′), v).

We say that the unit uB = i(v) is the best matching unit
(BMU) for the input v. The symbols i and e are chosen to
reflect the intuition about them in this paper: integration and
extrapolation.

A SOM’s mapping is learned from a set of data points by
repeatedly selecting a data point v, finding the BMU uB for
v, and updating uB and units within a certain neighborhood
around uB such that they are closer to v wrt. dist. During
training, the size of the neighborhood is shrunk and the
amount by which neighbors are updated is decreased. This
unsupervised algorithm generally tends to generate a mapping
which preserves the structure [24] of the input space in that,
for three data points v1, v2, v3, it tends to be true that

|i(v1)− i(v2)| ≤ |i(v1)− i(v3)|

if
dist(v1, v2) < dist(v1, v3).

In this work, we are particularly interested in SOMs as a
means of manifold learning [24], [25] or function approxima-
tion [26].

B. Coordinate Transformation

Integration of signals from n sensory modalities as real-
ized by the SC can be described as mapping input tuples
from (Q2)n to Q2 and SOMs are an algorithm for learning
structure-preserving mappings from some domain to a grid.
Together, this motivates the concept of modeling the SC
using SOMs. A simple SOM-based architecture can take
n inputs v1, v2, . . . , vn, one per sensory modality, each its
respective modality’s estimate of the location of the current
stimulus. It can turn them into one n-dimensional vector v =
(v1, v2, . . . , vn) and feed that to the SOM (see Figure 1). The
SOM will then learn which coordinates in the combined vector
go together and thus how to convert between the individual
modalities’ coordinate systems regardless of different scales
or orientations (see Figure 1).

C. Noise and the Distance Measure

Let us first define how we model noise. For our purposes, we
assume noise in modalities to be independent and governed by
Gaussian distributions, i.e. assuming a noise standard deviation
for some modality Mi is σi, then the probability density for
the distance d between a perceived point and its real origin is

N(d, σi) =
1√
2πσ2

i

e
− d2

2σ2
i . (1)

We call σi the intensity of the noise in modality Mi. The
reliability of Mi is defined as ri = 1

σ2
i

[4], [21], [27].
In the following, we will show how a SOM can in principle

deal with noise in the input data. We will limit ourselves to
1-dimensional SOMs and coordinate mapping. Extending the
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Fig. 1: Learning Simple Coordinate Transformation Using a SOM

algorithm to more dimensions is straightforward although not
without implications, as will be described in Section II-E.

Recall that there needs to be a distance function defined
between elements of the domain of the learned mapping. Quite
often, when implementing SOMs, this distance function is sim-
ply the Euclidean distance between vectors. If, however, the
distance function uses knowledge of the sensory modalities’
reliabilities to weight the input’s components, then it can not
only convert between modalities, but also make a better guess
at the common origin of a number of signals than any modality
does on its own.

Assume we are integrating percepts from n modalitiesMi,
1 ≤ i ≤ n and we know that for each modality Mi,
σ2
i is the variance of the Gaussian distribution governing

the distance between the actual and perceived origin of a
stimulus. Given two vectors va = (va1, va2, . . . , van) and
vb = (vb1, vb2, . . . , vbn), this could be a suitable distance
function:

dist(va, vb) = 1−
n∏

i=1

N(|(vai − vbi)|, σi) (2)

With this function, the distance between two elements would
be determined by the likelihood of one being a noisy version
of the other under the given noise probability distribution. As a
result, for some input element v, the mapping i(v) realized by
the SOM would yield that element u ∈ range(i) such that e(u)
is the most likely true origin of the signals encoded in v. Of
course this still assumes that we know the senses’ reliabilities
and that they are the same at all points in space.

In order to see how the latter problem can be solved,
suppose for now that our SOM units not only maintain n-
dimensional weight vectors m, but are in fact tuples (m,σ)
where σ = (σ1, σ2, . . . , σn) is a vector of standard deviations
describing the senses’ reliabilities. This suffices for now; the
actual structure of our SOM units will be explained a little
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v1
v2

v3

(b) Fitting Distances between
Estimates

Fig. 2: Ideas for Learning Sensory Reliabilities
(Explanations in Text)

later, in Section II-D. Note, however, that this is already a
slight departure from mainstream SOM formulations where
the structure of SOM units is usually the same as that of
input vectors. Accordingly, the distance function dist must not
be defined symmetrically between input vectors v and v′ but
between input vectors v = (v1, v2, . . . , vn) and SOM units
u = (mu, σu). The distance function we will be using in our
algorithm is similar to the one from (2), but uses each SOM
unit’s individual σu:

dist(v, u) = 1−
n∏

i=1

N(vi −mui, σui) (3)

The question is how to make our SOM units learn the
vector σ. Figure 2a shows the effect of simply fitting Gaussian
distributions to the distances between mi’s in SOM units
(m,σ) and vi values of the data points v = (v1, v2, . . . , vn)
that were merged into them (blue, red lines in Figure 2a). If
we start with equal σi for all modalities Mi, then, initially,
the distance function dist will weight each vi equally and the
BMU will be somewhere in the middle between them (red
dot in Figure 2a). Estimates from the most reliable modality,
say M1, will tend to be closest to their corresponding values
in m and thus the corresponding σ1 will shrink. At one
point, the estimated reliabilities will actually be very close
to the real ones, and the BMU will be close to the optimal
one (blue dot in Figure 2a). However, therefore, data points
v = (v1, v2, . . . , vn) will continue to be merged into SOM
units (m,σ) whose m1 is very close to v1, leading to an even
smaller σ1 in SOM units. In the end, this cycle will result in
our algorithm favoring almost exclusively one modality (the
best one, most of the time), and only learning the reliabilities
of the others as predictors of that modality’s guesses.

Our solution to this problem is deriving σ not from the
distribution of data points around the SOM units they are
merged into, as above, but from the distances between each
modalities’ estimates from each other (green lines in Fig-
ure 2b). The intuitive reason why we require input from more
than two sensory modalities becomes clear at this point: since
the distance between two modalities’ estimates is symmetric,
i.e. d(v1, v2) = d(v2, v1), calculations based solely on the



distribution of distances between estimates from only two mo-
dalities cannot result in different reliabilities for the individual
modalities. In the next section, we will show how estimates
from three or more modalities, however, can be used to learn
their reliabilities.

D. The Learning Rule

Let a SOM unit be a tuple u = (m, c,V), where m =
(m1,m2, . . . ,mn) ∈ Qn is the unit’s weight vector, c ∈ Q
is a generalized counter, and V is a symmetric n × n matrix
whose diagonal elements are all 0. We will use V to record the
(weighted) average of squared differences between modalities’
guesses:

V =




0 V1,2 · · · V1,n
V2,1 0 · · · V2,n

...
...

. . .
...

Vn,1 Vn,2 · · · 0


 , (4)

where Vi,j = Vj,i,∀i, j. This matrix V will be used later to
approximate the σi needed for our distance function.

The BMU and neighboring SOM units are updated with
an update strength given by a Gaussian neighborhood in-
teraction function h of their distance from the BMU. Let
u, u′ ∈ range(i), then

h(u, u′) = N(d(u, u′), σh), (5)

where d(u, u′) is the Euclidean distance between two SOM
units in the SOM’s grid and σh is called the width of the
neighborhood interaction function.

Let s ∈ Q+ be the update strength given by h for a BMU
uB and some SOM unit u = (m, c,V). Then u is updated
with a data point v = (v1, v2, . . . , vn) as follows:

c′ = c+ s (6)

m′ =
1

c′
(cm+ sv) (7)

V′i,j = Vi,j + s [(mi − vi)− (mj − vj)]2 (8)

This update rule does three things. First of all, it lets
the SOM units learn a mapping between coordinate systems
through the fairly standard update of the weight vector in
(7). Second, it organizes the SOM units spatially, through the
neighborhood interaction in (5) and (7), which is standard,
again. Third, and most importantly, in (8), it lets each unit
learn the variances of the differences between the modalities’
predictions as will be explained in the following.

Assume for now that the modalities’ reliabilities are invari-
ant across space and that the coordinate systems of the differ-
ent modalities coincide. In a data point v = (v1, v2, . . . , vn),
every vi can then be seen as the sum of a random variable
X , which is the true origin of the signal, and another random
variable Ni, which models the noise in modality Mi.

After k updates to a SOM unit (m, c,V), Vi,j is then

Vi,j = V0 +
k∑

l=1

sl[(xl + ρil)− (xl + ρjl)]
2

= V0 +
k∑

l=1

sl[ρil − ρjl]2,

for values xl, ρil, and ρjl of X , Ni, and Nj , respectively;
for an initial small, non-zero V0; and for update strengths sl,
1 ≤ l ≤ k.

Since the noise processes are assumed to be independent,
and because the variance of the difference of two independent
random variables is the sum of their variances, Vi,j will, for
large k, eventually approach the sum of the variances of the
random variables Ni and Nj , scaled by c.

Vi,j ≈ c(σ2
i + σ2

j ) (9)

Using this, we are now able to approximate the σi needed
for our distance function defined in (3) from V . For any
sequence of an odd length p ≥ 3 of integers s = i1, i2, . . . , ip
between 1 and the number n of sensory modalities where
ij 6= ij′ ,∀j, j′, let

Vs = Vi1,i2 − Vi2,i3
+ Vi3,i4 − Vi4,i5

. . .

+ Vip−2,ip−1 − Vip−1,ip

+ Vip,1 .

Using (9), we then get

1

c
Vs ≈ (σ2

i1 + σ2
i2)− (σ2

i2 + σ2
i3)

+ (σ2
i3 + σ2

i4)− (σ2
i4 + σ2

i5)

. . .

+ (σ2
ip−2

+ σ2
ip−1

)− (σ2
ip−1

+ σ2
ip)

+ (σ2
ip + σ2

i1)

= 2σ2
i1 .

(10)

For any i, 1 ≤ i ≤ n, an approximation for σi can be computed
by choosing such a sequence s starting with i and combining
the elements of V as above.

We now have the definition of the distance function between
SOM units and data points, we have a rule for updating SOM
units, and we showed how SOM units can estimate the strength
of the noise in each modality, which is needed by the distance
function. This completes the description of our algorithm.

Lifting now the restriction that the modalities’ reliabilities
be equal at all points in space, it becomes clear why each
SOM unit must maintain its own V and why we need the
weighting factor s: suppose, a SOM is updated with data
points from a region in space where some modality Mi is
particularly unreliable. Then this will have a greater effect on
the reliability attributed toMi by SOM units updated strongly
with these data points than those updated weakly. Since the



update strength depends on the distance from the BMU, SOM
units responsible for different points in space, whereMi may
actually be very reliable, will hardly be affected. The SOM
thus learns the modalities’ reliabilities at different points in
space.

Next, we drop the requirement that modalities’ coordinate
systems coincide. Since the origin of their percepts is still the
same, one can say that there are functions t1, t2, . . . , tn such
that, for a data point v = (v1, v2, . . . , vn), vi = ti(x) + ρi,
where x is the real origin of the signal and ρi is the output of
some noise process. For each SOM unit u = (m, c,V), m can
then be understood as approaching (t1(z), t2(z), . . . , tn(z))
for some coordinate z in real space. Each entry Vi,j of V is

Vi,j =
k∑

l=1

sl[(mli − ti(xl)− ρil)− (mlj − tj(xl)− ρjl)]2,

where k is the number of updates to the SOM unit, mil is the
ith entry of m before the lth update, and xl, ρil, ρjl are the lth

values of the random variables X , Ni, and Nj , respectively.
If the coordinate systems are merely shifted wrt. each other,

then, after coordinate transformation has been learned and the
SOM is sufficiently organized, it is true that

mli − ti(xl) ≈ mlj − tj(xl), (11)

and therefore

Vi,j ≈
k∑

l=1

sl(ρjl − ρil)2 ≈ c(σ2
i + σ2

j ), (12)

which means that our earlier considerations based on (9) hold
again.

If the sensory coordinate systems are scaled wrt. each
other by a moderate factor, then (11) will still be true for
the BMU and the units around it, which are updated most
strongly. However, if the scale of the modalities’ coordinate
systems differs greatly, and especially if the scaling factor
between two modalities is negative, then (11) and thus (12)
will hold approximately only for the BMU and a very small
neighborhood. In order to maintain the SOM’s organization,
however, a certain minimum size of the update neighborhood
is needed. Thus, our algorithm works if the sensory coordinate
systems are shifted wrt. each other, or scaled moderately, i.e.
by scaling factors around 1.

E. Multi-Dimensional Input

As stated, so far we have been considering only one-
dimensional localization. The obvious extension to two di-
mensions, in which each SOM unit contains two tuples
(mx, cx,Vx) and (my, cy,Vy), one per dimension, is straight-
forward and works quite well, except for one effect one might
not immediately expect: Although scaling and shifting along
either of the axes is supported by the two-dimensional SOM
just as well as by the one-dimensional SOM, rotation strongly
affects its performance.

This is clear from the following consideration: in a nutshell,
our algorithm learns how well sensory modalities’ guesses

SOM
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Fig. 3: Data Flow in the Simulation

predict each other. If extended like above, it can learn how well
x-coordinates of one sensory modality predict x-coordinates
of another. However, if the coordinate system of one modality,
Mi, is rotated with respect to a different modality, Mj ,
then all the algorithm can learn is that xi coordinates predict
xj coordinates very badly, which is because those latter xj
coordinates are actually a linear combination of the xi and yi
coordinates, and xi simply does not predict yi.

III. SIMULATION

In order to validate the theoretical considerations about our
algorithm, we implemented it and tested it in simulations.
Sections III-A and III-B describe the details of learning and
sampling in our reference simulation: integration of cues from
three modalities with identical coordinate systems and differ-
ent reliabilities, which are constant in space. Section III-C
reports on the results of that simulation. Section III-D briefly
summarizes three more simulations, which differ from the first
one in that the sensory coordinate systems are shifted, they are
scaled, and sensory reliability is variant in space.

A. Learning
We trained a SOM consisting of 60 × 60 2-dimensional

units as described in the previous section (see Figure 3).
The data points were created from a sequence of 100,000
random 2-D vectors with coordinates between 0 and 1 by
adding independent noise of three different intensities to form
a (2× 3)-dimensional vector.

Each data point thus represented the combined estimates
of the location of some stimulus from three different sensory
modalities, each with its respective reliability. We will refer to
these simulated modalities as M1, M2, and M3 from now
on. The noise imposed on the vectors was Gaussian distributed
(see (1)) with standard distributions of σ1 = 0.1, σ2 = 0.2,
and σ3 = 0.3, for M1, M2, and M3, respectively.

The neighborhood radius decreased linearly over the first
11,000 update steps from 90 units, spanning the full diagonal
of the SOM in the beginning, down to 15 units, where it
remained constant. The width of the neighborhood interaction
function h (see (5)) was always a fifth of the neighborhood
radius. These values were found empirically to lead to fast,
smooth, and stable topological organization.

B. Sampling
After learning was finished, we sampled the SOM with

10 000 fresh data points which, again, were randomly gener-
ated. These data points were of the same quality as those with



which the SOM was trained, except that the coordinates of the
true origin only spanned the interval (0.33, 0.66) which was to
prevent border effects: to see why this was necessary, suppose
we had admitted true origins like v = (1, 1). Noise could have
led to the coordinates of a data point generated from such a v
being outside the SOM’s grid. However, in finding the BMU
for this data point, the SOM would have chosen a unit whose
coordinates are within the grid, and thus closer to v. Although
it could be argued that the SOM would have learned the span
of likely input origins, and thus this behavior is justified, it
would make it difficult to evaluate the SOM’s performance
and compare it against the maximum likelihood estimator as
below.

C. Results

Figure 4a shows a visualization of the learning results. The
top row shows the mapping of the modality Mi’s coordinate
system into the SOM’s grid for i ∈ {1, 2, 3}. Each pixel repre-
sents a SOM unit ((mx, cx, σx), (my, cy, σy)). Pixels’ redness
values correspond to the mxi coordinate, their blueness values
to the myi coordinate. The bottom row shows the reliability
assigned by each SOM unit to the modalities. Black and white
represent noise intensities of 0 and 1, respectively.

The smooth transitions from black to red, black to blue,
and black to magenta show the smooth mapping of input
coordinates across the SOM. The fact that the three squares in
the top row of Figure 4a look almost identical indicates that the
SOM learned to associate equal coordinates in the modalities’
coordinate systems with each other (as opposed to the scaled
and shifted cases, see Section III-D). This part of learning—
coordinate transformation and spatial organization—was com-
pleted after the first few hundred learning steps in which the
update radius was large.

The noise intensity in the three modalities was learned to
be constant across space, as can be seen in the bottom row of
Figure 4a. The different shades of gray in the three squares
stand for intensities of 0.1, 0.2, 0.3, respectively.

Figure 5 shows the progress of reliability learning through-
out the simulation. As indicated, the graphs represent the
mean over all SOM units of each modality’s noise intensity
as learned at a given step throughout the simulation.

In order to evaluate the learned SOM’s performance, we
calculated the distance of each true input vector vk to the
SOM’s guesses given the noisy input. Thus, if vk = (x, y)
and the BMU was ((mx, cx,Vx), (my, cy,Vy)), we calculated
dki = |vk − (mxi,myi)| for each modality Mi. We obtained
the reliability rSOMi of the SOM as an estimator of true Mi

coordinates from

rSOMi =
1

1
N

∑N
k=1 d

2
ki

,

where N = 10 000 was the size of the randomly generated test
data set. Figure 6 shows the noise intensity σSOM1

=
√

1
rSOM1

in this estimator; the values for σSOM2
and σSOM3

were very
similar (0.0855, 0.0852, respectively).
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Fig. 4: Visualizations for three two-dimensional modalities.
Top row: redness, blueness for x, y coordinates.

Bottom row: black for high (σ = 0), white for low (σ = 0.5)
reliability.
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σSOM1 : noise intensity in the SOM’s estimate of true M1

coordinates,
σM : noise intensity expected from MLE,
σEi : deviation of SOM’s estimate of Mi coordinates from

noisy Mi input, i ∈ {1, 2, 3}.

The second bar in Figure 6 shows the noise intensity σM to
be expected in a maximum likelihood estimator (MLE) given
the noise intensities σ1 = 0.1, σ2 = 0.2, and σ3 = 0.3 in
our simulation: An MLE optimally combines uni-sensory es-
timates x1, x2, . . . , xn from n sensory modalities with known
reliabilities ri = 1

σ2
i
, 0 ≤ i ≤ n into one estimate xM :

xM =
1∑n

i=1
1
σ2
i

n∑

i=1

1

σ2
i

xi.

The variance σ2
M of the MLE, in turn is [21]:

σ2
M =

1∑n
i=1

1
σ2
i

.

Bars three to five in Figure 6 display the difference between
the noisy input coordinates from modalities Mi, i ∈ {1, 2, 3}
and the SOM’s estimates of the true coordinates in that mo-
dality’s coordinate system. Similarly to above, we calculated
d′ki = |v′ki − (mxi,myi)|, for each Mi, where this time v′ki
was the noisy input from Mi received by the network. We
plotted

σEi =

√√√√ 1

N

N∑

k=1

d′2ki,

which can be interpreted as the noise intensity inMi perceived
by the naïve version of our SOM, as discussed in Section II-C,
once it approximates the true noise intensities.

D. Shifted & Scaled Coordinate Systems, and Space-Variant
Reliabilities

Figures 4b, 4c, and 4d show visualizations analogous to
Figure 4a for simulations in which the modalities’ coordinate
systems were shifted and scaled against each other, and one
modality’s reliability varied across space, respectively.

Without going too much into detail, Figure 4b shows a case
identical to our reference case described in Section III-B, ex-
cept that coordinates forM1 andM3 were shifted by constant
vectors (−0.5,−0.5) and (0.5, 0.5), respectively, before the
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Fig. 7: Learned, Space-Variant Noise
Red line: actual noise intensity.

Dots: learned noise intensity.

data points were fed to the SOM for learning and sampling.
In Figure 4c, the coordinates for modalitiesM1 andM3 were
scaled by factors of 0.5 and 1.5.

The difference in coordinate systems is learned by the SOM
in each case, as can be seen from the different color intensities.
The visualizations for learned reliabilities in Figure 4b are
almost the same as in Figure 4a which shows that learning of
reliabilities is not affected by the shift in coordinate systems.

In Figure 4c, the visualization for the learned reliability of
M1 is a bit darker than that in the other images, and the one
for the reliability of M3 is brighter. This is because the noise
components in the input vectors were scaled along with the
original values. In either case, the sampling performance as
described above was unaffected.

Figure 4d shows the result of a learning process in which
the noise inM3 depended on the x coordinate of the original
signal v: Let v = (xv, yv) be such an original signal. Then, the
noise intensity was σ3(xv) = 0 for xv = 0.5 and increased
linearly to the sides up to σ3(xv) = 0.3 for xv = 0 and
xv = 1. This noise distribution was also learned, which shows
in Figure 4d by the correspondence of redness values in the
upper third panel to brightness in the lower third panel.

Figure 7 shows this connection more clearly: the red line
shows the actual strength of the noise as it varies with M3’s
x coordinate, and the dots show the σ3 derived from SOM
units’ Vs plotted by their x coordinates (see (10)).

IV. DISCUSSION

The model presented in this paper shows how Kohonen’s
SOM can be extended to not only learn coordinate trans-
formation between sensory maps, but also reliability of the
sensory modalities whose input is to be integrated. It amounts
to a model of multi-sensory integration and learning thereof
in the SC at a comparatively high ANN level. Our simulations
indicate that it is indeed able to learn sensory modalities’
reliabilities not only globally, but as they vary across space,
and that, learning being finished, it can perform near-optimally.

One aspect of our model is that it requires at least three
different modalities for learning sensory reliabilities. This may



be surprising, at first, considering that e.g. humans’ main sen-
sory modalities are just vision and hearing. If learning would
indeed be limited to events with visual, auditory, and, say,
proprioceptive input, then that would mean it would probably
have to make do with very scarce data. Introducing synthetic
modalities, i.e. additional input from prediction processes or
prior knowledge, on top of physical modalities like vision and
hearing could be one remedy.

Previous work on multi-sensory integration in the SC with
different foci provides leads for future work. As pointed out, a
number of (low-level) ANN models have been devised which
deal with the role of input to the SC descending from cortical
regions, in particular on the phenomena of enhancement,
depression, and inverse effectiveness [15]–[18]. Examining
possible connections to our distance function could lead to
a very interesting interpretation of these effects.

Another direction in a similar vein is designing a version of
our algorithm which operates at a less abstract level, closer to
biological plausibility. The model due to Ghahramani [21],
the present model, and such a biologically plausible ANN
model could be seen as three related approaches describing
the same phenomenon observed in biological computation at
the mathematical, the algorithmic, and the neuronal levels.

Researchers have argued that the brain may and should
take into account not only the general reliability of sensory
modalities, but also situational cues [28]. It would make sense
e.g. to weight visual information about the location of a far-
away object much less strongly in a dark or foggy environment
than in a clear and well-lit one. This observation gives rise to
yet one more improvement of our model: so far, we are not
considering the amount of uncertainty of a stimulus. It is easy,
within the Bayesian framework, to use that uncertainty, if it
is available. Extending the present model such that it does
would further improve its explanatory power and, indeed, its
usefulness in real-world applications.
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