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Abstract
Recently, we presented a self-organized artificial
neural network algorithm capable of learning a la-
tent variable model of its high-dimensional input
and to optimally integrate that input to compute
and population-code a probability density function
over the values of the latent variables of that model.
We did take our motivation from natural neural net-
works and reported on a simple experiment with
simulated multi-sensory data. However, we fo-
cused on presenting the algorithm and evaluating
its performance, leaving a comparison with natural
cognition for future work. In this paper, we show
that our algorithm behaves similar, in important be-
havioral and neural aspects, to a prime example of
natural multi-sensory integration: audio-visual ob-
ject localization.

1 Introduction
Imagine you are given a sheet of paper with unlabeled num-
bers, told that these numbers contain information about the
value of some quantity, and asked what you think the value
of that quantity is. This is clearly an impossible task. What if
you are repeatedly shown such numbers, for different values
of the quantity in question, but never given the right answer?
Biological neurons face a similar situation. It is their function
to produce activity corresponding to some quantity in the out-
side world. And all they have, to estimate that quantity, is the
activity at their incoming synapses, which carries no infor-
mation about its origin. A comparable situation also exists
in unsupervised machine learning. Models of unsupervised
neural learning have therefore found applications in general
machine learning.

We have recently presented an artificial neural net-
work (ANN) algorithm with possible applications in gen-
eral machine learning based on the self-organizing map
(SOM) [Bauer and Wermter, 2013]. This algorithm was in-
spired by the apparent ability of humans to utilize the sensory
information they get in a statistically optimal fashion in many
situations [Ernst and Banks, 2002; Landy et al., 2011]. In
particular, it aims to model how neural populations like the
superior colliculus (SC) learn to make sense of uni- and cross-
sensory stimuli. The result is an algorithm which takes high-

dimensional data as input, learns a low-dimensional latent-
variable model and computes for a given input a probability
density function (PDF) over the values of the latent variables.

We have shown that our algorithm can perform near-
optimally on uni-sensory input and we have shown that it can
handle multiple sensory modalities with different response
and noise characteristics. However, we have not fully closed
the loop in 1) trying to understand a problem faced by a nat-
ural system, 2) trying to find a solution 3) comparing that
solution to the one found, tried, and tested by nature [Jacobs
and Kruschke, 2011; Landy et al., 2011]. In this paper, we
compare the response properties of our algorithm to the well-
established principles of multi-sensory integration in the SC.

In the next section, we will first briefly review our algo-
rithm, focussing on giving a good intuition of the main prin-
ciples behind it, and referring to the original paper for de-
tails. We will then report on experiments we carried out in
which we simulated various conditions of multi-sensory in-
tegration. We will review the known neurophysiological and
psychophysical effects and compare them to our network’s
responses. Finally, we will interpret our results in the broader
scope of computational neuroscience and its interaction with
general artificial intelligence.

2 The Model
Before we start describing our solution, let us again look at
the problem we are trying to solve. A population of neurons
is to collaborate in learning to compute a PDF for the latent
variables behind patterns of neural activity.1 This input ac-
tivity can be uni- or cross-sensory; conceptually, both can be
treated the same by introducing a logical population which
simply concatenates the separate input populations’ activity
vectors (see Fig. 1).

Our approach is to have the network learn to represent the
PDF in a population code, where each neuron codes for the
probability of a different value being the true value of the la-
tent variable [Pouget et al., 2003]. ANN models working with
such population-coded PDFs have been proposed eg. by Cui-
jpers and Erlhagen [2008] and Beck et al. [2008]. Our model

1From now on, we will assume wlog. a single latent variable.
Note that strictly speaking a combination of latent variables can be
seen as a single complex latent variable.
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Figure 1: Population-coded PDF Computed from Multiple Physical
Input Populations

focuses on how computing such a PDF from arbitrary neu-
ral responses can be learned unsupervised and without heavy
assumptions on the noise properties. The population code re-
alized by our network is to be spatially organized, ie. close-by
neurons code for similar values of the latent variable. This re-
striction on the more general definition of a population code
seems natural and it also reflects biological evidence of to-
pographic maps in various sensory brain areas [Stone, 2012;
Hyde and Knudsen, 2000; Stein and Stanford, 2013; Kaas,
1997].

Kohonen’s SOM [Kohonen, 1982] was inspired by the for-
mation of such topographic maps in the brain. It is a self-
organizing ANN algorithm which has been shown to be able
to learn latent-variable models [Yin, 2007; Klanke, 2007]: It
learns topography-preserving mappings from points in a data
space to its spatially ordered units, or neurons. Since a SOM
models a population of neurons and each neuron has a re-
sponse to a stimulus, it is possible to read out a population
code from a SOM [Zhou et al., 2011].

In a standard SOM, the response is just the Euclidean dis-
tance of the stimulus as a vector from the preferred stimu-
lus of each neuron. This response is used to find the best-
matching unit (BMU), the neuron with the strongest response
and the neuron the stimulus is mapped to. In our algorithm,
the network simultaneously learns the latent-variable model
and the noise properties of the input. The response of each
neuron then is an estimate of the probability of the neu-
ron’s preferred value being the actual value of the latent vari-
able, given what the network knows about the noise. This
is done basically by keeping weighted counts of previous ac-
tivities at each input connection of each neuron. Input ac-
tivities at the neurons’ synapses are discrete and treated non-
metrically. Therefore, the algorithm lends itself to learning
problems where data points have nominal dimensions. The
main benefit over previous approaches [Zhou et al., 2011;
Bauer et al., 2012b] is that our approach does not assume any
specific noise model. We refer to our original paper [Bauer
and Wermter, 2013] for details on the learning algorithm and
its motivation and derivation.

3 Experiments
In the experiments described below, we will compare our net-
work’s performance and response properties to those found in
psychophysical and neurophysiological studies. Specifically,
we will examine the responses of our network in light of bio-
logical data about the SC. The SC, or optic tectum (OT), as it
is called in non-mammalian vertebrates, is an evolutionarily
stable midbrain structure concerned with localizing objects
in space on the basis of visual, auditory, and somatosensory
stimuli. It is involved in generating orienting movements on
the basis of uni- and cross-sensory stimuli [Stein and Stan-
ford, 2013]. We choose it as a standard to which to compare
our model because its input-output behavior is relatively well-
understood and because it is likely that the general principles
of SC functioning are realized similarly in other brain regions
with comparable tasks [Stein, 2012].

For our simulations, we used a network of 350 output
neurons connected to two populations ia,1, ia,2 . . . , ia,40 and
iv,1, iv,2 . . . , iv,40 of input neurons. The two input popula-
tions each represented one sensory modality. Each input neu-
ron im,k had a preferred value of pk = k−1

39 , for m ∈ {a, v},
and responded to a stimulus p ∈ [0, 1] according to a poisson-
noisy Gaussian:

am,k(p) ∼ Pr(am exp(−(pk − p)2/σ2
m)), (1)

for aa = 4, σ2
a = 0.01 and av = 6, σ2

v = 0.005. In the
following, the neurons ia,k and iv,k, k = 1, 2, . . . , 40 will be
referred to as ‘auditory’ and ‘visual’, respectively, to make
presentation more intuitive.

We trained the network with congruent stimuli until it had
developed spatial organization and learned the simulated in-
put noise statistics. We then started simulating our cho-
sen psychophysical and neurophysiological experiments. For
these experiments, we changed the simulated stimulus condi-
tions as will be described below.

Enhancement/Depression. It is a well-established fact that
multi-sensory SC neurons tend to react more strongly to
cross-sensory stimuli in their receptive fields than to uni-
sensory stimuli [Stein and Meredith, 1993]. This effect is
called enhancement. Depression, on the other hand, occurs
when stimuli are temporally or spatially incongruent: In the
spatial case, this means that the reaction of a multi-sensory
neuron to a visual stimulus in its receptive field will actually
be weaker if that stimulus is accompanied by a sound coming
from a different point in space (and vice-versa).

We simulated this condition by presenting, in each trial,
one random stimulus pa,∈ [0, 1] to neurons ia,k and a dif-
ferent stimulus pv ∈ [0, 1] to neurons iv,k. We recorded
the network’s response to the combined, incongruent, cross-
sensory input population response. Fig. 2 shows the mean
response over all trials of the output neuron at whose center
was the visual stimulus depending on the absolute distance
of the incongruent auditory stimulus. Although somewhat
noisy, the graph clearly shows that congruent stimuli elicit
much stronger responses than incongruent responses, which
is in accordance with the phenomena of enhancement and de-
pression explained above.
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Figure 2: Response of an Output Neuron to a Visual Stimulus in its
Receptive Field and an Auditory Stimulus at Various

Distances from the Visual Stimulus

MLE. The effects discussed so far are on the level of sin-
gle multi-sensory neurons. Since these neurons are part of
a sensory-motor processing circuit, it is to be expected that
they manifest themselves in observable behavior. Alais and
Burr [2004] found that their test subjects’s performance in an
audio-visual localization task was consistent with a maximum
likelihood estimator (MLE) model of multi-sensory integra-
tion [2004]. Other authors have found similar results for dif-
ferent combinations of sensory cues [Ernst and Banks, 2002;
Hillis et al., 2004].

The model used by Alais and Burr assumes Gaussian noise
in sensory localizations. Under this assumption, MLE inte-
grates two uni-sensory localizations la, lv optimally accord-
ing to a linear combination:

lMLE =
ra

ra + rv
la +

rv
ra + rv

lv, (2)

where rm = 1
σ2 is the reliability of a modality m, if σ is the

standard error of localizations by that model, that is, the mean
absolute error between the localization and the actual location
of the target.

The expected reliability rMLE of the combined result is
given by:

1

rMLE
=

1

ra
+

1

rv
. (3)

The distribution of errors of the combined estimator, like the
assumed distribution of errors of the individual modalities’
estimators, is Gaussian.

First, we determined the distributions of errors of our
model given uni-sensory and cross-sensory stimuli. To do
that, we fed our network with input in which either only
auditory neurons ia,k, or only visual neurons iv,k had non-
zero activity (according to Eq. 1), or both, as usual. Fig-
ure 3 shows histograms of errors (mislocalizations) for uni-
and cross-sensory localization, as well as Gaussian func-
tions fitted to these errors. It can be seen that the distribu-
tion of errors is Gaussian-like, and that combined localiza-
tion has much greater reliability than either of the individ-
ual localizations. Closer analysis reveals that the standard

deviations of auditory-only, visual-only, and cross-modal lo-
calization are σa = 1.966× 10−2, σv = 1.473× 10−2,
and σm = 1.385× 10−2, respectively. The expected cross-
modal localization error according to Eq. 3 would be σm,e =
8.978× 10−3. We attribute this discrepancy to sampling er-
ror,2 outliers, and actual learning errors. All in all, both vi-
sual inspection of the distribution of errors and this analysis
demonstrate that our network effectively integrates the infor-
mation in its multi-sensory input.

To test whether the behavior of our network is consistent
with the MLE model described above, we conducted another
experiment. As in the first experiment, we again chose one
auditory stimulus pa and a visual stimulus pv in every trial.
This time, each trial consisted of three conditions: an audi-
tory, a visual, and a cross-sensory condition. In the auditory
condition, we combined the normal auditory population re-
sponse (Eq. 1) with a flat response of all-zero activity. The
visual condition was analogous and in the cross-sensory con-
dition, the population responses were combined as usual. In
each trial n, the input was presented to the model and the au-
ditory, visual, and cross-sensory localizations la,n, lv,n, lc,n
were recorded.

We then computed the least-squares solution to the equa-
tion

pa


la,1
la,2

...
la,N

+ pv


lv,1
lv,2

...
lv,N

 =


lm,1
lm,2

...
lm,N

 ,

where N = 10.000 is the number of trials. We found
pa = 3.659× 10−1 and pv = 6.400× 10−1 which is close to
the optimal values p̂a = 3.595× 10−1, p̂v = 6.405× 10−1

obtained by inserting σa and σv into Eq. 2.
Together, these results show that our algorithm is not only

statistically well-motivated and shows response characteris-
tics similar to that of a biological information processing sys-
tem, the SC, as was found in the first experiment; Its behavior
on the functional level is also comparable to the optimal cue
combination behavior demonstrated in human multi-sensory
integration. This is especially interesting for our algorithm as
a general machine learning algorithm.

4 Discussion
In this paper, we have shown that the neural learning al-
gorithm introduced previously is able not only to integrate
multi-sensory input, but also mimics biology both on the
single-neuron and behavioral level. We can therefore inter-
pret our network as a model of the SC, as it develops a rep-
resentation of sensory input space, integrates percepts from
different modalities depending on their reliabilities, uses the
statistics of the input to learn this, and incorporates concepts
known to be key in the SC, like population coding, winner-
take-all, and local interactions.

2Estimation is done by selecting the winner neuron and choosing
its preferred value as the estimate. Since there are only finitely many
neurons but infinitely many rationals in [0, 1], estimation is bound to
make sampling errors.
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Figure 3: Histograms of Distances between Visual, Auditory, and Audio-Visual Localization and Stimulus
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Figure 4: Research Cycle in Computational/Robotic Neuroscience

We strongly believe that both fields, life sciences and ar-
tificial intelligence, will benefit from the approach of mod-
eling observed biology to generate biological research ques-
tions, and implementing models in technical systems to val-
idate their fitness and real-world applicability (see Fig. 4).
Therefore, the next step will be validating our model’s func-
tionality and resemblance of biology in a robotic implemen-
tation. Initially, our experiments will mimic classical experi-
ments like the ones due to Stein and Meredith [1993], which
originally established the properties of multisensory integra-
tion in the cat SC: In our versions of these experiments, a
robot will take the place of the feline or human subjects. It
will be exposed to very similar multi-sensory stimuli as the
subjects in the original experiments. And its behavior and
simulated neural processing will be monitored and compared
to the original findings.

For these experiments, we will use the virtual reality lab in-
frastructure recently implemented ([Bauer et al., 2012a], see
Fig. 5). Designed and built as a basis for robotic sensory and
cognitive experiments, this Virtual Reality for Robots Lab
features a 180◦ projection screen and a matrix of 18 speak-
ers. It allows us to precisely control the conditions of audio-
visual localization experiments and still deliver rich and life-
like stimuli to the iCub robot head which is placed at its cen-
ter [Beira et al., 2006]. With feedback from these experi-
ments, we will extend our model and aim to accommodate at-
tentional effects. This will give our model greater explanatory

Figure 5: 3D Model of the Virtual Reality Robot Environment:
A multi-purpose aluminium structure holds four

projectors and a 180◦ projection screen. Around the
screen, there is an array of speakers. The robot head is
placed at the center of the half-cylinder spanned by the

screen.

power and, at the same time, make it more flexible and more
widely applicable in robotic and other AI systems. Again,
biological experiments like those by Spence et al. [2004],
which studied the effects of priming on multi-sensory inte-
gration, will guide our modeling efforts and serve as models
for robotic experiments.
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