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Abstract 
This paper describes a localization system for mobile robots moving in dynamic indoor 
environments, which uses probabilistic integration of visual appearance and odometry 
information. The approach is based on a novel image matching algorithm for appearance-
based place recognition that integrates digital zooming, to extend the area of application, and 
a visual compass. Ambiguous information used for recognizing places is resolved with 
multiple hypothesis tracking and a selection procedure inspired by Markov localization. This 
enables the system to deal with perceptual aliasing or absence of reliable sensor data. It has 
been implemented on a robot operating in an office scenario and the robustness of the 
approach demonstrated experimentally. 
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1. Introduction 
 
In mobile robotics, localization plays a fundamental role for the navigation task, since it is 
necessary for every kind of path-planning. In order to achieve a goal, an autonomous mobile 
robot must be able to localize itself within the environment where it is acting and relatively to 
the target destination. 

The main objective of this article is to illustrate the implementation of a new map-based 
localization system for a mobile robot operating in an indoor environment where it is not 
necessary to know the exact, absolute position. Instead, a topological localization is the most 
appropriate solution. We developed a new visual place recognition algorithm that does not 
need any specific landmark. In particular, the novelty introduced by such algorithm is the use 
of digital zooming to improve the capability of recognizing places. The same algorithm is also 
used for reconstructing panoramic images from the place of interest, combining a sequence of 
snapshots taken with the camera. Such images, together with approximate coordinates of the 
topological locations, form the map used by the robot. Furthermore, when the robot is located 
in one of the mapped places, it can also estimate its absolute orientation using vision, thanks 
to an original visual compass system. The place recognition process is then followed by a 
procedure that resolves cases of perceptual aliasing or absence of reliable sensor information. 
The system keeps track of a set of hypotheses and for each update step chooses the most 
plausible with an approach inspired by Markov Localization. From experiments carried out in 
a typical office scenario, the method shows to be robust even in case of dynamic 
environments and locations poor of features. 
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The remainder of the article is structured as follows: in Section 2 we report a brief 
literature review; Section 3 and Section 4 describe respectively the place recognition and the 
multiple hypothesis localization; in Section 5 we present some experimental results and 
finally we conclude in Section 6 with a summary and some recommendations. 
 
 
2. Related work 
 

In recent years there have been increasing numbers of robot applications where 
localization is an essential part of the navigation system. Well known examples include the 
tour-guide robots Rhino and Minerva [1, 2], or the robot-waiter Alfred [3], which used 
different approaches and sensors for localization. With Rhino, for example, perceptions were 
based upon sonar and laser range sensors, whilst Minerva made use of lasers plus an 
additional camera directed towards the ceiling, so the observed scene was mostly static. In 
contrast, Alfred used vision with artificial landmarks to recognize places of interest. 

Other localization approaches making use of vision have been presented in recent years. 
Gini and Marchi [4] used a robot equipped with a unidirectional camera pointing ahead and 
towards the floor. Their basic hypothesis was that the floor had a uniform texture so that after 
camera calibration, it was possible to reconstruct a local map from images. Localization was 
then the result of a comparison between the current local map and a pre-recorded global map. 
The solution of Dao et al. [5] was based on a natural landmark model and a robust tracking 
algorithm. The landmark model contained sets of three or more natural lines such as 
baselines, door edges and linear edges of tables or chairs. The localization depended on an 
algorithm that allowed the robot to determine its absolute position from a single landmark. 

Several recent approaches have made use of Monte Carlo localization [6, 8]. It has been 
demonstrated that this technique is reliable and, at the same time, keeps the processing time 
low. Indeed, Monte Carlo localization has been successfully applied in the RoboCup four-
legged league, where the Sony dog’s hardware has critical limitations. For example, Enderle 
et al. [6] implemented a Monte Carlo approach for vision-based localization that made use of 
sporadic features, extracted from the images of the robot’s unidirectional camera. The 
probability of being in a certain location was calculated against an internal model of the 
environment where the robot moved. Experiments proved that the method was reliable 
enough, even with a restricted number of image samples, and was improved drastically by 
increasing the number of features. Tests in a typical office environment were also promising.  

Menegatti et al. described another application of Monte Carlo localization in the 
RoboCup context [7]. In this case, the video input came from an omni-directional sensor; the 
images were processed in a way to simulate a laser scanner, using the distances from points 
with color intensity transitions. Even here the localization system made use of an internal 
representation of the football field. Ulrich and Nourbakhsh also used an omni-directional 
camera for topological localization [8]. They presented an appearance-based place recognition 
scheme that used only panoramic vision, without any odometry information. Color images 
were classified in real-time with nearest-neighbor learning, image histogram matching and a 
simple voting scheme. Andreasson and Duckett illustrated another system in [9] that 
performed topological localization using images from an omni-directional camera. Their 
method searched for the best matching place among a database of pre-recorded panoramic 
images, extracting and using modified SIFT features [10]. An interesting approach was also 
the context-based visual recognition implemented by Torralba et al. [11], which made use of 
low resolution images from a wearable camera to extract texture features and their spatial 
layout. Training was done with hand-labeled image sequences taken in the environment to 
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map, then localization was performed using two parallel Hidden Markov Models (HMMs) for 
both place recognition and categorization, the latter useful also for the identification of 
unexplored environments. 

Numerous techniques have finally been devised to resolve the ambiguity that arises in 
sensory perception, irrespective of the device employed. No observation indeed is immune 
from noise and errors, originating in both the sensor and the surrounding environment. A wide 
range of localization systems have been tested and compared in the works of [12-14], 
covering methods based on Extended Kalman Filtering (EKF), Markov Localization (ML), a 
combination of the two (ML-EKF), Monte Carlo Localization (MCL) and Multi Hypotheses 
Localization (MHL). The results of these experiments have been used as a basis for 
motivating the most suitable localization approach for our application.  
 
 
3. Place recognition 
 

In this section, we describe a new method to recognize a position amongst a finite set of 
possible locations. This set is basically a topological map of the environment provided by the 
user and each place is identified by a point in the Cartesian space and a panoramic image of 
the scene observed from that point. The procedure is based on the comparison of a new 
image, taken by the robot’s camera, with all the panoramic images of the map. A measure of 
the match’s quality is assigned to each comparison using a novel image-matching algorithm 
(or IMA). Basically, this process constitutes the place recognition, which is an essential part of 
our localization. 
 
3.1 Image matching algorithm 

Typically, for indoor environments, most of the relevant changes occurring in an image 
are due to objects or people moving with respect to a horizontal plane. A person walking, a 
chair moving, a door opening or closing: all of these examples can be thought as “columns” 
moving horizontally along an image of the original scene. The algorithm described in this 
section arises from this simple consideration. The principal idea is to divide the new image 
into several column regions, called “slots”, and then compare each of them with a stored 
image of the original scene. 

Consider the new image Inew, single channel, of width Wnew. This is divided into Ns slots 
having width Wslot = Wnew / Ns. One slot is referred to as slotn, with n = 1, …, Ns. Also, 
consider a reference image Iref, single channel, of width Wref ≥ Wnew. The images Inew and Iref 
have the same height. A region of Iref, delimited by the pixel columns cleft and cright, is referred 
to as Iref [cleft , cright]; the columns cleft and cright belong to this region. The two image structures 
are illustrated in Fig. 1. 

 
W new   

W slot   

W ref   

I ref [c left  , c right ]   

slot1 slot2 slot3 slot4 

 

Fig. 1  Example of Inew (divided into four slots) and Iref 
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Fig. 2  Slot of Inew shifted and compared along Iref by NCC 
 
The measure of the similarity between a slot of the new image and a region of the stored 

one is given by a function based on the Normalized Correlation Coefficient [15] and called 
NCC. Given a new slotn and a reference image Iref, the NCC matching function compares slotn 
with all the regions Iref[c, c + Wslot – 1], where c = 1, …, Wref (if slotn falls over the right 
bound of Iref, it restarts from the beginning) After each comparison, a value between 0 and 1 is 
stored inside an array VAL of length Wref, as explained also in Fig. 2 (note that the original 
Normalized Correlation Coefficient varies between –1 and 1, so we actually rescale it to fit 
between 0 and 1). For example, if the slot’s width is Wslot = 10, the assignment VAL[5] = 0.7 
means that the similarity between slotn and the region Iref [5, 15] measures 0.7. 

The actual IMA can be divided into two parts: the first apply NCC to find, for each pixel 
column, which is the slot that matches best; the second determines the position that gives the 
maximum match for the whole sequence of Ns slots. The algorithm is described by the 
pseudo-code in Table 1 (note that the highlighted “else if” condition is for the 
reconstruction of panoramic images explained in Section 3.2). 

 
Table 1  Image Matching Algorithm (IMA) 

/* fist part: slot matching */ 
VAL[ Wref] = {0, …, 0 } 
MATCH_SLOT[ Wref] = {0, …, 0 } 
MATCH_VAL[ Wref] = {0, …, 0 } 
for n = 1 to Ns 
 NCC( slotn , Iref , VAL) 
 for c = 1 to Wref 
  if VAL[ c] > MATCH_VAL[ c]  
   MATCH_SLOT[ c] = n 
   MATCH_VAL[ c] = VAL[ c] 
  end if 
 end for 
end for 
/* second part: best match extraction */ 
BEST_MATCH = 0 
COL = 1 
for c = 1 to Wref 
 SUM = 0 
 for n = 1 to Ns 
  i = c + ( n – 1) Wslot 
  if MATCH_SLOT[ i] = n 
   SUM = SUM + MATCH_VAL[ i] 
  else if MATCH_VAL[ i] = 0.5 
   SUM = SUM + SUM / ( n – 1) 
  end if 
 end for 
 if SUM > BEST_MATCH 
  BEST_MATCH = SUM 
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  COL = c 
 end if 
end for 
BEST_MATCH = BEST_MATCH / Ns 
END 

 
3.2 Panoramic image 

For every place in the environment, a panoramic image can be also reconstructed using 
the IMA algorithm. Initially, the panorama is just a black image and the relative similarities 
returned by NCC measure exactly 0.5. With a simple “else if” condition in the second part 
of the IMA, highlighted in Table 1, this situation can be handled and used for the correct 
insertion of a new image in the panoramic view. Basically, whenever a slot is compared with 
a black zone, the assigned matching-value is the mean of the previous comparisons. Of course 
this is valid only if a sequence of snapshots, taken during a clock-wise rotation, is inserted in 
the exact order, from left to right. The input images are also filtered using a Contrast Limited 
Adaptive Histogram Equalization (CLAHE) [16] in order to increase the number of 
distinguishable features for scenes not well illuminated. The insertion of new images 
continues until the whole panorama is filled. An example of reconstruction is shown in Fig. 3. 

 

 

Fig. 3  Panoramic image reconstruction 
 
3.3 Heading angle extraction 

An important feature of the IMA is the capacity to extract the position, inside a panoramic 
image, where a new snapshot matches best. This position is given by the value COL (see 
Table 1), which is the left pixel column of the region on Iref where the best match occurs. If 
COL = 1 corresponds to the zero direction on a panoramic image having width Wref (and 
considering a clock-wise versus), then the displacement angle α of the camera is simply given 
by the following expression: 

refW

COL 1
2

−⋅= πα  (1) 

Therefore, if all the panoramic images have been reconstructed with a common angle of 
reference, α can be used to estimate the robot’s heading. Its precision is normally good 
enough to be used as a “visual compass” and correct the odometry’s heading angle, as 
explained in Section 4.6 and demonstrated experimentally in Section 5.2. 
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3.4 Enhancement with digital zooming 

The place recognition method described so far suffers from the problem of sensitivity to 
the distance from the original point where the panoramic image has been constructed. This 
means that, moving the robot away from that point, the output of IMA quickly decreases. To 
solve this problem, digital zoom was integrated to enlarge the detection area. 

Digital zoom can be implemented using bilinear interpolation and explained starting from 
the well known pin-hole camera model [17]. This is shown in Fig. 4a for a given object of 
height H and distance D = X – x0 from the camera, for which the next relations can be written: 

D

H

f

h =  ( )DsD

H

f

h

,ρ
ρ

−
=⋅

 (2) 

where h is the height projected on the image plane, f is the focal length of the camera, ρ is the 
zoom factor and s(ρ, D) = x' – x0 is the “virtual” shift from the original position. After simple 
passages, the latter can be expressed as follows: 








 −⋅=
ρ

ρ 1
1),( DDs  (3) 

Given a panoramic image of a place at position P0(x0, y0) and moving the robot along a 
rectilinear path on an interval [x0 − ∆x, x0 + ∆x], IMA returns values that can be approximately 
represented with a centrally peaked distribution, as empirically showed in Section 5.3. To 
expand the interval where the IMA’s output is higher, the input image from the camera can be 
digitally zoomed. More precisely, after a normal comparison, the image is zoomed-in and 
compared again, then zoomed-out and compared once more. Theoretically, including these 
new comparisons means adding a couple of new peaked curves to the original one. In order to 
have the same absolute shift |s(ρin, D)| ≡ |s(ρout, D)| for both the zoom-in and the zoom-out, 
the following relationship can be easily derived (note that ρin > 1 and 0 < ρout < 1): 

12 −
=

in

in
out ρ

ρρ  (4) 

The combination of the three IMA’s outputs is shown in Fig. 4b, where xZin = x0 + s(ρin, D) 
and xZout = x0 + s(ρout, D). The actual output considered for place recognition is the maximum 
of the three curves, as specified also by the pseudo-code in Table 2. 
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(a)                 (b) 

Fig. 4  Virtual shift model and IMA’s output using digital zoom 
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Table 2  Digital zoom enhancement for the IMA 

/* image matching without zoom */ 
I ← Inew 
M = IMA( I, Iref) 
BEST_MATCH = M 
/* image matching with zoom-in */ 
I ← zoom-in of Inew 
M = IMA( I, Iref) 
if M > BEST_MATCH 
  BEST_MATCH = M 
end if 
/* image matching with zoom-out */ 
I ← zoom-out of Inew 
M = IMA( I, Iref) 
if M > BEST_MATCH 
  BEST_MATCH = M 
end if 
END 

 
Unfortunately, in a real environment things are more complicate – scenes (and objects 

within them) always have different distances from the point from which they are observed. 
The width of the curve in Fig. 4 could be altered significantly changing the direction of 
observation since the distance of a new scene can be different from a previous one, 
influencing therefore xZin and xZout. Because the virtual shift in (3), for a fixed zoom factor ρ, 
changes linearly with the distance D, the region where the recognition holds can be presumed 
to depend somehow on the shape of the room. For example, consider an observation point P 
within a small empty room, as illustrated in Fig. 5a. The crosses indicate the displacements 
given by the zoom-in when observing in the direction of the arrows; the squares are the 
relative displacements for the zoom-out. In Fig. 5b the two sets of points for the zoom-in and 
the zoom-out, obtained by a full rotation about P, are represented by the solid and the dashed 
squares respectively. If we fix a proper threshold on Fig. 4, over which the IMA output is 
considered valid (for example 0.5), we can draw a region for P where the recognition holds, 
as illustrated in Fig. 5c. This region is given by the union of two rectangular areas, one for the 
zoom-in and one for the zoom-out, which are extensions of the previous in Fig. 5b. Indicating 
also the robot’s position and orientation with a versor, the zoom-out rectangle contains all 
versors pointing to P, while the zoom-in rectangle contains all versors pointing in the opposite 
direction. 

 
 

P 

    

 

P 

    

 

P 

 

(a)           (b)           (c) 

Fig. 5  Place recognition with digital zoom 
 

The observations above suggest some care must be taken when choosing the places to 
recognize (topological nodes of the map) and the zoom factor to use. In particular, if the 
nodes are too close to each other or if the zoom is too much, the risk of overlaps amongst 
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them and the probability of perceptual aliasing increase. Moreover, since the zoom-based 
recognition works best when observing along those directions passing through the area’s point 
of reference (point P in Fig. 5), a small zoom factor is preferable. In this way, the limited area 
extension increases the probability to be correctly aligned. 
 
 
4. Multiple hypothesis localization 
 

The main problem using image-based place recognition for localization arises when two 
or more places look very similar and are therefore difficult to distinguish. This is known as 
perceptual aliasing and affects not just vision-based applications, but many other systems 
employing sensors that provide information about the perceived world (e.g. sonar, laser, etc.). 
It occurs frequently in indoor environments with similar rooms and furniture like offices. 

The IMA procedure, described in the previous Section 3.1, is normally able to distinguish 
different places because it considers a significant amount of information coming from the 
vision input. Nevertheless, cases of perceptual aliasing may occur because of occlusions or 
changes in the scenes originally memorized. To handle this kind of uncertainty, we adopt an 
algorithm inspired by Markov localization [18]. It starts with a series of hypotheses generated 
by the place-recognition procedure and then chooses the most likely according to the previous 
hypotheses and to the last robot’s movement. 
 
4.1 Notations and assumptions 

Let the state (i.e. position) of the robot at time t be represented by a triplet < xt, yt, ϕt >, 
where xt and yt are the Cartesian coordinates of the robot’s location and ϕ t is its heading 
angle. The couple (xt, yt) belongs to a finite set of two-dimensional points, which is the 
topological map. The heading angle ϕt has continuous values inside the interval [0, 2π). 
Therefore, the entire set S of possible states contains an infinite number of elements. 

To make the problem computationally feasible, certain assumptions are imposed. It is 
assumed that the probability distribution at time t of the robot being in a certain position  
< xt, yt, ϕ t > is completely contained in a sub-set St ⊂ S. The elements of St are all the 
positions for which the IMA, at time t, returns a matching-value higher than a certain 
threshold, plus an additional “virtual” position given by the odometry. That is, the real 
position of the robot is always supposed to be one of those recognized by the place 
recognition or calculated using odometric information; this is justified by the fact that, most 
of the times, the correct position is in effect one of the best recognized with the IMA. The 
number of possible states so generated is limited by the nodes of the topological map; 
therefore, St is a numerable set. 

In the following sections, the set St is referred to with the letter D and called the 
destinations’ set (elements d∈D). The set St−1 is referred to with the letter O and called the 
origins’ set (elements o∈O). The set D of destinations at time t becomes then the set O of 
origins at time t + 1. Also, to distinguish the “local” probability distribution from the one used 
in Markov localization, the word belief is substituted with activity, as in [19]. The believes 
Bel(st) and Bel(st−1) become then the activities Act(d) and Act(o) respectively (activity of the 
destination and activity of the origin). 
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4.2 Virtual destination hypothesis 

The assumption of considering only the destinations given by the last observation, i.e. the 
IMA output, would be too restrictive. To be sure that the set of estimated positions contains in 
effect the right one, the threshold on the visual-recognition with the IMA should be very high. 
This would limit the possibility of considering good hypotheses just because some changes in 
the environment, temporary or permanent, have reduced their distinctiveness. On the other 
hand, a low threshold increases the number of possible destinations but also the probability to 
choose the wrong one. Even worse is the case when none of the current hypotheses are 
correct. To handle this kind of ambiguity, sometimes a “zero hypothesis” is used when all the 
other hypotheses are considered wrong. In [20], for example, the authors have a finite set of 
hypotheses generated by new observations, updated simultaneously using Kalman filters. The 
zero hypothesis is used to close the probability space and is kept up-to-date considering the 
uncertainty of the observations. When the probability of such a hypothesis is higher than the 
others, the robot is in a state of indecision. 

In our approach, it was found useful to insert a “virtual destination”, that is, a topological 
node of the map that is near to the position given by the odometry. In practice, the virtual 
destination is the closest node, in terms of Euclidian distance, to the previous winning 
destination plus the last odometric displacement. The heading angle of this new hypothesis is 
also given by the odometry. The term “virtual” is used because it is assigned a matching-
value, like all the other destinations generated by an observation, and then treated the same 
way. The assigned matching-value is equal to the threshold chosen for generating the other 
hypotheses, as if an additional place was recognized by the IMA with the least acceptable 
match. Finally, at the next update step, the “virtual-destination” becomes the “virtual-origin”. 
 
4.3 Action model 

The first component of Markov localization is the action model. Using the notation 
introduced before and simply calling a the action a t−1, the model can be written as follows: 

),|(),|( 11 aodPassP ttt ≡−−  (5) 

This expresses the probability that a destination d is reached by performing the action a 
from the origin o. This probability is estimated taking into account the location and the 
heading angle of the robot. The action a is simply the displacement given by odometry. In this 
work, no sophisticated models were used for handling the cumulative errors typical of 
odometry; indeed, its information is always relative to the previous estimated state and 
corresponds to a short path. Therefore, it is considered reliable enough for being directly used 
in our action model, as described below. 

Let Qo be the position of the origin o (with heading angle ϕo) and Qa the position reached 
from Qo after the execution of a. Also, Qd is the position of the destination hypothesis d. 
Using the quantities illustrated in Fig. 6, the action model is calculated as follows: 

)()(),|( ϕϕ ∆⋅∆= glgaodP l  (6) 

where gl(∆l) and gϕ (∆ϕ) are two Gaussians: 
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The quantities ∆lmax and ∆ϕmax are respectively the maximum ∆l and ∆ϕ calculated 
between the current origin and all the destination hypotheses. 
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Fig. 6  Parameters for the action model 
 

4.4 Sensor model 

In many localization systems, the environment is sensed through low-dimensional 
devices, like sonar or laser, for which accurate models are already available  
[21, 22]. Other approaches instead use vision to calculate the robot’s position with respect to 
some particular features. In [7], for example, an omni-directional image is processed using a 
ray-tracing method, simulating a laser range sensor that returns distances of chromatic-
transition features. Even in this case, an accurate model is provided, the parameters of which 
are extracted by a modified EM algorithm [23] applied to a set of 2000 sample images. There 
are also other approaches where the sensor models are learned with neural networks using 
data from both vision and sonar [24-26]. 

The data given by our image-based place recognition, that is, the IMA’s matching-value, 
differs from all the above-mentioned approaches. The sensor model is implicitly “included” in 
the pre-recorded panoramic image, in a way conceptually similar to [27]. Ideally, a new image 
would return 1 in case of perfect match with a portion of the panorama and would decrease to 
0 as the match deteriorates. Therefore, given the current state, the probability of the 
observation can be considered the matching-value calculated by the IMA. With the notation 
introduced earlier and calling v the observation vt, the sensor model can be written as follows: 

)()|()|( dMATCHdvPsvP tt =≡  (8) 

where MATCH(d) is the value of the variable BEST_MATCH in Table 1 (or Table 2, if 
enhanced by digital zoom) for the destination d. 
 
4.5 Update of the activities 

Activities are updated with the same formulae of Markov localization, but taking into 
account our previous assumptions. Thus, given a set of destinations d∈D and origins o∈O, the 
procedure for calculating new activities, using (6) and (8), is the following: 

1) Prediction: ∑
∈

=′
Oo

oActaodPdP )(),|()(  (9) 

2) Update: )()|()( dPdvPdP ′=′′  (10) 

3) Normalization: 
∑
∈
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′′

=

Dd

dP

dP
dAct

)(

)(
)(  (11) 

4.6 Odometry reset and visual compass 
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An important role in the selection of the current destination is played by odometry. 
Indeed, the prediction step (9) makes use of the action model (6), which strongly depends on 
the odometry’s information. This is reset every time an update of the topological position has 
been performed. In general, the fact that the topological area is reasonably small, if compared 
to the distance between two consecutive destinations, reduces the effect of the error 
introduced by the reset. On the other hand, the advantage is significant, since it fixes a limit to 
the cumulative error of the dead reckoning. 

The heading angle has a double importance: it affects directly the action model and, since 
related to the internal frame of reference of the robot, it influences also the parameter ∆l. In 
many applications, instead of considering the heading angle computed using encoders, an 
external magnetic compass is mounted on the robot [27, 28]. This has the advantage of being 
independent from the cumulative errors of odometry, since it gives an absolute direction for 
North. Unfortunately, such a device is not immune from errors, which are mainly due to 
metallic objects in the proximity of the robot. 

In our approach, another original solution was chosen. Since for every new environment 
an up-to-date map and fresh panoramic images are needed, the latter are always constructed 
starting from the same direction. This permits the robot to recover its absolute heading using 
equation (1), like if provided with a “visual compass”. A similar approach, based instead on 
an omni-directional camera, has been recently implemented also in [29]. To limit the error 
cases of using a wrong panoramic image, the odometry’s heading angle is corrected only 
when the matching-value of the estimated destination is higher than a given threshold. 
 
4.7 Localization algorithm 

In order to reduce the computational expense, the whole localization algorithm is executed 
only after the robot has moved a certain distance or has rotated through a minimum angle. 
This also has the advantage of effectively generating new different destinations (i.e. different 
states), reducing instances of failure. The localization algorithm is summarized in the pseudo-
code of Table 3. The value εM is the threshold used for extracting the destinations with the 
best matching-values; εϕ is the threshold on the matching-value for correcting the odometry’s 
heading (εϕ ≥ εM); both the quantities εM and εϕ  are determined empirically. The destination 
with the higher activity is d*, which corresponds to the estimated state < x*, y*, ϕ* >; finally, 
o* is the most likely origin, that is, the d* extracted at the previous time-step. 
 

Table 3  Localization algorithm 

Calculate the location given by o*  plus odometry displacement 

Find the topological position d0∈D closer to such a location 

Use IMA to compare the new image with all the panor amic images in the map 

Extract all the possible destinations d∈D with matching-value MATCH( d) > εM 

if no new destinations are generated with IMA 
  Return the topological position d0 
  END 
end if 

for each d∈D 
  for each o∈O 

   Calculate ∆l and ∆ϕ 
   Keep track of ∆lmax and ∆ϕmax 
  end for 
end for 
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for each d∈D 
  Calculate P( d | o, a) with (6) 
  Update the activity (9, 10) 
  Keep track of the destination d*  with the higher activity 
end for 

Normalize the activities (11) 

Reset the odometry’s coordinates 

if MATCH( d* ) > εϕ 

  Set the odometry’s heading to the angle ϕ*  
end if 

The destinations become the next origins, O ← D 

Return d* 

END 

 
 

5. Experimental results 
 

In this section we present the results of experiments conducted in the Neuro-Robots 
Laboratory at the University of Sunderland. This consists of a room approximately 6×6m2, 
with typical office furniture, and an adjacent corridor connected through a small hall. Along 
two sides of the office there are large windows, resulting in particularly challenging light 
conditions. The robot used is an ActivMedia PeopleBot (Fig. 7) provided with a perspective 
camera and an on-board computer Pentium III 700MHz with 256MB of RAM. Grey-scale 
images with resolution 72×58 pixels were used and the number of slots chosen for IMA was 8, 
with thresholds εM = 0.5 and εϕ = 0.6. The whole localization system, implemented in C++ 
without any particular optimization, worked in real-time on the robot’s computer. The 
topological position was recovered whenever the robot moved 0.5m or rotated 10°; the 
maximum update frequency was 2Hz, which is normally adequate for the tasks of a service 
robot. We mapped up to 15 locations for the experiments here presented, but the system was 
still fast enough in other tests with more than 20 different locations. Our approach is therefore 
feasible for real-time localization in small and medium indoor environments, although larger 
areas could also be covered if more recent and fast hardware was available. 

 

 

Fig. 7  Mobile robot used for the experiments 
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5.1 Place recognition performance 

In this section we present results of the matching algorithm applied to panoramic images. 
Fig. 8 shows a panoramic image reconstructed from snapshots taken in the center of the 
laboratory, using the procedure illustrated in Section 3.2. In particular, we used 12 snapshots 
taken at intervals of ~30°. Note that the robot can be rotated quickly, therefore the whole 
panorama’s reconstruction takes less than 1 minute; the algorithm indeed is capable of 
aligning the sequence of snapshots correctly, even if the angle step varies of several degrees. 

 

 

Fig. 8  Panoramic image of reference 
 
A few moments later, after the panorama was recorded and the software reset, the robot 

was made to perform a complete rotation on the same point, approximately at 10°/s. The 
relative output of the IMA is the solid line in Fig. 9. It can be seen that the match has a mean 
value greater than 0.8. The worst cases, for which IMA returned a value of approximately 0.7, 
correspond to the cupboard (~100°, right part of the panorama) and the shelves (~350°, left 
part of the panorama). This is probably due to a combination of imprecision in the panoramic 
image and errors caused by changes in the perspective. On the same graph, it is also 
illustrated the output of a second turn, when the person seating in front of the desk moved 
away. The relative change can be observed on the dashed line of Fig. 9, where the output 
decreases at about 270° (direction where the person was). It is important to note that, even if 
the output decreased, the position inside the panoramic image, relative to the best match, was 
still correct, and so it was the heading angle of the visual compass. 

To test the robustness of the place recognition, we performed a similar experiment the day 
after using the same panoramic image. Also, to make the experiment more challenging, 
during the observation a person was walking around the robot about one meter far. The result 
is shown in Fig. 10, where the new matching output (dashed line, relative to the one-day old 
panoramic image) is compared to the previous one (solid line). Despite the small decrease due 
to different light conditions and objects’ position, the main loss of quality is due to the 
absence of the person sitting on a chair (at ~300°). In particular, the arrow on the graph 
indicates a point where the estimated position inside the panorama was completely wrong. 
The four points A, B, C, D are relative instead to the instants when the person, walking 
around the robot, was occluding the camera’s view. 

The last result about the IMA applied to panoramic images is perhaps the most important. 
As its main purpose is distinguishing different locations, we wanted to compare the result 
obtained in the last case (old panoramic image and occluding person) with the output obtained 
from another location, in the same room but one meter far from the original position. The 
resulting output is represented by the solid line in Fig. 11 and compared to the previous case, 
which is the dashed line. Although the output in the new location is not very low, in general it 
is well distinguishable from that one obtained from the original position. Failure cases, like 
the overlap indicated by an arrow in Fig. 11 (at ~315°), are situations of perceptual aliasing. 
Here it is clear the need of additional information for resolving the ambiguity, i.e. integrating 
odometry and previous states with a Markov-like approach, as explained in Section 4. 
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Fig. 9  IMA’s outputs for panoramic image 
 

0    90 180 270 360
0

0.2

0.4

0.6

0.8

1

rotation [deg]

IM
A

A 
B C

D 

 

Fig. 10  IMA’s output the day after with occlusions 
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Fig. 11  IMA’s output from a different location 
 
5.2 Correction of the visual compass 

This section illustrates some results regarding the heading angle extraction using the IMA 
and equation (1). In a first experiment, the robot rotated around a position where a panoramic 
image was previously reconstructed. Data was collected for the heading angle given by 
odometry and by the vision during 10 consecutive rotations, measuring at intervals of 45°. 
Fig. 12 shows the final results. The real angle is on the abscissa and the heading angle 
measured by the robot is on the ordinate; the dashed line refers to the odometry and the solid 
one is the angle extracted using the IMA as visual compass. It is clear that the angle given by 
odometry becomes unreliable after a few rotations due to the internal cumulative error. At the 
seventh rotation, the odometry’s error already reached −45° with respect to the real direction. 
Instead, the error of the heading angle given by the visual compass is always between ±10°, 
without suffering of any cumulative error. 
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Fig. 12  Comparison  of heading angle from odometry and visual compass 
 

Although the precision of the visual compass is not sufficient to give a perfect measure of 
the robot’s orientation, it is still good enough to correct from time to time the odometry and 
help with the localization. This is demonstrated for example with the following experiment. 
The robot performed 10 rounds following the path of Fig. 13a, which shows a schematic of 
the laboratory and eight topological nodes on a grid of 1m×1m per square. The coordinates 
given by the odometry during the robot’s motion are illustrated in Fig. 13b. Because of the 
cumulative error affecting the odometry, the points are spread in the room instead of being 
concentrated in proximity of the path. Fig. 13c instead shows the same points after the 
correction of the visual compass as part of the localization process. It can be noted that the 
new distribution is much closer to the real path followed by the robot, despite some outliers 
due to odometry reset or localization errors. 

 

1111    

7777    6666    

5555    4444    

3333    

2222    8888    

                       

(a)            (b)           (c) 

Fig. 13  Reference path and odometry correction with visual compass 
 
5.3 Effect of the digital zoom 

This section demonstrates that the use of digital zoom increases the place recognition 
capability, enabling the robot to identify not just an exact point in the environment, but the 
whole of the surrounding area. The following results are relative to a normal single image of 
reference, rather than a panoramic one, in order to reduce the noise and avoid wrong matches. 
The same principles however are still valid when using panoramic images. 

In Fig. 14, the observed scene and relevant graphs for three different zoom factors are 
illustrated. The distance of the robot from the wall in the middle of the scene was about 4m; 
the robot moved from –1m to +1m with respect to the original position. The variation of the 
IMA’s output is shown on the graphs, where the dashed line is the reference, without any 
zoom, and the solid line is relative to the current zoom factor. 
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Fig. 14  IMA’s performances varying the digital zoom 
 

Two important considerations arise from observation of the graphs. First, the output is 
similar to the combination of three different peaked distributions, as anticipated. 
Unfortunately, the amplitude of the external peaks decreases considerably when the zoom 
factor augments. Despite the fact that, when translating, it is not easy to keep the robot 
constantly on the same direction, the main reason for this decrease is the loss of resolution 
implicit in the zoom process. The second concerns the gaps between the external picks and 
that one in the middle. From these it can be seen that the internal (local) minimum goes 
quickly below 0.5 already with a zoom of 20%. This is because the peaked curves are not very 
wide and the distance from the observed scene is quite long – recall from (3) that the virtual 
displacement obtained with the digital zoom is directly proportional to this distance. Note also 
that the formula given in (3) was an approximation to an ideal case, but in the real world the 
virtual displacement is influenced by several other factors. For example, in case of a zoom of 
20% (ρin = 1.2) the hypothetical displacement ∆x for a distance D = 4m should be 0.67m; in 
practice, the graph shows two external peaked curves not further than 0.5m from the origin. 
Again, the higher the zoom factor, the bigger the error. 

With the next result, we would like to demonstrate also how the distance of the observed 
scene influences the effect of the digital zoom on the recognition area. In Section 3.4 we 
stated that the shape of the recognized region depends on the environment because of the 
linear relation (3) between virtual shift and distance of the scene. According to that, we would 
expect a reduction on the width of the recognition’s curve when observing a closer scene. 
Therefore we repeated the same test illustrated above, but this time placing the robot just 1m 
far from the closest obstacles. The result for a zoom of 10% is illustrated in Fig. 15. 
Comparing this new graph with the previous one in Fig. 14 (for zoom 10%), it is evident that 
the recognition interval becomes smaller, and this is due to the decrease of the relative virtual 
displacement for the current observation. In general then, the region where the zoom-based 
recognition holds becomes thinner (wider) in the direction of a closer (farther) scene. 
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Fig. 15  IMA and digital zoom on a closer scene 
 

Apart from these limitations, if compared to the output without any zoom, even a value of 
10% is a big improvement of the place recognition. For the next localization experiment, this 
was the value used. First, we disabled the digital zoom procedure on the localization system 
and moved the robot along the path of Fig. 13a, carefully passing through the centers of each 
of the eight topological nodes. After one turn and 19 updates of the localization, we had an 
error due to the estimation of a wrong place, which was however an adjacent node of the 
correct one (at less than 1.5m, about the length of a square’s diagonal on the grid of Fig. 13a). 
Still without digital zoom, the robot performed a new turn following the same path, but this 
time avoiding the centers of the nodes. As expected, the number of localization updates 
decreased to 14 because the IMA output was often below the threshold εM. Furthermore, 4 of 
those updates were wrong, with a couple of estimations involving nodes more than 1.5m far 
from the correct locations. Finally, we moved the robot on the same path, avoiding again the 
nodes of the centers but making use of the digital zoom procedure. As reported in Table 4, in 
this case the localization succeeded, generating 22 correct estimations without any error. 
These results show that the digital zoom was an essential part of the localization system; 
therefore it was always used in the following experiments. 

 
Table 4  Errors with and without digital zoom 

Case no zoom & center no zoom & no center zoom & no center 

Update steps 19 14 22 

Errors due to adjacent nodes: 1 2 0 
Errors due to distant nodes: 0 2 0 
Total number of errors: 1 4 0 

 
5.4 Localization performances in a dynamic environment 

To test the localization system in a dynamic environment, updated panoramas were used, 
all reconstructed the same day. The robot performed 10 rounds following the same path with 
eight nodes in Fig. 13a. During the experiments, the robot was always avoiding the exact 
centres of the topological position, so to force the use of the digital zoom for place 
recognition. In the meanwhile, two people were continuously moving around the robot, 
sometimes walking or standing in front of the camera and sometimes simply sitting on chairs. 
Examples of such situations are shown in the robot’s snapshots of Fig. 16. 
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(a)           (b)           (c) 

Fig. 16  Snapshots of error cases 
 
The results presented in Table 5 are encouraging; indeed there were only 3 incorrect 

localizations out of a total of 253 update steps. Two of them happened because of people 
obstructing the scene, so the robot computed that it was at node 3 instead of the correct 
positions of nodes 5 and 6. The reduced video information obtained from the real positions 
has not been sufficient to resolve the perceptual aliasing, even with the odometry’s help. The 
relative robot’s snapshots are shown in Fig. 16a and 16b. In the third error case, the robot was 
at node 7, but the localization estimated node 1, although nobody was obstructing the view at 
that moment. The reason is probably the poor quantity of features in that particular scene, 
which can be seen in Fig. 16c. However, the three errors, in terms of distance from the correct 
node, were all less than 1.5m; that is, .in the worst case the estimation was a topological node 
adjacent to the correct one. 

For comparison, in Table 5 are reported also the error cases for the same localization 
experiment using only place recognition, without the Markov updating process. As we can 
see, the performance decrease is considerable, with a total number of 37 localization errors. 
Among these, 34 were assigned to adjacent nodes, less than 1.5m far from the correct 
position, instead 3 errors involved more distant nodes. From these results, it is obvious the 
benefit given by the Markov update to the localization system. 

 
Table 5  Errors with and without Markov update 

Case with Markov update without Markov update 

Update steps 253 253 

Errors due to adjacent nodes: 3 34 
Errors due to distant nodes: 0 3 
Total number of errors: 3 37 

 
 
5.5 Localization in a bigger environment 

To show the performance of the localization system in a bigger environment, we used an 
adjacent corridor, connected to the laboratory through a small entry and both already mapped 
several days before. The new locations are poor of features and quite narrow, just 2×2m2 for 
the entry and about 2×10m2 for the corridor, both illuminated by artificial light. Fig. 17 shows 
a panoramic image taken from the corridor and Fig. 18 illustrates the new map. 

 

 

Fig. 17  Panoramic image of the corridor (from node 13 of the map) 
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Fig. 18  Map of laboratory and corridor with reference path. The gray line is the odometry. 
 

The robot followed the new path drawn in Fig. 18, starting from node 1 until node 15, at 
the end of the corridor, and then back to node 1. In the figure is also illustrated the path given 
by the odometry when performing such a trip, showing clearly the effects of its cumulative 
error. Like for the previous case, the robot always avoided the exact center of the topological 
places; also, all the parameters of the localization algorithm (slots, zoom, thresholds, etc.) 
were the same adopted for the laboratory. We repeated the trial 3 times, collecting data for a 
total number of 202 update steps, and the results are reported in Table 6. We can notice an 
increment of the error cases, which still represent however a small percentage of the total 
steps’ number. The localization’s failures were distributed on the whole environment, with a 
relatively high concentration (4 errors) inside the entry room, at node 10. The reason is that 
the panoramic image of this room was taken with two doors closed, while during the 
experiment the same doors were open. In such a small place, these doors took almost half of 
the panoramic image and their state influenced much the recognition performance. However, 
the localization in general was very reliable and the few errors were always limited to 
adjacent nodes, less than 1.5m far from the correct ones. 

 
Table 6  Errors in a bigger environment 

Update steps 202 

Errors due to adjacent nodes: 9 
Errors due to distant nodes: 0 
Total number of errors: 9 
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6. Conclusions 
 

An appearance-based localization system for indoor environments has been developed, 
making use of a simple unidirectional camera and odometry information. The approach is 
strongly based on a novel place recognition algorithm (IMA) enhanced by digital zoom. The 
same algorithm also permits the generation of panoramic images used for mapping the 
environment and, from these, to estimate the absolute robot orientation with a visual compass. 
The latter in particular gave promising results, considering also the hardware limitations that 
had to be dealt with. Finally, within a probabilistic framework, odometry is integrated with 
the visual information to resolve cases of ambiguity. The experiments presented show the 
robustness of the approach, even in case of dynamic environments, making the localization 
suitable for service-robot applications. 

There are two main topics that should be explored in the future: (i) the automatic update 
of panoramic images, and (ii) the use of incremental digital zoom. The first would boost the 
place recognition and would be a natural step towards a complete system of self-localization 
and map-learning (SLAM). The second is an innovative technique that has just been 
introduced, but which shows great potential to improve the effectiveness of the localization. 
By adding incremental digital zoom to the frame captured by the camera, “off node” map 
locations could be identified. It would be worthwhile extending this technique to support 
interpolation of location between map nodes. 
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