Learning Semantic Relationships in Compound Nouns with
Connectionist Networks

Stefan Wermter
Department of Computer and Information Science
University of Massachusetts

Abstract

This paper describes a new approach for understanding compound nouns. Since several approaches
have demonstrated the difficulties in finding detailed and suitable semantic relationships within
compound nouns, we use only a few basic semantic relationships and provide the system with the
additional ability to learn the details of these basic semantic relationships from training examples.
Our system is based on a backpropagation architecture and has been trained to understand com-
pound nouns from a scientific technical domain. The test results demonstrated that a connectionist
network is able to learn semantic relationships within compound nouns.

Introduction

Understanding compound nouns plays an important role in understanding natural language. In the
past, different approaches for understanding compound nouns have been investigated in artificial
intelligence, linguistics, and cognitive science ((Marcus 80) (Finin 80) (McDonald 82) (Lehnert
86) (Arens 87) (Dahl 87)). Most approaches relied on a representation of the words in compound
nouns as frames or serantic features and contained fixed control structures which determined the
semantic relationships between the words. For example, Finin (Finin 80) used frames to predict
the semantic relationships between words and a hierarchy of rules to identify the best relationship.
McDonald’s system (McDonald 82) is based on Fahlman’s parallel semantic network (Fahlman 79)
and used marker passing to find the semantic relationships between word concepts.

These approaches try to understand compound nouns by coding as much knowledge as possible
about the words, semantic relationships, and control structures. In this paper we investigate a
different approach for understanding compound nouns consisting of two words. We use only a few
basic semantic relationships and provide the system with the ability to learn the details of the
basic semantic relationships from training examples. Instead of encoding knowledge structures and
control structures for understanding compound nouns, basic semantic relationships in compound
nouns are learned using a connectionist architecture.

The Domain and the Basic Semantic Relationships

Compound nouns are frequently used in almost every domain. Our domain is the NPL! corpus
(Sparck-Jones 76) which contains abstracts and queries from the physical sciences. From this corpus

! National Physics Laboratory
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we randomly chose 108 compound nouns consisting of two words, e.g. “heat effect”. Each word is
represented as a binary vector of 16 semantic features, which were extracted by using the NASA
thesaurus (NASA 85). For a more detailed description of the process of feature extraction see
(Wermter and Lehnert 89). Figure 1 illustrates the semantic features for the compound nouns.

Semantic Features Examples

MEASURING-EVENT Observation, Investigation, Research
CHANGING-EVENT Amplification, Acceleration, Loss
SCIENTIFIC-FIELD Mechanics, Ferromagnetics
PROPERTY Intensity, Viscosity, Temperature
MECHANISM Experiment, Technique, Theorem
ELECTRIC-OBJECT Transistor, Resistor, Amplifier
PHYSICAL-OBJECT Earth, Crystal, Vehicle, Room
RELATION Cause, Dependence, Interaction
ORGANIZATION-FORM Layer, Level, Stratification, F-Region
GAS Air, Oxygen, Atmosphere, Nitrogen
SPATIAL-LOCATION Antarctic, Earth, Range, Region, Source
TIME June, Day, Time, History

ENERGY Radiation, Ray, Light, Sound, Current
MATERIAL Aluminium, Water, Carbon, Vapour
ABSTRACT-REPRESENTATION | Note, Data, Equation, Term, Parameter
EMPTY Cavity, Vacua

Figure 1: Semantic Features of the Nouns and Examples

To represent basic semantic associations between words we use 7 basic semantic relationships. We
specify a Basic Semantic Relationship as a preposition paraphrase (see figure 2). For example,
a “room experiment” has the basic semantic relationship IN-P since the experiment is “in” a room,
and an “excitation mechanism” has the basic semantic relationship FOR-P since it is a mechanism
“for” excitation. Each compound noun can have different basic semantic relationships; for instance,
a “feedback circuit” is a “circuit FOR-P feedback” or a “circuit WITH-P feedback”. Each basic
semantic relationship can have several meanings; for instance, the IN-P is different for “storage
IN-P computer” and “disturbance IN-P atmosphere”,

Basic Semantic Relationships | Examples for the Basic Semantic Relationships
BY-P Impurity Conduction

FOR-P Excitation Mechanism

FROM-P Space Vehicle

IN-P Room Experiment

OF-P Oxygen Emission

ON-P Skin Effect

WITH-P Amplifier Circuit

Figure 2: The Basic Semantic Relationships
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We consider the basic semantic relationships as a first step to differentiate semantic relationships
according to their main properties. This general concept of classifying semantic relationships ac-
cording to preposition paraphrases has been found useful in several studies on compound nouns
(e.g., (Lee 60) (Levi 78) (Finin 80)), since preposition paraphrases contain general relationships;
e.g., FROM-P expresses a source, FOR-P expresses a purpose, and IN-P expresses inclusion. Qur
goal here is to specify basic semantic relationships as preposition paraphrases and to build a system
which learns the underlying semantic relationships from training examples.

The Architecture

The architecture for learning semantic relationships is a backpropagation network with three lavers
(see figure 3). The bottom layer consists of 32 binary input units for the semantic features of the
two words in the compound noun. The hidden layer is a 7 x 12 array of hidden units, 12 hidden
units for each of the 7 basic semantic relationships. The top layer consists of 7 real-valued ocutput
units, one for each of the 7 basic semantic relationships.

Each output unit is connected only to all hidden units of the same basic semantic relationship.
All hidden units are connected to all input units. This modular organization has two advantages:
(1) training and testing for each basic semantic relationship can be done independently, and (2)
adding, deleting and modifying a basic semantic relationship does not require retraining the whole
network.

7 output units (basic semantic retationships) for the compound noun

BY-P OF-P ON-P IN-P FOR-P FRON-P VITH-P

7x 12 hidden
units

S
‘/ A

2 x16 input units (semantic features) for a 2-word compound noun

Figure 3: The Structure of the Backpropagation Network
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Training the Network

First, 108 compound nouns consisting of two words were randomly selected from the NPL corpus.
Each compound noun was represented with 32 binary features, 16 for each word. The 108 compound
nouns were divided into 88 compound nouns for a training set and 20 compound nouns for a test
set. Because of the modular architecture the network can be trained in separate modules for the
different basic semantic relationships. For each of the 7 basic semantic relationships the feature
representations of the 88 compound nouns were presented as the input together with a desired
binary plausibility value as the output. The plausibility value indicates if the basic semantic
relationship between the two words is plausible (value 1) or not plausible (value 0). The following
example shows two of the 88 training examples for the basic semantic relationship IN-P: “Plasma
layer” in the sense of “layer IN-P plasma” is plausible, while “sunspot number” in the sense of
“number IN-P sunspot” is not plausible.

PLASMA LAYER -> LAYER IN-P PLASMA 1
SUNSPOT NUMBER -> NUMBER IN-P SUNSPOT 0

For each of the 7 basic semantic relationships the semantic features and plausibility values of
the 88 compound nouns were presented for 800 cycles {that is 70400 training examples). The
backpropagation algorithm (Rumelhart et. al. 86) was used to learn the plausibility of each basic
semantic relationship?. To be independent of the random start initialization of the network, three
different runs (each with the 70400 training examples) were conducted for each of the 7 basic
semantic relationships. Within this learning phase the average of the total sum squared error for
all training examples over all 21 runs decreased from 23.2 at the start of the training to 1.4 at the
end of the training.

Evaluation of the Test Results

After training, the network was tested on the training set of 88 compound nouns and the test set of
20 compound nouns. The semantic feature representation of the compound nouns in the test set had
not been part of the training set. The network was tested by presenting the feature representation
of a compound noun, and the system computed the plausibility value for each basic semantic
relationship. A basic semantic relationship is considered correct, if the computed plausibility value
deviates less than 0.49 from the desired value 1 for a plausible basic semantic relationship and from
the desired value 0 for an implausible basic semantic relationship.

2The learning rate n was set to 0.01, the weight change momentum e was 0.9 for all experiments.
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Basic Semantic Relationships | Correct in the Training Set | Correct in the Test Set
BY-P 94% 83%
FOR-P 97% 3%
FROM-P 94% 82%
IN-P 96% 3%
OF-P 93% 7%
ON-P 98% 95%
WITH-P 98% 88%

Figure 4: Basic Semantic Relationships in Training Set and Test Set

Figure 4 illustrates the overall system performance on the training set and on the test set for each
basic semantic relationship. The average percentage of correctly learned training examples for the
three different learning runs is between 93% and 98%, the percentage of correctly generalized test
examples is between 73% and 95%.

Figure 5 shows a more detailed interpretation of representative examples from the test set of new
compound nouns. Each compound noun is shown with the computed plausibility values for each
basic semantic relationship®. We say that a basic semantic relationship for a compound noun exists
if the computed plausibility value is greater than or equal to 0.5.

Compound Nouns BY-P | FOR-P | FROM-P | IN-P | OF-P { ON-P | WITH-P
Heat Exchange 03 0.0 | 00 03 | 09 | 00 0.0
Transistor Life 0.0 0.4 0.0 0.1 1.0 0.0 0.1
Writing Method 0.0 0.8 0.1 0.0 1.0 0.0 0.0
Wing Motion 0.0 0.1 0.3 1.0 0.5 0.0 0.0
Waveform Solution 0.1 0.4 0.0 0.1 0.4 0.1 0.0
Earth Satellite 0.0 0.0 0.9 0.9 0.0 0.0 0.7
Transport Theory 0.3 01 0.0 0.0 0.9 0.6 0.1
Water Vapour 0.0 0.0 0.6 1.0 04 0.0 0.6
Wave Propagation 0.1 0.0 0.2 0.7 0.7 0.1 0.0
Microwave Emission | 0.7 0.1 0.0 0.0 1.0 0.0 0.0

Pigure 5: Examples for the Interpretation of Compound Nouns (see text for explanation)

In the first two examples in figure 5 a single basic semantic relationship exists between the two words
in the compound noun: “heat exchange” is interpreted as “exchange OF-P heat”, and “transistor
life” as “life OF-P transistor” (only these basic semantic relationships have a plausibility value
greater or equal 0.5).

?Again, as in figure 4, the plausibility values shown are the averages over the three different runs for each basic
semantic relationships.
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Although only one basic semantic relationship exists in the first two examples, most test examples
have more than one existing basic semantic relationship. For instance, “writing method” has the
existing relationships “method FOR-P writing” and “method OF-P writing”. The other basic
semantic relationships for “writing method”, like “method BY-P writing” and “method FROM-P
writing”, do not exist. Another example of multiple basic semantic relationships is “wing motion®
(as in airplanes) which is interpreted as “motion OF-P wing” and “motion IN-P wing”. This
example illustrates ambiguous interpretations and context is needed to determine if the wing is the
object which is moving (motion OF-P wing) or the location of a motion (motion IN-P wing).

The plausibilty values in Figure 5 indicate unsure interpretations as well. For instance, the plausi-
bility values of the compound noun “waveform solution” are lower than 0.5 for all basic semantic
relationships. The network can not find a basic semantic relationship because similar relationships
had not been in the training set. The results show examples with some incorrect basic seman-
tic relationships as well. For instance “water vapour” is interpreted with 3 existing relationships:
“vapour FROM-P water”, “vapour WITH-P water”, and “vapour IN-P water”. While the first two
relationships FROM-P and WITH-P are plausible, the third is not plausible.

Although our corpus is still fairly small our test results demonstrate the extent to which the learned
hasic semantic relationships generalize for new compound nouns. The basic semantic relationships
in our neiwork generalize well for compound nouns whose first and second noun are characterized
with subsets of the following semantic features: Nounl: ENERGY PROPERTY ORGANIZATION-
FORM and Noun2: CHANGING-EVENT PROPERTY MECHANISM. Examples for this class of
compound nouns are “heat exchange” and “wave propagation”. Another class of compound nouns
with good generalizations are subsets of the following features: Nounl: ELECTRIC-OBJECT
PHYSICAL-OBJECT and Noun2: TIME PROPERTY, like in “transistor life”.

Besides thesc classes of compound nouns with good generalizations, compound nouns with subsets of
the following features do not generalize well: Nounl: PHYSICAL-OBJECT SPATIAL-LOCATION
MATERIAL and Noun2: PHYSICAL-OBJECT GAS MATERIAL. Examples with subsets of these
feature combinations are “earth satellite” and “water vapour”. The reason for the decrease in the
generalization performance for this last class is the restricted use of only 16 semantic features. To
generalize relationships between two physical objects more features are needed. For instance, a
network with a SIZE feature could generalize the WITH-P relationships between physical objects
so that “earth satellite” could not be interpreted as “satellite WITH-P earth” since the earth has
a bigger size than a satellite. The identification of these incorrectly generalized basic relation-
ships is important for deciding which semantic features and basic semantic relationships might be
modified. We make no claim for a “right” classification of semantic features and basic semantic
relationships for our domain but we claim that the adaptive process of identifying better suitable
semantic features and semantic relationships is supported by the learning ability and the modular
architecture.
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Related work

Comparing the performance of our system with existing systems for compound noun analysis is
somewhat difficult, because the techniques, the level of the semantic relationships, and the do-
mains are fundamentally different. McDonald reports about 54% to 64% correct interpretations for
his compound noun system (McDonald 82) using detailed semantic relationships and fixed control
strategies. The performance of Finin’s system is similar to McDonald’s system. Qur system de-
termines plausible basic semantic relationships for unknown compound nouns. Although our basic
semantic relationships are not as detailed as McDonald’s or Finin’s, our basic semantic relationships
are automatically acquired. As far as we know there is currently no system which has the ability
to learn the semantic relationships between compound nouns.

Our system has the advantage of learning knowledge for the semantic relationships, while this
knowledge is difficult to acquire in other compound noun systems (e.g. (Finin 80) (McDonald 82)
(Arens 87) (Gay 88)). The knowledge about semantic relationships is represented uniformly in
modular networks. On the other hand, these systems allow compound nouns with more than two
words while we need additional mechanisms to understand longer compound nouns. Currently, we
are investigating the use of recursive autoassociative network architectures ((Pollack 88), (St John
88)) and relaxation networks (Wermter 89) to understand compound nouns of arbitrary length.

Conclusions

One way to approach compound noun analysis is the use of extensive knowledge engineering, as
demonstrated in several computational models. Because of the difficulties of identifying the seman-
tic relationships and control structures, we presented a new approach for understanding compound
nouns. Using a modular connectionist architecture we showed that basic semantic relationships
within compound nouns can be learned. The general concepts of basic semantic relationships,
learning, and modular network architectures demonstrate how uniform memory models can be
built for natural language understanding.
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