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Abstract—Interactive reinforcement learning constitutes an
alternative for improving convergence speed in reinforcement
learning methods. In this work, we investigate inter-agent train-
ing and present an approach for knowledge transfer in a domestic
scenario where a first agent is trained by reinforcement learning
and afterwards transfers selected knowledge to a second agent
by instructions to achieve more efficient training. We combine
this approach with action-space pruning by using knowledge on
affordances and show that it significantly improves convergence
speed in both classic and interactive reinforcement learning
scenarios.

I. INTRODUCTION

In learning robots different tasks such as navigation,

grasping, vision, speech recognition, and pattern recognition

among others, can be tackled by different machine learning

paradigms, like supervised, unsupervised or reinforcement

learning [1], [2]. These tasks are often needed in domestic

scenarios with active human participation in order to execute

them collaboratively.

This paper focuses on Reinforcement Learning (RL on-

wards) [3] which uses sequential decisions where an agent

interacts with its environment. In each state, the agent selects

an action to be performed and in some states receives either a

reward or a punishment. It attempts to get the highest reward

over time, therefore the problem is reduced to finding a proper

policy that allows to associate actions to states in order to get

maximal future reward.

RL has demonstrated to be a very useful learning approach,

but the largest problem for RL agents is often the time spent

for the learning process, mainly due to large and complex state

spaces which lead to excessive computational costs in order to

find a suitable policy [4]. There are different approaches that

attempt to speed up RL including Interactive Reinforcement

Learning (IRL) where RL is supported by an external trainer

who provides some instructions on how to tackle the problem

[5], [6], [7].

A promising alternative method to improve convergence

speed is the use of affordances [8], [9], which means that

cognitive agents favor specific actions to be performed with

specific objects. Affordances represent neither agent nor object

characteristics, but rather the characteristics of the relationship

between them [10]. In this paper, we are not yet looking

at learning affordances automatically, but we want first to

investigate how beneficial they are in our proposed scenario.

In this work we integrate IRL and affordances to enhance

the performance of classic RL methods, demonstrating that

we get better results when using affordances with classic RL

as well as when combined with IRL with instructions coming

from a previously trained agent.

Our paper is organized as follows: first, we describe the

main characteristics of the IRL paradigm and different strate-

gies to combine the RL approach with external trainer interac-

tion. Next, we give a description of the concept of affordance

and explain how they are used in our approach. Then, we

define our robotic agent scenario for a domestic task and

state our strategy to speed up RL with both instructions and

affordances. Moreover, we show and compare our main results

in both RL and IRL approaches. Finally, we present our main

conclusions and describe future research.

II. INTERACTIVE REINFORCEMENT LEARNING

RL attempts to maximize received reward in a specific

scenario through the interaction that is produced between a

robotic agent and its environment. Such actions are selected

yielding a transition to a new state and getting a reward.

The optimal action-value function can be solved through the

Bellman equation for q∗:

q∗(s, a) =
∑

s′

p(s′|s, a)[r(s, a, s′) + γmax
a′

q∗(s′, a′)] (1)

where s is the current state, a is the taken action, s′ is the

next state reached by performing action a in the state s, a′

are possible actions that could be taken in s′. In the equation,

p represents the probability of reaching the state s′ given that

the current state is s and the selected action is a, and r is

the received reward for performing action a in the state s for

reaching the state s′. The parameter γ is known as discount

rate and represents how influential future actions will be [3].

There are different strategies of interaction between a

robotic agent and an external trainer for developing collabora-

tive tasks, for instance, they could interact through demonstra-

tion [11], [12], imitation [13] or feedback [5], [14]. Interaction

through feedback is used in our approach. So far two different

strategies have mainly been used to give feedback. These

consist of manipulating the received reward r or the selected

action a to be performed in the state s. In both cases, shown

In: Proceedings of the Fourth Joint IEEE ICDL-EpiRob '14, pp. 125-130, Genoa, Italy (2014)



Fig. 1. a) First approach to interaction between a robotic agent and an
external trainer by feedback. In this case, the external agent is able to change
a selected action to be performed in the environment b) Second approach to
interaction between a robotic agent and an external trainer by feedback. In
this second case, the external agent is able to modify the proposed reward.

in figure 1, an action is carried out in the environment, and

thus a new state is reached and a new reward obtained. When

the external trainer does not give feedback, acceptance of the

action a or reward r is assumed. Novel strategies can emerge

from mixing both, namely, decision on the action a to be

performed and on manipulating the received reward r as well.

Figure 1a shows the first approach in IRL through feedback

where interaction from an external trainer is given during the

robot’s action selection. Manipulating actions is a way to tell

the agent that what it is currently doing is wrong and should

be corrected in the future [15]. The second approach is shown

in figure 1b. In this case, the external trainer may modify the

reward r and send its own reward to the agent, specifying how

good or how bad the latest performed action a is. Examples

of this approach were developed in [5], [16].

In a real domestic scenario an agent is expected to work with

humans as external trainers. For them, delivering directions

is more natural instead of quantifying a reward; hence, we

decided to use the first feedback method of IRL in this

paper, shown in figure 1a. For this, we created a simulated

environment where the external trainer was previously trained

using classic RL. It was therefore an artificial trainer agent that

had full knowledge about all possible actions and delivered it

to a second artificial agent which was trained with IRL.

For the training in RL we use the on-policy method SARSA

[17] where the equation 1 is solved considering transitions

from state-action pair to state-action pair instead of transitions

from state to state only. Thus, every state-action value can be

updated using the following equation 2:

Q(st, at) ← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−

Q(st, at)] (2)

Algorithm 1 shows the SARSA method using interaction.

The conditional statement in line 8 represents the fact that the

external agent delivers feedback and changes the next action

a′. Line 11 represents the regular update of the next action.

The policy used in lines 3 and 11 corresponds to ǫ-greedy

selection with ǫ = 0.1. Thus, most of the time the action

with the highest estimated state-action pair value is selected

according to:

a = argmax
a

Q(st, a) (3)

where st is the current state at time t, and a corresponds to

the action. Later, we will modify this policy slightly to use

affordances which is explained in the next section.

Algorithm 1 On-policy SARSA algorithm using interaction

and affordances

Require: Previous definition of states and actions

1: Initialize Q(s, a) arbitrarily

2: Filter actions avoiding failed states using affordances

3: Choose a from s using ǫ-greedy action selection

4: repeat

5: Take action a

6: Observe reward r and next state s′

7: Filter actions avoiding failed states using affordances

8: if external trainer gives an alternative next action then

9: Choose a′ given by the external trainer

10: else

11: Choose a′ from s′ using ǫ-greedy action selection

12: end if

13: Q(st, at) ← Q(st, at) + α[rt+1 + γQ(st+1, at+1) −
Q(st, at)]

14: s← s′

15: a← a′

16: until s is terminal

III. USE OF AFFORDANCES

The term of affordance was coined by Gibson as action

opportunities for an observer who is aware of its environment

or an object in it [10]. For instance, a cup and a sofa afford

different actions to a person who is able to grasp the cup

and sit on the sofa, but cannot do it the other way around.

Thus, an agent using its prior knowledge, its experience, and

its perceived information is able to determine some object

affordances in advance or the caused effect after a specific

action is performed.

The use of affordances in robotics allows to address much

more interesting problems by reducing action space due to

the retrieved relevant information from the world allowing to

identify what actions are possible for a robot to perform [8].

Affordances have been mainly used to relate actions to objects

and we use them as a way to represent prior object/action

information.

Affordances represent characteristics of the relation between

an agent and an object. More specifically, one affordance can

be defined as the relationship between an object, an action,

and an effect [8], [18] as a triplet shown in equation 4:
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Fig. 2. Affordances as relations between objects, actions, and effects where
objects are entities which the agent is able to interact with, actions represent
the behavior that can be performed with the objects, and the effects are the
results caused by applying an action.

Affordance = (Object, Action, Effect) (4)

Figure 2 shows the relationship between these three com-

ponents where objects are entities which the agent is able to

interact with, actions represent the behavior or motor skills

that can be performed with the objects, and the effects are the

results of an action using an object [19].

We use affordances to provide knowledge about actions

which lead to undesirable or failed states which means that

it is not possible to reach the final state from them. Therefore,

the action space is reduced by avoiding these states. In our

approach, the set of possible actions is filtered every time for

the current state that the agent is in. Thus, every agent has

a preprogrammed behavior to avoid undesirable actions in all

states. Algorithm 1 shows the use of affordances in lines 2

and 7 where the filter is applied.

Although this preprogrammed use of affordances can only

be used in our abstracted scenario, it enables us to investigate

the effects of affordances on our learning approach. In future

work the affordance triplets have to be retrieved automatically

during learning.

IV. DOMESTIC SCENARIO

In this work, we have defined a domestic scenario focused

on cleaning a table which can be learned by a robot supported

by an external agent for reducing the training time. To perform

this, we have defined objects, locations and actions inside this

scenario. Initially, a robotic agent which has a sponge will

stand in front of a table, in particular in front of a specific

area of the table which is desired to be cleaned. The table

has an additional object like a cup. We have defined three

locations, left, right and home, the left and right side on the

table within the reachable area for the robot’s arm, and the

location home is the initial position of the robot’s hand which

is also the storage place of the object sponge.

In this scenario four actions are possible: (i) get an object,

which allows the robotic agent to pick up an object which is

placed in the current robot hand location, (ii) drop an object,

which allows the robot to put down the object that is currently

kept in the robot’s hand in the location where it is positioned,

(iii) go, which allows to move the robotic hand towards any

TABLE I
LIST OF DEFINED OBJECTS, LOCATIONS AND ACTIONS FOR

CLEANING-TABLE SCENARIO.

Objects Locations Actions

sponge left get <object>

cup right drop

home go <location>

clean

location, and (iv) clean, which cleans only the current location

where the hand is positioned.

Let us suppose that the cup is located on the left side of the

table at the beginning. The initial position of the robot’s hand

is the location home, and we want to finish with the hand

free and over home with both sides clean. In this context,

an episode is defined as an attempt to reach the goal. The

following example shows an episode to complete the task

successfully: get sponge, go right, clean, go home, drop, go

left, get cup, go right, drop, go home, get sponge, go left,

clean, go home, drop. The minimal number of actions is 15

to complete the task. Table I shows a summary of objects,

locations and actions defined for this domestic scenario, which

for this first approach has been developed in a simulated robot

environment. Figure 3 shows an example of a real scenario

where a robot is standing in front of the table and Figure

4 shows a simulated collaborative scenario in the V-REP

simulation environment.

V. PROPOSED MODEL

To implement this domestic scenario we develop a state

machine with one final state. The number of possible states is

obtained by considering the possible combinations among (i)

the robotic agent’s hand position, (ii) whether the hand is free

or holding an object, and which, (iii) the cup location, and (iv)

the current condition of every side of the table surface, that

is, if the table has already been cleaned or not (see Table II).

However, this leads to an explosion of the number of states

where many of them are failed states from where it is not

possible any more to reach the final state. For instance, let us

assume that the robot has just performed the action get cup;

therefore the cup is held in its hand. If the robot then cleans

a section of the table with the cup in its hand instead of a

sponge, it may shatter the cup.

Failed states are not necessarily a problem; they can be han-

dled and controlled by an RL approach by giving punishment

(or negative reward). In this case, the agent is discouraged

to perform that action in the future from the same state.

Nevertheless, a better strategy is to consider the use of

affordances which are motivated from psychology [10] and

which have been examined for improving the convergence

speed of learning algorithms [20], [21]. In our work, we are

interested in reducing the needed episodes to reach a reason-

able performance by using affordances in both approaches,

RL and IRL. This becomes especially important when it is

desired to work in real scenarios, because, while in simulated

environments it is feasible to run many episodes, in a real
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Fig. 3. A humanoid robot stands in front of the table, the yellow area contains
the left and right locations within the reachable zone for the robot’s arm.

Fig. 4. The scenario in the upper left shows a simulation where the robot
stands in front of the table. The simulated scenario in the upper right shows
the task where object affordances are being used. The final scenario shows
two humanoid robots in a simulated collaborative domestic scenario. After
one agent learns the cleaning-table task it can transfer selected knowledge by
interaction to the second agent.

environment one cannot afford to run excessive episodes until

reaching a suitable policy.

Considering affordances, it is possible to define 46 regular

states, many of which are shown in Table II where the initial

state is the number 1 and the final state is the number 46. The

states between number 15 and 28, and states between 29 and

42 are not shown since they are exactly the same as the first

14 states apart from the side conditions which are clean-dirty

and dirty-clean respectively. Figure 5 summarizes the state

transitions and we can observe an initial state where both sides

of the table are dirty. In this context, a regular state means

that it is still possible to reach the final state. Internally, in

our algorithm we do not use left or right, but rather side1 and

side2, where side1 is the side of the table where the cup is at

the beginning of an episode, and it is feasible to start cleaning

any side of the table because both paths will lead to the final

TABLE II
REGULAR STATES DEFINED FOR CLEANING-TABLE SCENARIO. THE LAST

FOUR STATES ARE INDEPENDENT OF THE CUP POSITION SINCE THEY

REPRESENT ACTIONS FOR RETURNING THE SPONGE TO THE HOME

POSITION ONCE BOTH SIDES ARE ALREADY CLEANED.

Side

condition

Cup

position

Hand

position

Held

object

Nr.

home free 1
sponge 2

left free 3
left sponge 4

cup 5
right free 6

dirty- sponge 7
dirty home free 8

sponge 9
left free 10

right sponge 11
right free 12

sponge 13
cup 14

... ... ... ... ...

left sponge 43
clean left or right sponge 44
clean- right home sponge 45

free 46

Fig. 5. Given that the cup is on the left side, there are two feasible paths for
reaching the final state from the initial state. The lower path would include
17 possible different states and consists of cleaning first the empty side of the
table, and then moving the cup in order to clean the second side. The upper
path would include 24 possible different states and consists of moving the cup
first to the empty side and cleaning this side, and after that returning the cup
to its original side for cleaning the second one. In both cases the final state
is reached involving different numbers of intermediate states. The ending of
the task consists of four states including those states for returning the robot’s
hand to the home location and for dropping the sponge.

successful state. As we already stated in the previous section,

the shortest path is composed of 15 actions for reaching the

final state.

VI. SIMULATIONS AND RESULTS

To carry out this experiment, first, we used a classic RL

approach to train a simulated agent for reaching the final

state. Afterwards, we introduced affordances and were able

to reduce the needed episode numbers to obtain a satisfactory

performance in terms of the performed actions for reaching

the final state. Finally, a second agent was trained using IRL

and receiving feedback from the previous trained agent that

sometimes showed which action to choose in a specific state.

Each set-up was carried out 100 times using the obtained
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average values in figures. Moreover, involved parameter values

were selected empirically with learning rate α = 0.1, discount

factor γ = 0.9, and ǫ-greedy action selection with ǫ = 0.1.

The Q-values were initialized randomly using an uniform

probability distribution between 0 and 1. These three set-ups

will be explained in detail in the next subsections.

A. Training an Agent Using RL

In the first step, simulations were performed to train the

first agent with the SARSA algorithm. On the one hand, our

reward function delivered a positive reward equal to 1 to the

agent every time that it reached the final state. On the other

hand, it delivered a negative reward or punishment equal to

-1 every time that a failed state was reached to discourage

accessing this state in the future again. Equation 5 shows the

reward function defined in this scenario.

r(s) =







1 if s is the final state

−1 if s is a failed state

0 otherwise

(5)

Due to the large number of states, and since many of

them were actually failed states, the agent needed around 700

episodes of training until reaching at least once the final state

in 100 attempts. Figure 6 shows the average number of actions

involved in every episode until reaching the final state with

green crosses. Here, the number of actions are only shown

when the final state was reached; so in the episodes where no

cross is shown always a failed state was reached. In the first

half of the training the final state was reached just a few times,

but in the last part the system became more successful and

furthermore, in those cases close to 15 actions were performed

which in fact is the minimal number of possible actions as

mentioned above. The dashed green line shown in figure 6

with a different scale in the y axis represents the percentage

of successful runs. This curve is calculated by a convolution

using 50 neighbors to make it smoother and we observe that

the initial percentage of success is very low. Nevertheless,

additional tests have shown that the curve keeps growing

until approximately 4000 episodes, reaching only success rates

of 40%. This clearly shows the difficulty to obtain a stable

behavior by RL and the corresponding long training times.

B. Training an Agent Using RL with Affordances

As mentioned in the previous subsection, excessive episodes

were required in order to reach a stable system. Even though

this is computationally expensive it would be feasible in a

simulated environment. Nevertheless, it would be unfeasible

to perform those quantities of episodes in a real scenario.

Therefore, we decided to explore the benefit of affordances

which were implemented by reducing the valid action space

for the agent to avoid failed states. Using this approach, we

managed to reduce the number of episodes considerably, i.e.

we needed less than 150 episodes to get a stable behavior and

a number of performed actions close to the minimum. Figure

6 shows the average number of actions in each episode with

this set-up.

Fig. 6. Average number of actions needed for reaching the final state for
classic RL approach (green) and RL with affordances (blue) from 100 runs
are shown. For classic RL, the average number of actions is shown as green
cross if at least one run was successful. Dashed lines show the percentage of
runs that have reached the final state which is always 100% in case of RL
with affordances since failed states can not be reached anymore. Success rate
was smoothed by a moving average with window size 50.

Fig. 7. Average number of actions needed for reaching the final state in
each episode in RL and IRL with affordances. The convergence speed was
improved by means of interaction from the first trained agent. To obtain less
than 50 performed actions averaged over 100 runs 49 episodes were needed
in RL with affordances and in those first 49 episodes 5449.55 actions were
performed in RL with affordances while 2612.56 actions were performed in
IRL with affordances.

Whereas in the previous scenario the probability of success

was still low in the first episodes of training, in this set-

up no episode ended in a failed state because of the use of

affordances, since an episode could only end when the agent

reached the final state (see dashed blue line in figure 6), which

also produced considerably lower variation in comparison with

the preceding scenario.
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C. Training a Second Agent Using IRL with Affordances

Once a first agent had been trained, a second agent was

trained with an IRL approach that allowed to manipulate

selected actions as shown in figure 1a. In our method, the

external trainer that provided feedback was the trained agent

which already had knowledge about the task to be performed.

Furthermore, we based the interaction model on a method

called advise proposed by Griffith et al. [22]. In their work the

authors use two likelihoods, C to refer to the consistency of

feedback which comes from an external human agent, and L to

refer to the probability of receiving feedback, i.e. a likelihood

that an external human agent delivers guidance at some point.

In our work, we use probability of feedback L = 0.3 and

consistency of feedback C = 1, the latter because in our case

the interaction is provided from another simulated agent rather

than a human trainer and this external agent has full knowledge

about the task.

Figure 7 shows the training for this approach. Shown are

the average number of actions performed in RL versus IRL for

100 episodes, where convergence speed in IRL is significantly

improved by receiving instructions from the first trained agent

in 30% of the time. In figure 7, the axes are just displayed

until 100 episodes and 100 actions to highlight the behavior

of both approaches in initial episodes.

VII. CONCLUSIONS AND FUTURE WORK

We have shown affordances and IRL to be an efficient

method to improve the convergence speed of RL. We have

presented a method that was able to successfully train a

simulated agent and then to transfer this knowledge by IRL

to a new agent which led to a reduction in the number of

the required episodes during training as well as a reduction of

the number of actions performed in each episode. The use of

affordances also allowed to reduce the amount of iterations or

needed episodes for training which is fundamentally important

considering real scenarios where running through a large

number of episodes would be impracticable.

As next step, we are going to consider alternative evalua-

tions with different set-ups of parameters for getting our model

as robust as possible. The probability of feedback L deserves

special attention because it could possibly have an impact

in scenarios where feedback comes from human trainers. In

addition, a recently proposed method by Torrey and Taylor

[23] where interaction is delivered at some specific points

of the training could provide enhancements to our approach.

Moreover, an important task involves to transfer our method

to a real scenario where a humanoid robot will perform the

actions given by a human trainer.
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