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I. INTRODUCTION

Human-Robot Interaction (HRI) has become an increas-
ingly interesting area of study among developmental roboti-
cists since robot learning can be speeded up with the use of
parent-like trainers who deliver useful advice allowing robots
to learn a specific task in less time than a robot exploring the
environment autonomously [1]. In this regard, the parent-like
trainer guides the apprentice robot with actions that allow
to enhance its performance in the same manner as external
caregivers may support infants in the accomplishment of a
given task, with the provided support frequently decreasing
over time. This teaching technique has become known as
parental scaffolding [2].

When interacting with their caregivers, infants are subject
to different environmental stimuli which can be present in
various modalities. In general terms, it is possible to think
about some of those stimuli as guidance that the parent-
like trainer delivers to the apprentice agent. Nevertheless,
when more modalities are considered, issues can emerge
regarding the interpretation and integration of multi-modal
information, especially when multiple sources are conflicting
or ambiguous [3]. As a consequence, the advice may not be
clear and misunderstood, and hence, may lead the apprentice
agent to a decreased performance when solving a task [1].

II. MULTI-MODAL INTEGRATION

People are constantly subject to different perceptual stim-
uli through different modalities such as vision, hearing, and
touch among others. Such modalities are used to perceive
information and process it independently, in parallel, or
integrating the received information to provide a coherent
and robust perceptual experience. Similarly, humanoid robots
work with many of these sensory modalities and the way
of processing and integrating the information coming from
various sources is currently an important research issue in
autonomous robotics. In HRI scenarios, robots can take
advantage of such multi-sensory information in order to
improve their capabilities when any sensory modality is
limited, lacking, or unavailable.

For instance, early work by Andre et al. [4] proposed a
multi-modal integration of speech and gestures for human-
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Fig. 1. Overall view of the system architecture. A domain-based automatic
speech recognition system (on top) processes the audio input modality to
obtain an audio advice label λA and an audio confidence value γA and
a neural network-based gesture recognition system (at bottom) processes
the visual input modality to obtain a visual advice label λV and a visual
confidence value γV . Afterwards they become the input of the multi-modal
integrative system to obtain the integrated advice label λI and the integrated
confidence value γI .

computer interaction using a tactile glove to identify hand
gestures and a microphone array for speech recognition. The
system functionality was limited to manipulate geometric
objects on topographical maps. In robotic scenarios, Kimura
& Hasegawa [5] used an incremental neural network to
integrate real-time information in order to estimate attributes
for unknown objects. The method used an RGB-D camera,
a stereo microphone, and pressure and weight sensors to
process different modalities. Ozasa et al. [6] proposed the
integration of image and speech recognition confidence val-
ues to improve the recognition accuracy of unknown objects
using logistic regression. In their approach, the confidence
integration does not consider the case in which predicted
labels are in contradiction. Moreover, in order to obtain
improved recognition, it is also necessary to estimate proper
logistic regression coefficients.

Nevertheless, in domestic scenarios and dynamic environ-
ments, assistive robot companions still need to understand
and interpret instructions faster and more efficiently, yielding
the integration of available multi-sensory information with
different confidence levels in a consistent mode.

III. OUR APPROACH

In our architecture, a parent-like trainer interacts with an
apprentice robot using speech and gestures as guidance. In
this work, we are particularly focused on the integration of
multi-modal audiovisual inputs. A general overview of the
architecture including the speech and gesture processing is
depicted in Fig. 1, where λ and γ are the label and the
confidence value respectively. First, the audio and visual
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Fig. 2. Obtained confidence values, in (a) the corresponding output labels for audio and visual modalities are the same, in (b) they are different.

sensory inputs are individually processed using the DOCKS
speech recognition system [7] and a variation of HandSOM
for gesture recognition [8]. Then, the outputs, i.e. predicted
labels and confidence values, become inputs for the multi-
modal integration system.

We propose a mathematical function which relates the
predicted advice classes and confidence pairs from uni-
sensory input denoted as (λA, γA) for audio and (λV , γV )
for vision. The integrated predicted label λI is calculated
according to the highest confidence value:

λI = argmax
λ

γ(λ) (1)

In other words, if the audio and visual labels λA and λV

are different, then the integrated label λI takes the value
from the modality which has the biggest confidence value.

On the other hand, the integrated confidence value is
computed by the function:

γI = ln (1 + φ), (2)

where φ is a time-varying parameter which depends on each
label λ and confidence value γ. We call this parameter
the likeness parameter and it is obtained according to the
following equation:

φ =

{
γA + γV if λA = λV

|γA − γV | if λA 6= λV
(3)

Therefore, if the labels λA and λV are the same, then
the confidence value γI is calculated using φ = γA + γV

in order to strengthen the integrated confidence level over
the classification made from both devices. On the contrary,
if the labels λA and λV are different, then the integrated
confidence value γI is calculated using φ = |γA − γV | in
order to diminish the confidence level given the differences
in the classification.

The proposed integration function yields an integrated
confidence value γI ∈ [ln (1), ln (3)] = [0, 1.0986]. We use a
unity-base normalization to rescale the range of confidence
between 0 and 1. Fig. 2 shows the integrated confidence
values when the predicted audio and visual labels are the
same (a) and different (b).

IV. DISCUSSION AND FUTURE WORK

We have proposed a multi-modal integration of dynamic
audiovisual input advice. The shown architecture processes
individually the input advice to classify them with a corre-
spondent associated confidence value. Afterwards, we inte-
grate the input advice into one single label and confidence
value. In this regard, we have shown an integration function
that allows to strengthen or diminish the integrated advice for
a learning robot using multiple sources of information for a
more natural trainer-like learning procedure. The higher (or
lower) confidence value of the integrated signal can lead the
robot to act differently according to the specific task that it
is intended to solve.

Future work directions consider experiments in HRI sce-
narios accounting for online interactions in order to effec-
tively test the proposed method.
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