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Training Agents With Interactive Reinforcement
Learning and Contextual Affordances

Francisco Cruz, Sven Magg, Cornelius Weber, and Stefan Wermter

Abstract—In the future, robots will be used more extensively as
assistants in home scenarios and must be able to acquire expertise
from trainers by learning through crossmodal interaction. One
promising approach is interactive reinforcement learning (IRL)
where an external trainer advises an apprentice on actions to
speed up the learning process. In this paper we present an IRL
approach for the domestic task of cleaning a table and com-
pare three different learning methods using simulated robots:
1) reinforcement learning (RL); 2) RL with contextual affor-
dances to avoid failed states; and 3) the previously trained robot
serving as a trainer to a second apprentice robot. We then demon-
strate that the use of IRL leads to different performance with
various levels of interaction and consistency of feedback. Our
results show that the simulated robot completes the task with
RL, although working slowly and with a low rate of success.
With RL and contextual affordances fewer actions are needed
and can reach higher rates of success. For good performance
with IRL it is essential to consider the level of consistency of
feedback since inconsistencies can cause considerable delay in
the learning process. In general, we demonstrate that interac-
tive feedback provides an advantage for the robot in most of the
learning cases.

Index Terms—Contextual affordances, developmental robotics,
domestic cleaning scenario, interactive reinforcement learn-
ing (IRL), policy shaping.

I. INTRODUCTION

THERE has been considerable progress in robotics in the
last years allowing robots to be successful in diverse sce-

narios, from industrial environments where they are nowadays
established to domestic environments where their presence is
still limited [1]. In domestic environments, tasks often require
active human participation in order to execute the tasks more
effectively. In particular in the simulated home scenario which
we propose in this paper, a robot has to perform a task which
consists of cleaning a table assisted by an external trainer
giving different degrees of guidance.
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In developmental robotics [2] different tasks such as nav-
igation, grasping, vision, speech recognition, and pattern
recognition among others, can be tackled by different machine
learning paradigms, like supervised, unsupervised, or rein-
forcement learning (RL) [3], [4]. In our scenario, the simulated
robot has no previous knowledge on how to perform the task
and it can learn only through interaction with and reward
from the environment. Therefore, the apprenticeship process
is carried out with RL.

RL is a learning approach supported by behavioral psychol-
ogy where an agent uses sequential decisions to interact with
its environment trying to find an optimal policy to perform a
particular task. In every time step, the agent selects an action
to be performed reaching a new state and obtains either a
reward or a punishment. It attempts to maximize the collected
reward over time by choosing the best action in a given state.
Therefore, the problem is reduced to finding a proper pol-
icy that allows to associate actions to states in order to get
maximal future reward [5].

RL has demonstrated to be a very useful learning approach,
but one problem for RL agents is often the excessive time spent
during the learning process [6], mainly due to large and com-
plex state spaces which lead to excessive computational costs
to find a suitable policy [7]. There are different approaches that
attempt to speed up RL. Among them, interactive RL (IRL)
involves an external trainer who provides some instructions on
how to improve the decision-making [8], [9].

A promising alternative method to improve convergence
speed is the use of affordances [10], where cognitive agents
favor specific actions to be performed with specific objects.
Affordances represent neither agent nor object characteris-
tics, but rather the characteristics of the relationship between
them [11]. Affordances limit the number of meaningful actions
in some states and can reduce the computational complexity
of RL.

Contextual affordances are a generalization of Gibson’s
affordance concept which has recently been used successfully
in robotics [12]. We implement them by a deep multilayer per-
ceptron (DMLP) allowing us to estimate either the robot’s next
state or whether the affordance is temporally unavailable. In
our approach, we integrate IRL and contextual affordances to
enhance the performance of classic RL methods, demonstrat-
ing better results when introducing the affordance concept to
classic RL as well as combining IRL with instructions coming
from a previously trained agent.

We previously presented a method which allows improving
the speed of convergence of an RL agent using affordances
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and interaction [13]. The trainer agent provided feedback with
a probability of 30%. The results showed a reduction in the
number of required episodes during the training as well as a
reduction in the number of actions performed in each episode.
However, in our previous work, affordances were given as
prior knowledge and were not learned automatically, which
will be addressed in this paper.

Our paper is organized as follows: first, we describe the
main characteristics of the IRL paradigm and different strate-
gies to combine the RL approach with the external trainer
interaction. Next, we provide a description of the concepts of
affordance and contextual affordance and explain how they
are used in our approach. We then define our robotic agent
scenario for a domestic task and describe our experimental
set-ups to speed up RL with both, interactive instructions and
contextual affordances. Moreover, we show and compare our
main results with both RL and IRL approaches. Finally, we
present our main conclusions and describe future research.

II. REINFORCEMENT LEARNING AND

INTERACTIVE FEEDBACK

To autonomously explore the environment is one of the first
developing behaviors for a human. An infant is constantly
exploring its surroundings and learning from it most of the
time without the need of a trainer to instruct it on how to
perform a task. In a simplified similar manner, RL attempts
to maximize received reward in a given scenario through
interaction between an agent and its environment. Fig. 1 shows
the basic elements and structure of RL. To transit from one
state to another, the agent performs actions obtaining either a
reward or a punishment from the environment which may not
be delivered at each state transition. Such actions are selected
according to a policy π , which in psychology is called a set of
stimulus–response rules or associations [14]. Thus, the value
of taking an action a in a state s under a policy π is denoted
qπ (s, a) which is also called the action-value function for a
policy π .

In essence, to solve an RL problem means to find a policy
that collects the highest reward possible over the long run. If
there exists at least one policy which is better or equal than
all others this is called an optimal policy. Optimal policies
are denoted by π∗ and share the same optimal action-value
function which is denoted by q∗ and defined as

q∗(s, a) = max
π

qπ (s, a). (1)

This optimal action-value function can be solved through
the Bellman optimality equation for q∗ as follows:

q∗(s, a) =
∑

s′
p
(
s′
∣∣s, a

)[
r
(
s, a, s′

)+ γ max
a′

q∗
(
s′, a′

)]
(2)

where s is the current state, a is the taken action, s′ is the next
state reached by performing action a in the state s, and a′ are
possible actions that could be taken in s′. In the equation, p
represents the probability of reaching the state s′ given that
the current state is s and the selected action is a, and r is
the received reward for performing action a in the state s for

Fig. 1. RL between the agent and the environment. The agent performs
action a in state s obtaining reward r′ and reaching the next state s′.

reaching the state s′. The parameter γ is known as discount
rate and represents how influential future rewards are [5].

Although autonomous learning is possible for an apprentice
using RL, a prominent strategy to improve the speed of con-
vergence is to use an external trainer to provide guidance in
specific states during the learning process. Early research on
this topic [15] shows that external guidance plays an impor-
tant role in learning tasks, performed by both humans and
robots, leading to a decrease of the time needed for learning.
Furthermore, in large spaces where a complete search through
the whole search space is not possible, the trainer may lead
the apprentice to explore more promising areas at early stages
as well as help to avoid getting stuck in suboptimal solutions.

In robotics there are different strategies of interaction
between an agent and an external trainer for developing
joint tasks, such as learning by imitation [16], demonstra-
tion [17]–[19], and feedback [20]–[22]. In particular in learn-
ing by feedback two main approaches are distinguished:
1) policy and 2) reward shaping. Whereas in reward shaping
an external trainer is able to evaluate how good or bad per-
formed actions by the RL agent are [21] and [23], in policy
shaping the action proposed by the RL agent can be replaced
by a more suitable action chosen by the external trainer before
it is executed [20]. When the external trainer does not give
feedback, acceptance of the action a or reward r is assumed.
In both cases, an external trainer gives interactive feedback
to the apprentice agent to encourage it to perform certain
actions in certain states to reach a better policy leading to
faster performance. Novel strategies can emerge from mix-
ing both, namely, the decision on performing action a and
manipulating the received reward r as well.

Fig. 2 shows the policy shaping approach in IRL through
feedback, where interaction from an external trainer is given
during the robot’s action selection. Manipulating actions is a
way to tell the agent that what it is currently doing is wrong
and should be corrected in the future [24]. The reward shap-
ing approach is shown in Fig. 3. In this case, the external
trainer may modify the reward r and send its own reward to
the agent specifying how good or how bad the latest performed
action a was. Examples of this approach were developed
in [20] and [23].

In a domestic scenario a robotic agent is expected to work
with humans as external trainers. There exist asymmetries
when humans quantify a reward including sometimes feed-
back about the past and also about future intentions [20], [24].
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Fig. 2. Policy shaping feedback approach for interaction between a robotic
agent and an external trainer. In this case, the external agent is able to change
a selected action to be performed in the environment.

Fig. 3. Reward shaping feedback approach for interaction between a robotic
agent and an external trainer. In this case, the external agent is able to modify
the proposed reward.

Hence, we decided to use the policy shaping method in this
paper, shown in Fig. 2. For this, we create a simulated environ-
ment where an agent learner has previously been trained using
classic RL and then this learner becomes the external trainer.
It therefore has full knowledge about all possible actions and
delivers it to a second robot which is trained with IRL. The
artificial trainer is used to have better control of the feedback
compared with a human trainer. Nevertheless, diverse infor-
mation sources can be employed to obtain feedback from, for
instance, a person, another robot, or any other artificial system.

In our scenario it is desired to keep the rate of interaction
with an external trainer as low as possible; otherwise, with
a high rate of interaction, RL becomes supervised learning.
Also, the consistency or quality of the feedback should be
considered to determine whether learning is still improving
given that the external trainer could also make mistakes [25].

III. USE OF CONTEXTUAL AFFORDANCES

Affordances are often seen as opportunities for action of
an agent (a person, an animal, a robot, or an organism). The
original concept comes from cognitive psychology and was
proposed by Gibson [10]. For instance, a cup and a sofa afford
different actions to a person who is able to grasp the cup and
sit down on the sofa, but cannot do it the other way around.
Thus, an agent is able to determine some object affordances,
i.e., the caused effect of performing a specific action with an
object.

Horton et al. [12] distinguished three essential characteris-
tics of an affordance:

1) the existence of an affordance is associated with the
capabilities of an agent;

2) an affordance exists regardless whether the agent is able
to perceive it or not;

3) affordances do not change, unlike necessities or goals
of an agent.

In Gibson’s book many diverse examples are given but no
concrete, formal definition is provided. Even nowadays, we
find marked differences among cognitive psychologists about
the formal definition of affordances [12], [26] and these dis-
crepancies could even be stronger between them and artificial
intelligence scientists [27], [28].

In developmental robotics, affordances are aligned with
basic cognitive skills which are acquired on top of previous
skills by interacting with the environment [29]. It is expected
that domestic service robots learn, recognize, and apply some
social norms in the same way as humans do. Commonly these
social rules are learned by interaction and socialization with
other agents of the group. In this regard, an object can be used
in a restricted manner not considering all its action opportuni-
ties but only socially accepted actions. These constrains of use
are usually shaped by the group norms and are called func-
tional affordances [30] which also lead to a reduced action
space. Such a human-like behavior is an important issue in
developmental robotics [31].

In the literature we can find different approaches for learn-
ing affordances in robotics; for instance, Lopes et al. [32]
addressed the imitation learning problem using affordance-
based action sequences. Moldovan et al. [29] extended the
affordance model allowing the robot to work with a sec-
ond object using an enlarged Bayesian network to repre-
sent affordances. Other approaches have been also surveyed
in [12] and [28]. Nevertheless, all aforementioned approaches
do not consider the agent’s state to anticipate the effect of an
action.

In the following sections, we present a formal computa-
tional definition based on the original concept of Gibson and
then propose an extension considering an additional context
variable.

A. Affordances

Affordances have been particularly useful to establish rela-
tionships between actions performed by an agent with avail-
able objects. We use them in a way to represent object/action
information. They represent neither agent nor object character-
istics, but rather the characteristics of the relationship between
them. Montesano et al. [33] defined an affordance as the rela-
tionship between an object, an action, and an effect as the
triplet affordance := <object, action, effect> which encodes
relationships between its components. Hence, it is possible
to predict the effect using objects and actions as domain
variables, that is

effect = f (object, action). (3)

Fig. 4 shows the relationship between the previous compo-
nents, where objects are entities which the agent is able to
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Fig. 4. Affordances as relations between objects, actions, and effects. Objects
are entities which the agent is able to interact with, actions represent the
behavior that can be performed with the objects, and effects are the results
caused by applying an action [33].

Fig. 5. Cup affords grasping as long as the agent’s current state allows this
action to be performed. In the shown scenario it is not feasible to use that
affordance since both hands are already occupied, but once one hand is free
the affordance can be utilized again.

interact with; actions represent the behavior or motor skills
that can be performed with the objects; and the effects are the
results of an action involving an object [33], [34].

It is also important to note that the object in (3) can also
be a place or a location, for instance, a hill affords climbing.
From here onward, we employ the term object to refer to the
affordance component but we consider also locations.

B. Contextual Affordances

If an affordance exists and the agent has knowledge and
awareness of it, the actual, next step is to determine if it is
possible to utilize it considering the agent’s current state. For
instance, let us consider the following scenario: a cup affords
grasping, as does a die, but in case we have an agent with
both hands occupied with dice (e.g., with one die in each
hand), then the agent cannot grasp the cup anymore or in other
words, the affordance is temporarily unavailable. This situation
is depicted in Fig. 5. This does not mean that the affordance
does not exist, to the contrary, the affordance is still present
but it cannot be used by the agent in that particular situation
due to its current state.

Kammer et al. [35] proposed to consider the dynamics in
the environment in which the object was embedded rather

Fig. 6. Contextual affordances as relations between state, objects, actions,
and effects. The state is the agent’s current condition and different effects
could be produced for different occasions.

than the agent’s dynamic state. The awareness of this extra
variable is called situated affordances. Even though a formal
definition was provided, neither applications nor results are
shown in their work. Nevertheless, we use the same concept
to address the problem when the agent’s state is dynamic.
Thus, we propose a model where the current state of an agent
is also considered for the effects of an action performed with
an object, we call this contextual affordance. In this case, the
previous triplet is now extended to contextualAffordance :=
<state, object, action, effect> and to predict the effect we
consider the following function:

effect = f (state, object, action). (4)

For instance, given an agent performing the same action
a with the same object o, but from a different agent’s
state s1 �= s2: when action a is performed, different effects
e1 �= e2 could be generated, since the initial states s1 and
s2 are different. It is unfeasible to establish differences in the
final effect when we utilize affordances to represent it, because
e1 = (a, o) and e2 = (a, o). Hence, to deal with the cur-
rent states s1 �= s2, an agent must distinguish each case and
learn them at the same time utilizing contextual affordances
defined by e1 = (s1, a, o) and e2 = (s2, a, o), establishing
clear differences between the final effects.

Fig. 6 shows the relationship between object, action, effect,
and the agent’s current state. We use contextual affordances
to provide knowledge about actions that lead to undesirable or
failed states from which it is not possible to reach the goal.
Therefore, the action space is reduced by avoiding these states.
In our approach, the set of possible actions is filtered for every
state that the agent is in. This contextual affordance model
allows us to determine beforehand when it is possible to apply
an affordance using an artificial neural network (ANN) to learn
the relationship with the state, the action, and the object as
inputs and the effect as output. In Section V, we will describe
in detail the neural network architecture used to anticipate the
effect.

IV. DOMESTIC CLEANING SCENARIO

We have designed a simulated domestic scenario focused
on cleaning a table, which can be learned by a robot that is
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TABLE I
LIST OF DEFINED OBJECTS, LOCATIONS, AND

ACTIONS FOR CLEANING-TABLE SCENARIO

supported by an external agent to reduce the training time.
For this, we have defined objects, locations and actions inside
this scenario. Initially, a robotic agent which has a sponge will
stand in front of a table, in particular in front of a specific area
of the table which is desired to be cleaned. On the table, there
is an additional object like a cup.

Furthermore, three locations are defined, left, right, and
home, representing the left and right side on the table within
the reachable area for the robot’s arm, and the location home
which is the initial position of the robot’s hand and also the
storage place of the object sponge.

In this scenario four actions are possible: 1) get an object,
which allows the robotic agent to pick up the object near the
current robot hand location; 2) drop an object, which allows
the robot to put down the object that is currently kept in its
hand; 3) go to a location, which allows to move the robot hand
to any defined position; and 4) clean, which cleans only the
current location where the hand is positioned. Table I shows
a summary of objects, locations, and actions defined for this
domestic cleaning scenario, which has been developed in a
simulated robot environment.

The table-cleaning task is carried out by a robot in a simu-
lated environment using the V-REP simulator [36]. All actions
are performed using only one arm and one effector. Fig. 7
shows an example of the scenario where one robot, which has
already learned the task, teaches a second robot how to clean
the table using the sponge. We did not focus on investigat-
ing grasping since the main aim in this paper is to learn the
right sequence quickly. Nevertheless, for reaching the defined
locations we employed direct planning [37] and for grasping
inverse kinematics as a support for low-level control.

For instance, let us suppose that the cup is located on the
left side of the table at the beginning. The initial position of
the robot’s hand is the location home, and we want to finish
with the hand free and above home with both sides of the table
clean. In this context, an episode is defined as one attempt to
reach the goal. The following example shows an episode to
complete the task successfully: get sponge, go right, clean, go
home, drop sponge, go left, get cup, go right, drop cup, go
home, get sponge, go left, clean, go home, and drop sponge.
The example shows, for one situation, the shortest sequence to
reach the final state, therefore, the minimum number of actions
to complete the task is |Amin| = 15.

To implement the described scenario we developed a state
machine with one final state; each state is obtained considering
the combination of the following four variables:

1) the robot’s hand position;
2) the object held in the hand, or free;
3) the position of the cup;

Fig. 7. Example of the simulated scenario where robots perform the actions
in the environment which is created in the V-REP simulator. The cleaning
scenario consists of three locations, two objects, and four actions.

4) the current condition of every side of the table sur-
face, that is, whether the table has already been cleaned
or not.

Nevertheless, from certain states the agent can perform
actions which lead to a failed state from where it is not possible
any more to complete the task. These actions include getting
an object when the robot’s hand is occupied, to lose either
the cup or the sponge due to an incorrect drop, or cleaning a
section of the table where the cup is also placed.

Let us consider the set of states S and the set of actions A.
Given one sequence of states ψs = {st, st+1, st+2, . . . , sn}
with si ∈ S and one sequence of actions ψa =
{at, at+1, at+2, . . . , an} which leads to ψs with ai ∈ A. Then
si = f (si−1, ai−1) for 0 < i ≤ n. Now, let �A(st) be the set of
all possible ψa from a state st ∈ S. If � ψa ∈ �A(st) which
produces a ψs|sf ∈ ψs with sf the final state =⇒ st is a
failed state.

For instance, let us assume that the robot has just performed
the action get cup and the state is defined by st = <left,
cup, left, (dirty, dirty)> according to the four
previous state variables; therefore the cup is held in its hand.
If the robot then cleans the left section of the table with the
cup in its hand instead of a sponge, it may shatter the cup;
hence, it is not feasible to finish the cleaning task from the
next state st+1.

At first, we ran a classic RL algorithm to confirm that failed
states are not a problem as such; they can be handled and
controlled by giving punishment (or negative reward). In this
case, the agent is discouraged to perform that action from
the same state in the future. Nevertheless, a more suitable
strategy is to consider the use of affordances which have
been shown to improve the convergence speed of learning
algorithms [38], [39].

In this paper, we are interested in reducing the needed
actions of an episode to reach a reasonable performance by
using contextual affordances in both approaches, RL and IRL.
This becomes especially important when it is desired to work
in real scenarios, because, while in simulated environments it
is feasible to run many episodes, in a real environment one
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TABLE II
REGULAR STATES DEFINED FOR CLEANING-TABLE SCENARIO. THE LAST

FOUR STATES ARE INDEPENDENT OF THE CUP POSITION SINCE THEY

REPRESENT ACTIONS FOR RETURNING THE SPONGE TO THE HOME

POSITION ONCE BOTH SIDES ARE CLEANED

Fig. 8. Given that the cup is on the left side, there are two feasible paths for
reaching the final state from the initial state. The lower path would include
17 possible different states and consists of cleaning first the empty side of
the table, and then moving the cup in order to clean the second side. The
upper path would include 24 possible different states and consists of moving
the cup first to the empty side and cleaning this side, and after that returning
the cup to its original side for cleaning the second one. In each case, the
final state is reached involving different numbers of intermediate states. The
ending sequence of the task contains four states in which the robot returns its
hand to the home location and drops the sponge.

cannot afford to run excessive episodes until reaching a suit-
able policy. Given the defined actions, objects and locations,
we are able to set the presence of four different contextual
affordances which allow us to determine whether objects are
graspable, droppable, movable, or cleanable according to the
robot’s current state.

Considering contextual affordances, the scenario consists of
46 regular states, some of which are shown in Table II where
the initial state is the number 0 and the final state is the num-
ber 45. The states between numbers 14 and 27, and the states
between 28 and 41 are not shown since they are the same
as the first 14 states apart from the side conditions which are
clean-dirty and dirty-clean, respectively. Fig. 8 summarizes the
state transitions and we can observe an initial state where both

sides of the table are dirty. In this context, a regular state means
that it is still possible to reach the final state. Internally, in our
algorithm we do not use left or right, but rather side1 and
side2, where side1 is the side of the table where the cup is at
the beginning of an episode, and it is feasible to start cleaning
any side of the table because both paths will lead to the final,
successful state. As we already stated above, the shortest path
is composed of 15 actions for reaching the final state.

V. EXPERIMENTAL SET-UP

This section describes the experimental set-up considering
aspects such as our IRL approach and how contextual affor-
dances are implemented with an ANN architecture to estimate
the robot’s next state.

A. Interactive Reinforcement Learning Approach

Since RL is used, most of the time the robot performs
actions autonomously by exploring the environment unless
guidance is delivered by the previously trained robot which
already has full knowledge on how to carry out the task. The
apprentice robot takes advantage of this advice in these periods
during a learning episode and performs the suggested actions
to complete the task with fewer actions.

In the learning algorithm, to solve (2), we allow the robot
to perform actions considering transitions from state–action
pair to state–action pair rather than transitions from state to
state only. Therefore, we implement the on-policy method
state-action-reward-state-action (SARSA) [40] to update every
state–action value according to

Q(st, at)← Q(st, at)+ α
[
rt+1 + γQ(st+1, at+1)− Q(st, at)

]

(5)

where st and st+1 are the current and next state, respectively,
at and at+1 are the current and next action, Q is the value
of the action–state pair, rt+1 the collected reward, α is the
learning rate, and γ the discount factor. The reward function
delivers a positive reward equal to 1 to the agent every time
that it reaches the final state, and a punishment or negative
reward equal to −1 every time that a failed state is reached
to discourage accessing this state in the future again. We also
apply a small negative reward in all other states to encour-
age the agent to choose shorter paths toward the final state.
Equation (6) shows the reward function

r(s) =
⎧
⎨

⎩

1 if s is the final state
−1 if s is a failed state

−0.01 otherwise.
(6)

The parameters used in (5) are empirically set to α = 0.3
and γ = 0.9. Furthermore, we use the ε-greedy method for
action selection with ε = 0.1. Therefore, most of the time the
next action at is determined as follows:

at = argmax
a∈A

Q(st, a) (7)

where st is the current state at time t, a is an action, and
A corresponds to the set of all actions. Algorithm 1 shows
this action selection method, whereas Algorithm 2 presents
the classic RL approach.
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Algorithm 1 SELECTACTION Method Used in the Classic RL
Approach
Input: Agent’s current state st

Output: Next action at to perform
1: function SELECTACTION(st)
2: if rand(0, 1) < ε then
3: at ← choose any random action a from A
4: else
5: at ← argmax

a∈A
Q(st, a)

6: end if
7: return at

8: end function

Algorithm 2 Classic RL Approach With the On-Policy
Method SARSA

1: Initialize Q(s, a) arbitrarily
2: for each episode do
3: Choose an action using at ← SELECTACTION(st)
4: repeat
5: Take action at

6: Observe reward rt+1 and next state st+1
7: Choose an action using .......................................

........... at+1 ← SELECTACTION(st+1)
8: Q(st, at) ← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−

........... Q(st, at)]
9: st ← st+1

10: at ← at+1
11: until s is terminal
12: end for

Using contextual affordances we slightly modify the pol-
icy in the action selection shown in (7) as in the following
expression:

at = argmax
a∈As

Q(st, a) (8)

where st is the current state in time t, a is an action, and As cor-
responds to a subset of available actions in the current state st.
The subset is determined based on the contextual affordances
[see (4) and Fig. 6]. In this regard, it is possible to antici-
pate whether the action can be performed with an object in
a particular state which is called effect. Algorithm 3 shows
the action selection method used during RL with contextual
affordances where the subset As is created by observing the
output of the ANN and populated with those which return a
valid state value.

We use the advise method parameters [25] for interaction,
i.e., probability of feedback L and consistency of feedback C.
Algorithm 4 shows the method used when advice is required.
The higher the values of C, the more often a good advice is
given. In this context, the best advice is obtained from the
subset of actions As considering the highest state–action pair
value whereas the worst action advised is also taken from As

but considering the lowest state–action pair value. In this case,
we also create the subset As from available actions which lead
to valid state values.

Algorithm 3 SELECTACTIONWITHAFFORDANCES Method
Used in the RL With Contextual Affordances Approach
Input: Agent’s current state st

Output: Next action at to perform
1: function SELECTACTIONWITHAFFORDANCES(st)
2: Create subset As

3: if rand(0, 1) < ε then
4: at ← choose any random action a from As

5: else
6: at ← argmax

a∈As

Q(st, a)

7: end if
8: return at

9: end function

Algorithm 4 GETADVICE Method Used in the IRL Approach
With Contextual Affordances
Input: Agent’s current state st

Output: Next action at to perform
1: function GETADVICE(st)
2: Create subset As

3: if rand(0, 1) < C then
4: at ← best advice from As

5: else
6: at ← worst advice from As

7: end if
8: return at

9: end function

Algorithm 5 shows the IRL approach using contextual affor-
dances and interaction. The conditional statement in line 8
represents the fact that the external trainer delivers advice and
changes the next action at+1 by calling the method GETAD-
VICE shown in Algorithm 4 where contextual affordances are
used.

Each set-up was carried out 100 times using the obtained
average values for the subsequent analysis. The Q-values were
initialized randomly using a uniform probability distribution
between 0 and 1.

B. Contextual Affordances With Deep Neural Architecture

It has been shown that a multilayer feedforward neural
network (MLP) with only one hidden layer and a sufficient
number of neurons in this layer is able to approximate any con-
tinuous nonlinear function with arbitrary precision [41]–[43].
Nevertheless, MLPs with only one hidden layer may need an
exponential number of neurons in order to reach a particular
degree of precision [44]. Besides that, in the last years deep
neural architectures have become a topic of interest within
the research community due to their distributed and sparse
representation [45].

Therefore, to learn the relationship between inputs and
outputs in contextual affordances we implemented a DMLP
which is a feedforward network with more than one hidden
layer as proposed in [46]. As inputs we use the agent’s cur-
rent state, the action, and the object giving a code number
to every state and every action plus object, the two latter
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Algorithm 5 IRL Approach Using Contextual Affordances
and Interaction

1: Initialize Q(s, a) arbitrarily
2: for (each episode) do
3: Choose an action using ............................................

...... at ← SELECTACTIONWITHAFFORDANCES(st)
4: repeat
5: Take action at

6: Observe reward rt+1 and next state st+1
7: at+1 ← SELECTACTIONWITHAFFORDANCES(st+1)
8: if rand(0, 1) < L then
9: Change action at+1 ← GETADVICE(st+1)

10: end if
11: Q(st, at) ← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−

........... Q(st, at)]
12: st ← st+1
13: at ← at+1
14: until s is terminal
15: end for

TABLE III
LIST OF CODES FOR ACTIONS AND OBJECTS TOGETHER

together. Table III shows the encoded action numbers; as out-
put we use the next state or −1 to indicate that it is not
feasible to perform the action with the object in the current
state.

To get data we initially coded all possible failed states
and used a previous run of autonomous RL to collect actions
that lead to such failed states. The DMLP is employed as an
associative memory to map states, actions, and objects to the
subsequent effect, as in (4). Therefore, the neural network is
able to store not only failed states but also transitions when an
action leads to another valid state. The neural network training
is carried out in an offline fashion before the IRL execution
with the previous collected data.

The final architecture consists of 46 neurons in the first hid-
den layer and eight neurons in the second one. Both hidden
layers have sigmoid transfer functions and the output layer has
one neuron with a linear transfer function, as shown in Fig. 9.
The number of neurons selected in every hidden layer is empir-
ically determined related to our scenario and representing the
number of states and actions.

A general problem during the training process of a deep
neural network is the vanishing gradient. For first order
gradient-based methods, a second problem of getting stuck
in local minima can arise due to the error surface possess-
ing large plateaus [47]. To overcome these issues, we use
Nguyen–Widrow weight initialization [48] and the second

Fig. 9. DMLP utilized to determine contextual affordances. Hidden layers use
sigmoid transfer functions and the output layer use a linear transfer function.

order training method Levenberg–Marquardt due to better
performance shown in [49].

VI. SIMULATIONS AND RESULTS

To carry out this experiment, first, we used the classic RL
approach to train a robot for reaching the final state. Afterward,
we introduced contextual affordances and were able to reduce
the needed episode numbers to obtain a satisfactory perfor-
mance in terms of the performed actions for reaching the final
state. Finally, a second agent was trained using IRL and receiv-
ing feedback from a previously trained robot that sometimes
showed which action to choose in a specific state. These three
methods in detail will be explained and their results shown in
the next sections.

A. Training the Agent Using Classic RL

In this first step, simulations are performed to train the first
agent with the SARSA algorithm (5) using the reward function
shown in (6).

Due to the large number of states, and since many of
them are actually failed states, the agent needs more than 400
episodes of training until reaching at least once the final state
in 100 attempts. Fig. 10 shows the average number of actions
involved in every episode until reaching the final state with
green crosses. Here, the number of actions is only shown when
the final state is reached; hence, in the episodes where no cross
is shown, only failed states were reached. In the first half of
the training the final state is reached just a few times, but in the
last part the agent becomes more successful and furthermore,
in these cases close to 15 actions are being performed which
in fact is the minimal number of possible actions as men-
tioned above. The dashed green line shown in Fig. 10 with a
different scale on the y-axis represents the percentage of suc-
cessful runs. This curve is calculated by a convolution using
50 neighbors to make it smoother and we observe that the ini-
tial percentage of success is very low. Nevertheless, additional
tests have shown that the curve keeps growing, although it only
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Fig. 10. Average number of actions needed for reaching the final state for
classic RL (green) and RL with contextual affordances (blue) over 100 runs
in 1000 episodes. For classic RL, the average number of actions is shown as
a green cross only if at least one run was successful. Dashed lines show the
rate of success of runs that have reached the final state, which is always 1 in
case of RL with contextual affordances since failed states cannot be reached
anymore. Rate of success was smoothed by a moving average with window
size 50.

Fig. 11. Average collected reward over 100 runs using classic RL in 1000
episodes. The collected reward starts at −1 which means the robot failed
on performing the cleaning task most of the time immediately. From there
onward and until approximately 600 episodes the robot still mostly fails the
task and then completes it more and more often.

reaches success rates of 35%. This clearly shows the difficulty
to obtain a stable behavior by RL and the corresponding long
training times.

The average collected reward over 100 runs in 1000
episodes is shown in Fig. 11. It is possible to see that the
reward curve starts with values of −1 which means that in the
beginning the robot fails the task immediately and up to 600
episodes later is still failing most of the time. However, after
600 episodes the robot is able to finish the task more regularly
and thus increasing its collected reward.

Fig. 12. Average collected reward over 100 runs using RL with contextual
affordances in 80 episodes. The collected reward starts already near to 0 since
in the beginning the robot does not have knowledge on how to perform the
task but the final average reward is much bigger than in the previous case
since no failed state is reached anymore.

B. Training the Agent Using RL With Contextual Affordances

As mentioned in the previous section, excessive episodes are
required in order to reach a stable system. Even though this is
computationally expensive it would be feasible in a simulated
environment. Nevertheless, it would be unfeasible to perform
these quantities of episodes in a real scenario. Therefore, we
decided to explore the benefit of contextual affordances which
are implemented to reduce the valid action space for the agent
by avoiding failed states. Using this approach, we manage to
reduce the number of episodes considerably, i.e., we need less
than 100 episodes to obtain a stable behavior and an average
number of performed actions close to the minimum. Fig. 10
shows the number of actions in each episode with this set-up.

Whereas in the classic RL method the probability of success
is still low in the first episodes of training, in this set-up no
episode ends in a failed state because of the use of contextual
affordances since an episode can only end when the agent
reaches the final state (see dashed blue line in Fig. 10), which
also produces considerably lower variation in comparison with
the preceding method.

Fig. 12 shows the average collected reward over 100 runs
in only 80 episodes to highlight the behavior in the first part
of the training. It can be seen that the reward curve starts
with values close to 0 (−0.0024 in the first episode) since in
the beginning the robot needs many intermediate actions until
completing the task but around 60 episodes later the robot is
able to finish the task performing a number of actions near to
the minimum and increasing the average collected reward.

C. Training the Second Agent Using IRL With
Contextual Affordances

Once a first agent has been trained, a second agent is
trained with an IRL approach that allows manipulating selected
actions as shown in Fig. 2. In this method, the external trainer
that provides feedback is the trained agent which already has
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Fig. 13. Average number of actions needed for reaching the final state for RL
with contextual affordances approach (blue diamonds) and IRL approach with
different probabilities of interaction L and a fixed probability of consistency
C = 1 over 100 runs. The agent takes advantage of probabilities of interaction
as small as L = 0.3 by reducing the total number of performed actions.

Fig. 14. Average collected reward over 100 runs for RL with contextual
affordances approach (blue line) and IRL approach with different probabili-
ties of interaction L and a fixed probability of consistency C = 1. After 50
episodes all approaches reach a reward over 0.8.

knowledge about the task to be performed. Furthermore, we
base the interaction model on the advise method [25] which
uses two likelihoods, C to refer to the consistency of feedback
which comes from an external human agent, and L to refer to
the probability of receiving feedback, i.e., a likelihood that an
external human agent delivers guidance at some point.

In this paper, we tested diverse values for L and C to inves-
tigate the influence within the learning process in terms of
performed actions and collected reward. Fig. 13 shows the
average number of performed actions with L ∈ [0.1, 0.9] and
C = 1. As a reference, the number of performed actions with
RL using contextual affordances is shown with blue diamonds
which is equivalent to have L = 0. It is observed that even
with a probability of feedback as small as L = 0.3 the agent
can improve its performance especially in the first episodes.

Fig. 15. Average number of actions needed for reaching the final state for
RL with contextual affordances approach (blue diamonds) and IRL approach
with different probabilities of consistency C and a fixed probability of inter-
actions L = 0.5 over 100 runs. The agent takes advantage of probabilities of
interaction larger than C = 0.5 by reducing the total number of performed
actions as small as RL with contextual affordances approach.

Fig. 16. Average collected reward over 100 runs for RL with contextual
affordances approach (blue line) and IRL approach with different probabilities
of consistency C and a fixed probability of interaction L = 0.5. The final
reward in all cases is less than RL with contextual affordances approach,
nevertheless with probabilities of consistency over 0.5 is observed a similar
behavior than a perfect trainer.

Moreover, Fig. 14 shows the average collected reward by the
agent over episodes for different values of L.

Afterward, we explored the learning behavior with different
values for the consistency of feedback C. The higher the con-
sistency, the more accurate the advice which means that fewer
mistakes are made during the learning process. We also use
contextual affordances but in this case the worst guidance is
advised as shown in Algorithm 4 and as a result a bad advice
is selected among the actions which still do not lead to a failed
state.

To investigate the consistency of feedback C, we fixed the
average probability of feedback to L = 0.5 and then per-
form experiments with different consistency C ∈ [0.1, 0.9].
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Fig. 17. Average number of actions needed for reaching the final state for RL
with affordances approach (blue diamonds) and IRL approach with different
initial probabilities of interaction L0 and decreasing over time.

Fig. 15 depicts the results and also shows the number of
actions for RL with contextual affordances which is equivalent
to have L = 0 and C = 0. It is clear that a more consistent
trainer leads to better results or in this context to perform
fewer actions. However, it is also observed that even with a
consistency as small as C = 0.5 the agent can improve its per-
formance over time, especially in the beginning of the training.
Additionally, Fig. 16 shows the average collected reward by
the agent over episodes for different values of C.

Finally, we ran an additional experiment where we
decreased the probability of feedback L and therefore the con-
tribution of advice over time to simulate the fatigue of an
external trainer to provide feedback during the whole learn-
ing process. We made a reduction of the feedback after every
episode as

Lt+1 = ηLt (9)

starting from different initial values of L and with η = 0.95
for all cases. Fig. 17 shows the average number of actions
performed in every case. It is possible to observe that as
interaction is decreasing, the number of performed actions
increases after the first episodes where the agent explores
nonoptimal actions in the absence of guidance. Nevertheless,
after 25 episodes even with a very low amount of interaction
the agent is able to reduce the number of performed actions
due to its own knowledge on how to perform the cleaning task.

VII. DISCUSSION

A. Summary

In this paper, we proposed an IRL simulated domestic sce-
nario in which a robot should learn to clean a table. We defined
objects, locations, and actions to represent the problem by
means of a state machine.

Three particular learning methods were realized to test the
performance. The first method consisted of a robot learning to
execute the task in an autonomous fashion using classic RL.

The robot was not able to learn the task before 400 episodes
but still with a low success rate which increases slowly to
35% in episode number 1000. Furthermore, collected reward
decreased in the first 600 episodes because of the low success
rate and from there onward it increases to values around −0.4.

In the second method using RL with affordances, the robot
also learned the task in an autonomous fashion but this time
utilizing contextual affordances to avoid failed states. The
agent mastered the task faster in comparison with the method
used previously, reducing the number of actions needed to
complete the task from 100 in the beginning to fewer than 20
within 100 episodes. Furthermore, with this method collected
reward was always positive, reaching values over 0.8 because
the success rate in this case is always 100% as a result of the
usage of contextual affordances.

The third method consisted of IRL with affordances, and
in this method the robot which had previously learned to exe-
cute the task became the trainer of a second robotic agent.
In this scheme, the second robot was the apprentice which
was advised in certain periods of the training process by the
robot which had acquired knowledge on how to perform the
cleaning task.

B. Conclusion

Through the three different learning methods explained in
this paper, we can verify significant differences in terms of
the particular learning performance of each of them. In the
case of classic RL, we obtained a substantial improvement in
comparison with our previous work [13]. Now we included a
small negative reward after each performed action to encour-
age the robot to choose shorter paths toward the final state.
This negative reward led to faster convergence and improved
the success rate considerably from previously 4% to a level
close to 35%.

Nevertheless, despite the improvements in the classic RL
paradigm, this approach still led to a lower performance than
RL utilizing contextual affordances. Certainly this was because
the robot in this occasion did not reach failed states because the
neural network architecture, using as inputs the current state,
the action, and the object, anticipated the next state or the
caused effect before the task execution, avoiding failed states
when necessary. This effectively decreased the search space
for the learning. Better performance was furthermore observed
in the collected reward as described in Figs. 11 and 12. The
maximal reward value reached by the robotic agent with clas-
sic RL was still less than the minimal reward value when RL
with contextual affordances was used in all tested cases.

Results of the IRL approach showed that interaction pro-
vides advantages over RL with affordances in most of the
tested levels of feedback where even a small amount of
interactive feedback above 10% helped the robot to finish the
cleaning task faster. This is illustrated by a smaller number
of performed actions as well as a bigger amount of collected
reward as shown in Figs. 13 and 14. When consistency of
feedback was considered, it was observed that values under
50% make the learning process even slower. Nevertheless, the
robotic agent was still able to learn in the long run since an
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important part of the time the robot performed actions with
RL by autonomously exploring the environment. This sug-
gests that the consistency of feedback has a different impact
on learning according to the probability of feedback used.

Training robotic agents with interactive feedback and con-
textual affordances presented an advantage over classic RL in
terms of number of performed actions and collected reward.
Even low levels of interaction showed progress in compari-
son to RL working without an external trainer. Moreover, the
agent was able to learn the proposed cleaning task even when
being misadvised or receiving inconsistent feedback in some
time steps during the learning process.

C. Future Work

As further improvements to this paper, we consider to
investigate variations on the action selection method such as
semi-uniform strategies like adaptive ε-greedy strategy based
on value differences (VDBE) [50] where epsilon is reduced on
the basis of the learning progress. On the one hand, high fluc-
tuations in the estimates of value differences lead to a higher
epsilon and further exploration and, on the other hand, low
fluctuations lead to a lower epsilon and more exploitation.
The method can also be combined with softmax-weighted
action selection [51]. We hypothesize that a stronger clas-
sic RL approach which is the base for the other methods
can lead to the necessity of less external advice allowing to
reduce the amount of iterations or needed episodes for training
which is fundamentally important considering real scenarios
where running through a large number of episodes would be
impractical.

Furthermore, in this paper either the same or decreasing
probability of feedback has been applied during the whole
training process, i.e., we have not tested yet what the best
time steps are to deliver interactive feedback. Evidence proves
that there exist diverse factors which affect the ultimate per-
formance of an apprentice agent using IRL methods such as
the time period when the feedback is received [52], [53] as
well as the magnitude of the problem where the method is
applied [54]. Therefore, adjustments on the frequency of feed-
back in the implementation of the method GETADVICE can
also be investigated.

The applicability of the proposed method in more complex
scenarios is still an open question to be addressed, therefore,
we also plan to transfer the present set-up to a human–robot
interaction scenario with continuous state representation as
in [55], acquiring advice from human trainers who must not
necessarily be experts on developmental robotics or machine
learning. In this regard, human advice can be interpreted as
parental scaffolding [56] and therefore it is interesting to inves-
tigate diverse levels of scaffolding in terms of the number of
given instructions and the frequency of these. The apprentice
robot performance can be subsequently evaluated in relation
to the number of performed actions by the agent once the
scaffolding is removed.

In our previous work [57], we used spoken instructions
to control the apprentice robot through speech recognition
with the DOCKS system [58] to transfer this scenario to

real environments in a more plausible manner. We are cur-
rently developing an advanced architecture considering also
the vision modality using a depth sensor to make it more
realistic and integrate it in a multimodal system to control
the robot interactively. This is going to allow us to get much
closer to real environments with which any human trainer even
without background in robotics can teach a robot.
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