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Abstract—Hand pose estimation is the task of deriving a
hand’s articulation from sensory input, here depth images
in particular. A novel approach states pose estimation as an
optimization problem: a high-dimensional hypothesis space is
constructed from a hand model, in which particle swarms search
for the best pose hypothesis. We propose various additions to
this approach. Our extended hand model includes anatomical
constraints of hand motion by applying principal component
analysis (PCA). This allows us to treat pose estimation as a
problem with variable dimensionality. The most important benefit
becomes visible once our PCA-enhanced model is combined with
biased particle swarms. Several experiments show that accuracy
and performance of pose estimation improve significantly.

I. INTRODUCTION

The human hand is highly articulated. Humans use hands to
manipulate objects in their surroundings and to communicate
with other people. Capturing exact hand postures is an impor-
tant step for Human-Robot Interaction and the development of
natural interfaces. Computer vision (CV) can provide cheap
and unobtrusive solutions to this problem, especially compared
to data gloves.

Solving CV-based hand pose estimation without markers
in single camera setups is a very challenging task, because
hands can take on vastly different shapes in images. The
amount of degrees of freedom (DOFs) contributes to a high-
dimensional problem. The problem is further complicated by
self-occlusions of the hand, that happen inevitably during the
projection onto 2D images.

Following the taxonomy of Erol et al. [1], the approach
discussed here belongs to the class of model-based tracking
methods that follow a single hypothesis over time. In this
context, single hypothesis means that only one satisfying
solution is searched for and kept for the initialization of the
next frame.

Significant progress in this area was made by Oikonomidis
et al. [2]. They formulate pose estimation as an optimiza-
tion problem. An internal hand model defines the parameters
(DOFs) that make up a hand pose. This high-dimensional
space is searched by a particle swarm for a suitable solution.
As a particle moves, it renders an artificial depth image
of its current hand pose hypothesis, which is compared to
the actual observation from the Kinect. A target function is
used to measure the discrepancy between rendered image and
observation.

Oikonomidis et al.’s [2] method deals very well with the
high-dimensionality and self-occlusions of the human hand.
However, their approach is still computationally demanding.
They report that their algorithm can run at about 15 FPS on
a high-end PC. This is only half the rate at which the Kinect
provides images. Our goal was to improve the performance,
possibly to the point of running in real-time. At the same time
we did not want to sacrifice any accuracy. We addressed this
by exploiting biases in certain variants of particle swarms. We
will show, that the optimization behavior of these variants can
be aligned with a priori knowledge about how humans perform
hand motions. The result was an overall improved convergence
behavior, leading to better pose estimation in less time.

The idea to use a priori information has already been
applied successfully to hand pose estimation by Bianchi et
al. [3]. They determined statistical properties of hand motion
and used these to improve the noisy measurements of a
low-cost data glove. Our method differs in the way a priori
knowledge is used. We use it to transform the search space
of all hand postures, such that certain variants of particle
swarm optimization (PSO) perform better due to biases in their
behavior. We also do not require an existing pose estimation.

This paper is organized as follows: Section II covers our
image preprocessing. Its purpose is to segment images into
hand and non-hand parts. Section III introduces our new hand
model and how its parameter space is altered through principal
component analysis. Particle swarm optimization and the target
function mentioned above are covered in Section IV. We will
also explain our motivation for using a PSO variant with
certain biases. In Section V we detail our experiments with
the new method and provide an evaluation of the data. A
final discussion and an outlook for future research are given
in Section VI.

II. HAND DETECTION & TRACKING

Detecting hands in images is a necessary step, because pose
estimation is not capable of performing this segmentation by
itself. We have separated the task into two steps: first, an initial
one-time detection of hands based on depth images and shape
recognition and second, subsequent tracking of the hand region
with an adaptive skin color model.

For the first step, we restrict the detection to a specific
hand posture that has a distinctive shape. A hand has to
be open and face the sensor, with the fingers spread out a



little. We perform foreground segmentation on depth images
to reduce the region of interest. After that, edge detection in the
foreground depth image provides a set of candidate contours.
To support classification and the ability for generalization, we
use Fourier descriptors with 12 complex-valued coefficients'
to represent contours. These provide desirable invariance prop-
erties against common affine transformation (e.g. scale or
rotation). Furthermore, the contour information is condensed
in these 12 coefficients. Finally soft-margin support vector
machines are used to separate hands from non-hands.

Based on the color that is enclosed by a hand contour, we
learn the parameters of an elliptical boundary model (EBM)
[4] of the skin color distribution. In all subsequent frames after
successful detection by shape, this model is used to retrieve
the hand.

This two-step scheme can properly distinguish between
hands and other skin-colored objects in the scene. It comes
at the cost of requiring a specific hand posture for detection.
But this restriction is alleviated as soon as the distribution
parameters of the skin color are learned.

III. HAND MODEL

The hand model serves two purposes: first, it defines the
parameters that make up the state of the hand. Each parameter
is one DOF of the model. Since our method requires synthetic
hand images, the second purpose of our model is to define what
a hand looks like. Apart from these, constraints of human hand
articulations will be discussed as a third property.

A. Shape

The geometrical detail of our hand model must be kept
low, while still ensuring resemblance to a real human hand.
The algorithm repeatedly renders depth images, which are then
compared to real depth images from the Kinect. Even though
rendering is accelerated here with OpenGL, the complexity of
the hand model has a huge impact on the runtime performance.

The model is shown in Fig. 1. It is composed of two
primitive objects: elliptical cylinders and ellipsoids. The main
object of the palm, shown in green in Fig. 1, is an elliptical
cylinder, whose major semi-axis is significantly larger than
the minor semi-axis. Two ellipsoids (blue) are placed on both
ends of the cylinder to provide a smooth surface. Each finger
consists of five objects: three cylinders and two spheres. The
cylinders are shown in red, orange and yellow to emphasize
the different phalanges. The spheres are placed between two
adjacent phalanges to handle discontinuities that occur when
bending a finger. The thumb is modelled similarly, but has a
large ellipsoid (blue) as its first object instead of a cylinder.
We found this to be very effective at reproducing the skin
deformation that happens when the thumb is moved. Our
model consists 27 individual objects: 15 elliptical cylinders
and 12 ellipsoids.

B. Degrees of Freedom

A set of joints is placed into the above model, which allow
the model to take on basically any articulation of a human

IThe specific descriptor length was chosen on the basis of experiments.
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Fig. 1. Hand model in different configurations. It consists of two types of
objects: ellipsoids (in blue) and elliptical cylinders (in green, red, orange and
yellow).
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Fig. 2. Schematic joint model of a human hand. Joints are shown as blue
dots. The CMC1 and MCP2-5 are modelled as 2-DOF joints. The other joints
(MCP1, IP1, PIP2-5, DIP2-5) have only one DOF.

hand. Joints come in two variants: joints with two DOFs and
those with just one DOF.

The joints used here describe a rotation, in either one or
two dimensions. If it is a 2-DOF joint, both axes of rotation
are orthogonal to each other and the reference point of the
rotation is the same in both dimensions. This also implies that
both axes must intersect, which is not necessarily true for real
joints [5].

A schematic joint model of the human hand is depicted in
Fig. 2. All DOFs together form a 20-dimensional parameter
space, in which each point describes one particular posture.
A special 6-DOF joint is placed in the center of mass of the
palm, because we do not want restrict hands to one specific
location in space nor is the orientation assumed fixed. This
joint represent the global position and orientation of the hand
in space relative to the sensor. With the addition of this joint,
the final parameter space has 26 dimensions.

C. Constraints

One particular goal was to take inter-dependencies between
DOFs into consideration. Although each joint has as many
DOFs as stated before, we are not able to control all of them
independently. Lin et al. [6] and Wu et al. [7] state, that 95%
of the variance in hand articulations can be reduced to just 7
dimensions.

Lin et al. [6] further classify hand motion constraints into
three types. The first type refers to static constraints, called
range of motion values [5], for each individual DOF. They
are usually expressed by two boundary angles that must not
be exceeded. The second type refers to dynamic constraints
that are caused by the anatomy of human hands. These can be



TABLE 1. VARIANCES AND (CUMULATIVE) RATIOS OF RANDOM HAND

POSES AFTER PCA.

1 2 3 4 5 6
Variance 1.324 0.466 0.325 0.259 0.178 0.13
Ratio | 42.7% 15% 10.5% 8.3% 5.7% 42%

Cum. Ratio | 42.7%  57.7%  682%  76.5%  822%  86.5%
7 8 9 10 11 12
Variance 0.118 0.09 0.063 0.057 0.035 0.022
Ratio 3.8% 2.9% 2% 1.8% 1.1% 0.7%
Cum. Ratio | 90.3%  932%  952% 97% 98.1%  98.9%
13 14 15 16

Variance 0.017 0.012 0.004 0.003
Ratio 0.5% 0.4% 0.1% 0.08%
Cum. Ratio | 994%  99.8%  99.9% 100%

intra- and inter-finger constraints. One example for an intra-
finger constraint is the fact that distal interphalangeal (DIP) and
proximal interphalangeal (PIP) joints (refer to Fig. 2) can only
be bent together [1], [6]. The third type comprises factors other
than the anatomy, like e. g. the smoothness of hand motion.

We do not use closed formulas to model constraints, except
for a few common type 2 constraints. These are the ones
mentioned above, concerning the relationship between PIP and
DIP angles. By using the equation

2
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the dimensionality is reduced by 4 down to 22.

We use PCA to further remove dimensions based on their
significance. This also allows us to treat the dimensionality as
a variable parameter instead of predefined value.

Several videos were recorded with the Kinect to generate
the necessary data for the PCA. All videos together con-
tained just above 9200 frames, which corresponded to about 5
minutes in total. Each video contained a sequence of mostly
random finger motions, to capture as many hand postures
as possible. Even though such motions are random in their
articulation, they are still natural, in the sense that they are
anatomically plausible, but lack semantic meaning. The hand
was neither moved nor rotated in any of the videos. The
palm always faced the sensor. In none of the videos, external
physical forces were applied to the hand or fingers.

We used our hand model with 22 DOFs and estimated
hand poses for each frame. The global position and orientation
estimations were stripped from the resulting dataset and not
considered for the PCA, since no meaningful correlation
between global hand pose and finger articulation was expected.
This left about 9200 estimations for the remaining 16 joint
angles: the CMCI1, MCP1-5, IP1 and PIP2-5 (refer to Fig. 2).
The data had not been smoothed or filtered in any other way
prior to the PCA.

The covariance matrix of the dataset is shown in Fig. 3.
It shows some relatively high covariance values outside the
diagonal. These give indication of the inter-dependencies be-
tween the DOFs. Interestingly, the DOFs that correspond to
the abduction angles of the MCP joints (DOFs 4, 6, 8 and
10) do not show significant covariance values. The variances
in Table I indicate very well, that much of the hand motion
happens in only few dimensions. The data is similar to Lin
et al. [6] and Wu et al. [7], in that 95% of the variance is
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Fig. 3. Covariance matrix of random hand poses. The DOFs are:
1,2=CMC1; 3,4=MCP2; 5,6=MCP3; 7,8=MCP4; 9,10=MCP5; 11=MCP1;
12=PIP2; 13=PIP3; 14=PIP4; 15=PIP5; 16=IP. Position, orientation and DIP
joints are not included.

concentrated in the first 9 dimensions (in both publications
only 7 dimensions were required). The first two dimensions
account for more than 50% of the variance. Based on this
data, we assume that some of the least significant dimensions
are essentially just noise.

IV. PARTICLE SWARM OPTIMIZATION

Particle swarms were developed in 1995 by Kennedy and
Eberhart [8] and have received great attention since then
[9], [10]. The method originates from human social behav-
ior simulations. In these simulations, agents were placed in
a two-dimensional space and moved through it in discrete
time steps. The direction of the movement was based on an
attraction point, which Kennedy and Eberhart [8] called the
cornfield vector, in analogy to bird flocks searching for food.
The authors observed that all agents settled quickly on the
attraction point, despite their random initialization. The result
was the formulation of the original particle swarm optimization
algorithm.

In a swarm, n simple entities, called particles, exist in
a d-dimensional space. Each particle has a position p € R?
and velocity v € R?. When particles move in discrete steps
over time, they evaluate their own position p with a target
function f (which will be detailed shortly). The goal is
to minimize this function. After all particles moved, their
velocities are updated. The new velocity comprises two distinct
components: a cognitive and a social component [11]. The
cognitive component is the position p. ;, with the best target
value a particle ¢ has seen in the past. As such, the cognitive
component potentially differs between all particles. The social
component on the other hand, is the global best known position
ps and is shared between all particles in the swarm. These two
vectors take on the role of attraction points in the following
formula for the velocity update:

v; = x[vi +U(0,d¢) ® (pei — pi) ()
+U(0,¢s) ® (ps — pi) ]

U(a,b) is a vector of d random numbers, each uniformly
distributed in the range given by its parameters and ® denotes
component-wise multiplication. The parameters ¢. and ¢y
control the influence of the cognitive and social component



on the new velocity. The parameter x is used to control the
velocities and avoid swarm-explosion. It can be computed as
follows [12]:

¢:¢c+¢s>4
2
R RN T

For each particle 7, the positions are then updated by simply
adding the velocity:

3)

Di < Pi +; 4)

The target function we use here determines how closely a
given hand pose hypothesis 7 € R?® matches the observation
depth image d,,. Let Xy be the image size and dj, the rendered
depth image of h using our hand model. Then the function

f(h) =" min(jdo(u,v) = dp(u,0)] 1) (5)

v=1u=1

iterates over both images and computes the sum of pixel-
wise differences, which are thresholded at some value ¢. Areas
in both images that do not contain hand pixels, are marked
with a value of 0. If we omitted the threshold, this would
lead to very high numbers caused by possibly few pixels. We
experimentally determined ¢t = 5cm to work well.

This function was designed similarly to the one proposed
by Oikonomidis et al. [2], but also radically simplified. Orig-
inally, two more components were included. First, a term that
tested whether a pixel is skin-colored or not. This would
be redundant in our case, because all other pixels in d,
have already been filtered out during the tracking phase
(Section II). The second term penalized physically implausible
hand postures. More specifically, it considered the differences
in abduction angles of the three adjacent finger pairs. In our
experiments, we observed that such a term actually hinders
proper optimization. Most of the cases in which this happened,
had relative abductions close to zero between adjacent fingers
(like in a stop gesture or a fist). We therefore removed this
penalizing term.

Spears et al. [13] showed, that drawing random numbers
dimension by dimension in equation (2) causes several biases.
They found out, that the bias is made up of two components:
skew and spread. When a particle moves primarily parallel
to an axis, the skew bias pushes it towards a diagonal of
two or more axes. On the other hand, a particle that moves
along a diagonal is highly unstable and gets pushed back to
a trajectory parallel to an axis due to the spread bias. The
biases appeared regardless of PSO parameters, like swarm size,
number of iterations and dimensionality. A particle swarm that
updates velocities dimension by dimension is biased towards
movement along axis parallels, even when the problem is
rotationally symmetric. As a direct result, new PSO versions
(like SPSO 2011 [11]) were developed to overcome the bias.

We deliberately propose to use PSO with these biases. In
our application, particles move through the parameter space of
our hand model, in which each axis corresponds to one DOF.
However as detailed in Section III, this space is altered by
a PCA. The PCA rotates the hand model’s parameter space
in such a way that eigenvectors become the new coordinate

axes. These new axes do no longer represent just one DOF,
but many. Specifically, each axis models a particular (linear)
finger motion involving possibly many DOFs that was (with
decreasing significance) noticeable in the sample data. Con-
sider for example the motion between an open hand and a fist.
In the original space, this requires changing many DOFs at the
same time. If we further assume that this motion corresponds
roughly to one of the principal components, this might just
involve change in a very limited subset of DOFs, after the
space has been rotated by the PCA. In this regard, the new
parameter space is aligned with the way particles move in a
biased PSO. Most significant changes in hand postures happen
along parallels to coordinate axes, and less likely along a mix
of many axes (diagonals).

The switch to a biased PSO in combination with PCA
revealed another positive side effect during our experiments,
besides the increase in accuracy. Oikonomidis et al. [2] were
forced to randomly disturb the particles every few generations
due to premature convergence (“‘swarm collapse™). At first,
we observed the same behavior. However, after making the
discussed changes, the swarm collapses disappeared. With our
method, the swarm does not converge prematurely and is able
to find satisfying solutions on its own.

V. EXPERIMENTS & EVALUATIONS

Our goal for the experiments and evaluations was to assess
the differences of our pose estimation compared to Oikono-
midis et al. [2]. We were primarily interested in measuring the
possible accuracy gains through quantitative evaluation. We
will also present some qualitative results at the end of this
section.

Evaluating a hand pose estimation method is in itself not a
trivial task, because ground-truth information is not available
when working with real videos. To deal with this problem, we
generated a test video, in part synthetically. The images, that
make up the video, were completely rendered with our hand
model, but the actual movement of the hand was authentic.
We first recorded a real video of the desired hand motions
and then ran the hand pose estimation on them. Gaussian
filters were used to eliminate high frequency noise in the hand
pose sequence. This filtered sequence was then used in turn
to render the synthetic video of the hand motions. As a last
step, we applied noise and a discretization step to the video in
order to mimic depth images from the Kinect.

The video contained random motions of the fingers and
the thumb and lasted for approximately 25 seconds. We tried
to capture movement of all DOFs and cover many possible
articulations. This video did not contain notable movement of
the whole hand in space. The hand itself was also not rotated.
For the whole duration of the video, the palm was facing
the sensor. The mean distance between sensor and hand was
roughly one meter.

Let m;(x) be the projection of the vector  onto its i-th
component and z1, x> € R?% be hand poses. Then

26
1
eq(T1,22) = 23 E |Ti (21 — z2)] (6)
i=4

measures the discrepancy of all angles (given in degrees [°])
as the mean absolute difference. The first three components
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Fig. 4. Comparison of our method (blue, magenta) with Oikonomidis et

al. [2] (red, green). A single measurement indicates the angle error (equation 6)
averaged over all frames in the test video.

correspond to the hand location in 3D space, which was not
considered for evaluation. In contrast to Oikonomidis et al. [2],
we chose to stay close to the actual representation of hand
poses as a vector of mostly angles. They derived locations of
phalanx endpoints and used them to measure accuracy.

This evaluation did not take into consideration PSO pa-
rameters other than the number of particles and generations.
In particular, the effect of the cognitive and social factors
in the particles velocity equation (2) was not analyzed. To
conduct the experiments, we set the values to ¢, = 2.8
and ¢ = 1.3 [2], i.e. the constriction factor y was 0.73
(equation 3). Most combinations for ¢. and ¢4 perform well,
as long as ¢, + ¢, = 4.1 holds true [14].

A. Direct Comparison

The vertical axis in Fig. 4 shows the mean absolute angle
error e,. A single measurement is the mean error over all
frames in the entire video for the given PSO parameters. The
original method shows a strong dependency on the number of
generations. To keep the error below an average of 9° at least
64 particles and 22 generations had to be used. For our method
on the other hand, 32 particles and 14 generations already were
sufficient. In general, we observed much faster convergence
after enabling the PCA and biased PSO. The curves for our
method are less steep in Fig 4. This directly translates to
an improved performance, because less effort was required
to achieve a certain maximum error. Using 64 particles and
25 generations has been suggested before [2]. We reached the
same error at 32/18, which is roughly 2.8 times faster.

B. Dimensionality Reduction

The experiments above used our hand model with 22
DOFs. We applied the PCA but did not remove any dimensions
afterwards. Figure 5 depicts the same experiment (32 particles,
20 generations) but with a varying number of dimensions. The
lowest possible number of dimensions is 7, which include 6 for
the global pose and just one dimension for all joint angles. The
data indicate that there was no benefit in removing dimensions.
Starting from the right, the mean error first stagnates and then
starts rising. Thus, our method performs optimally when all
dimensions are left in place. The biased PSO did not seem to
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Fig. 5. Dependency between DOFs and mean error.

be influenced negatively when insignificant dimensions were
present.

C. Qualitative Results

When it comes to the visually perceived accuracy of
our pose estimation, there were only minor discrepancies
compared to the real hand posture. Figure 6 shows eight
different postures alongside the model, articulated according
to the estimation. Most errors stem from thumb estimation.
Particularly in Fig. 6(d), the thumb does not point away from
the hand. It is actually inside the other fingers, which is also the
case in Fig. 6(f). This happened quite often, because we did not
perform collision detection or model any physical constraints.
Figures 6(e) and (g) show postures with severe out-of-plane
rotations, that still resulted in proper estimations. We have
found these kinds of postures to be especially problematic,
because the hand occludes large parts of itself.

VI. DISCUSSION & FUTURE WORK

In this paper we presented an improved method for the
problem of full-DOF hand pose estimation, based on the
method by Oikonomidis et al. [2] that has been extended to
take a priori knowledge about hand motion into consideration.
We achieved this by first applying a common relationship
between DIP and PIP joints, followed by a change of basis
to eigenvectors. This way, biases in particle swarms can be
exploited, leading to much improved convergence behavior.
We performed several experiments with partially synthetic
data to provide evidence for this claim. Other experiments
revealed that our method retains its optimal accuracy when
all dimensions are

We discussed our hand model from three different per-
spectives: shape, DOFs and constraints. Several similar works
[2], [15], [16] focus almost exclusively on the shape of the
model, while we put more emphasis on the DOFs of the model
instead. With the terminology of Lin et al. [6], only level 1
constraints have been imposed on joint angles in the relevant
literature [2], [15], [16]. In this paper, constraints of level 2
and 3 were considered, and some have been modelled with
closed formulas, while the majority is included through PCA.
This also introduced the dimensionality of the hand model as
a parameter instead of a fixed value. The PCA played a major
role in the improved properties of our method.
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Fig. 6. Eight hand postures and their estimation.

Biased particle swarms were the other key component
in gaining accuracy. We recognized that these biases push
particles onto trajectories parallel to coordinate axes and how
this relates to PCA. The particle swarm in our method does not
converge prematurely. We were thus not forced to apply addi-
tional randomness to keep the swarm alive, like Oikonomidis
et al. [2] did.

A. Contributions

Our method maintains the same level of accuracy as before
[2], but is about 2.8 times faster. If a 16% increase in estima-
tion errors is acceptable, our method is able to run five times
faster. It is able to exceed the 30 Hz framerate of the Kinect.
We expect that even more performance is achievable with our
method when the set of possible hand postures is constrained
by specific applications. Our idea to combine biased PSO with
PCA provides a very flexible way of incorporating a priori
knowledge.

We also gave a working example on how biased PSO algo-
rithms can be exploited and that the results can be significant.
This might prove useful to many more applications of PSO,
because it is not specific to pose estimation.

B. Future Work

Despite our improvements, the approach is still computa-
tionally demanding. Most of the time is spent rendering depth
images. For future work, we would like to explore ways of
shifting some of the effort to an offline learning phase. This
might be done by pre-rendering a subset of hand postures and
a suitable interpolation method.

We plan to also conduct additional experiments to identify
circumstances under which the algorithm fails. First experi-
ments indicate that out-of-plane rotations of the palm require
significantly more effort for a proper pose estimation. These
rotations are characterized by the palm not being aligned with
sensor image plane, as in Figs. 6(e) and (g).
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