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Abstract—A new architecture based on the Multi-channel
Convolutional Neural Network (MCCNN) is proposed for rec-
ognizing facial expressions. Two hard-coded feature extractors
are replaced by a single channel which is partially trained in
an unsupervised fashion as a Convolutional Autoencoder (CAE).
One additional channel that contains a standard CNN is left
unchanged. Information from both channels converges in a fully
connected layer and is then used for classification. We perform
two distinct experiments on the JAFFE dataset (leave-one-out
and ten-fold cross validation) to evaluate our architecture. Our
comparison with the previous model that uses hard-coded Sobel
features shows that an additional channel of information with
unsupervised learning can significantly boost accuracy and re-
duce the overall training time. Furthermore, experimental results
are compared with benchmarks from the literature showing
that our method provides state-of-the-art recognition rates for
facial expressions. Our method outperforms previously published
methods that used hand-crafted features by a large margin.

I. INTRODUCTION

Recognizing human emotions has been the focus of at-
tention in several areas from psychology and sociology to
cognitive and computer science. Emotions have been studied
for many years, and are still one of the most challenging topics
in human psychological interactions. Through emotional state
determination, it is possible to enhance, highlight and under-
stand better human interactions, actions and even feelings.

The Artificial Intelligence community has studied and pro-
posed approaches for automatic emotion recognition for the
past two decades [1]–[3]. Emotional states can be conveyed
by facial expressions, body posture, motion, language structure
or even from the environment [4]. Based on facial expression,
in one of the most comprehensive studies on understanding
human emotions, Ekman and Friesen [5] established six uni-
versal emotions: disgust, fear, happiness, surprise, sadness
and anger.

One of the most relevant characteristics of the presented
systems is the use of a set of specific features, which constrains
the solution to some rules. When used for facial expression
recognition, the solutions based on hard-coded features show
very good results, but lack the capability to be applied in a real-
world scenario because of the many restrictions based on en-
vironment illumination, position of the subject, and skin color
among others [6]. To overcome this problem in the computer
vision area, the use of implicit features for image classification

led to some success in the past years [7]–[9]. Among implicit
feature models, deep neural networks [10] were proposed be-
cause they use the data themselves to learn the most significant
aspects of the image. One of the advantages of deep neural
networks is their power of generalization, and once they are
trained, the low computational cost to extract features and
classify them. Among deep neural architectures, deep belief
networks [11] and Convolutional Neural Networks (CNN) [12]
are the ones which present the most promising results for a
wide range of applications [13]–[15].

In the past years, some approaches using deep neural
networks for facial expression recognition were proposed and
evaluated, for example by Kahou et al. [16]. In their work they
evaluate two experiments using CNNs. In the first experiment,
they implement a standard CNN and train it with the Acted
Facial Expression in the Wild (AFEW) dataset [17]. In the sec-
ond experiment, they pre-train the model with the Toronto Face
Dataset. After that, a softmax layer is trained with the AFEW
dataset. The networks presented in that approach implement
the usual CNN model, adapting the number of layers and filters
for each experiment executed. Both experiments were used for
the recognition of six facial expressions, based on the universal
facial expressions and one neutral expression. The idea of pre-
training was shown to be successful, but a problem remains:
the network is trained to learn specific features from the data
it is shown. If a fair amount of data is shown to the network,
it can have a significant capacity for generalization. If not,
the network will not be able to learn proper features and will
not be able to recognize images that were not shown during
training.

Our proposed model uses a Multi-channel Convolutional
Neural Network (MCCNN) architecture, proposed in previous
work [18]. This network is able to learn with less data than the
usual deep learning models, and needs less effort for training.
One of the most sensitive restrictions of the MCCNN is the use
of a pair of hard-coded Sobel-based layers which show good
results when applied in a 3-channel topology. The proposed
model replaces both Sobel channels with a single channel
that is trained separately and unsupervised as a Convolutional
Autoencoder (CAE).

Unsupervised feature extraction has become an attractive
alternative to hand-crafted features and can yield highly com-
petitive results [19], [20]. The second channel in our proposed



model contains fixed filters that are learned by a CAE in a
separate step. We train this layer on the Kyoto natural images
dataset [21] so that the filters are not specific to our facial
expression recognition task. These filter weights are kept fixed
in all further task-specific training processes.

To evaluate the proposed model on a face recognition task,
a set of experiments is described using the JAFFE dataset [22].
First, to find the most suitable model parameters, several
parameter exploration experiments are designed, executed and
evaluated. Using the selected parameters, two experiments
with the JAFFE dataset are established. The results are col-
lected, evaluated and discussed in this paper. Comparisons
with benchmark results are also shown.

The paper is structured as follows: section II introduces
our 2-channel architecture and describes preprocessing as well
as how both channels are trained. The methodology for our
experiments is given in section III. Preliminary experiments
for parameter optimization and the results are shown as well.
Section IV shows results from our main experiments and
compares them to related work. Finally, a conclusion is given
in section V.

II. ARCHITECTURE

The MCCNN architecture uses multiple independent Con-
volutional Neural Networks in parallel, but connects them in
the last layer to extract and recognize patterns from images. In
previous approaches, the use of three channels was explored,
and presented good results for hand posture [18] and motion
recognition [23]. The concept behind this architecture is to
make use of existing knowledge, here represented by a dif-
ferent channel, to diversify the input. In our previous work,
each channel received different information, usually Sobel-
based filters were applied to the image. The channels receiving
the image after the application of the Sobel operators acted
as tuning for the layer receiving the raw image. At the end,
all channels were connected and able to extract different and
specific information of the image.

The Sobel-based layers were a solution to explore the edges
in two directions, horizontal and vertical. To extend this princi-
ple, our new proposed model (see Figure 1) replaces the hard-
coded Sobel-based layers by a layer containing Gabor-like
filters. This increases the kind of information extracted from
the image, specializing one channel with a strong multiple-
orientation edge detector. Following the multi-channel archi-
tecture, the proposed model uses two channels, both of them
receiving the same image. What differs in the channels is
the implementation and training of the filters in the first
layer of each channel. The first channel acts like a common
CNN training all the parameters in a supervised fashion. The
second channel uses pre-trained parameters, obtained by a
CAE, which learn Gabor-like filters. After pre-training, the
weights of this layer are fixed and not trained in the supervised
phase. The two channels are connected with a fully-connected
hidden layer that produces the output for a logistic regression
classifier. All parameters of network are optimized at the same
time. The final error is obtained with the output of the two

channels, so that both second layers act like a bias for each
other. Thus, the final classification layer in our proposed model
combines information from both channels, a standard CNN
and a second channel whose weights are trained as CAE.
Figure 1 shows the architecture of the model which was used
in the experiments.

When training a CAE on natural images, the resulting filters
usually look like Gabor filters, which respond strongly to local
edge elements. They are thus similar to hard-coded Sobel
filters used in our previous work. However, the Gabor-like
filters here are much more diverse in the sense that there
are filters for many more specific orientations. Subsequent
layers in our architecture receive explicit information about
the existence of specific edges making classification later on
easier and more robust.

This approach provides an important advantage over pure
supervised methods besides a potential boost in recognition
performance. After training a CAE once on a generic dataset
such as the Kyoto database [21], the network can be transferred
to several different tasks. Reusing a pre-trained network for the
first layer in a potentially deep architecture is a viable method
to speed up overall training time.

A. Channel 1 — Convolutional Neural Network

A Convolutional Neural Network is a set of pairs of
convolution and max-pooling layers that enable the model
to extract and enhance implicit features of an image. When
stacked together, the first layers act like an edge enhancement
and allow to extract local features, which are passed to deeper
layers that act as complex feature extractors.

Each convolutional layer contains a set of feature maps,
or filters, that extract features from a region of units using a
convolution operation. Then, an additive bias is applied and
the result is passed through a non-linear activation function.
The value of a unit vxync in the position (x,y) at the n-th feature
map in the c-th layer is given by

vxync = max

bcn +
∑
m

Hi−1∑
h=0

Wi−1∑
w=0

whw
ijmv

(x+h)(y+w)
(i−1)m , 0

 (1)

where max(·, 0) represents the rectified linear function, which
was shown to be more suitable for training deep neural
architectures [24], bcn is the bias for the n-th feature map of
the c-th layer, and m indexes over the set of features maps in
the (i-1) layer connected to the current layer c. In the equation,
wnck is the weight of the connection between the unit (h,w)
within a region, or kernel, connected to the previous layer. Hi

and Wi are the height and width of the kernel.
In the max-pooling layers, a region of the previous layer is

connected to a unit in the current layer, reducing the dimen-
sionality of the feature maps. Each max-pooling layer retains
only the maximum value within its receptive field and passes
it to the next layer. This enhances invariance to scale and
distortions of the input [9]. The parameters of a CNN could
be learned either by a supervised approach tuning the filters in
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Figure 1. Proposed architecture for a Multi-channel Convolutional Neural Network using 2 channels. The upper channel is a standard CNN, consisting of
convolutional layers and max-pooling layers. The lower channel has the same topology, but its first layer weights are trained as a Convolutional Autoencoder.

a training database [11], or by an unsupervised approach [19].
The proposed model uses the supervised approach.

B. Channel 2 — Convolutional Autoencoder

The second channel in our proposed architecture consists of
two convolutional layers with max pooling in between. The
input to this channel is the same as for the first channel. How-
ever, the first layer is trained as a Convolutional Autoencoder
in an extra step, prior to supervised training of the whole
network. This step is similar to pre-training found in other
deep-learning methods [11]. However, we keep the weights
of the first layer fixed during the supervised learning phase,
whereas pre-training is usually followed by supervised fine-
tuning.

The hidden layer uses rectified linear units as well and
activations in the i-th feature map are given by:

yi = max (x ∗Wi + bi, 0) (2)

Reconstructions are computed as linear combinations of yi and
use tied weights (W̃ denotes the vertically and horizontally
flipped version of W ):

x̂ =
∑
i

[
yi ∗ W̃i

]
+ b′ (3)

A CAE with k feature maps is over-complete by a factor
of roughly k1. In order to prevent the network from learning
trivial solutions like identity functions, the capacity of the
hidden layer must be regularized during training. We impose
a very strong sparsity prior by regularizing the network using
a Winner-Take-All (WTA) method, as described by Makhzani
and Frey [25]. For each feature map, the maximum value is
determined after applying the rectified linear function. This
value is retained, but all other values in the feature map are
set to zero. This can be thought of as multiplying each feature
map with a different mask that leaves only one value intact
before computing the reconstructions.

1The exact size of a feature maps depends on the border treatment of the
convolution.

Figure 2. Typical filters learned by our Convolutional Autoencoder with
Winner-Take-All regularization.

This approach is very efficient, especially in comparison
with methods like contractive regularization [26]. Since the
WTA approach avoids computing additional gradients (or
Jacobian matrices) and relies only on determining the max-
imum in each feature map. We also found this method to be
highly effective at learning sparse codes while not introducing
more hyper-parameters like trade-off weights in the case of
contractive regularization or many other regularization tech-
niques. WTA regularization is only applied during training
and dropped after the network is finalized and the weights
are frozen. Otherwise, the hidden layer would contain only
a single non-zero value per feature map and be incapable
of properly transferring information about the whole image
towards the next layer.

Makhzani and Frey [25] state that using the same weights
for the hidden layer as well as for the reconstruction (tied
weights) hurts generalization. However, we use tied weights
as shown in eqs. (2) and (3) and observe no such problems
in any of our experiments. On the other hand, having two
distinct weight matrices (or tensors in the case of convolutional
networks) doubles the number of model parameters and makes
training more difficult and more time consuming, which is why
we decided to use tied weights in the first place.

The CAE is trained on the Kyoto natural images dataset [21]
using a fixed kernel of 11 × 11 pixels. Each image is pre-
processed by convolving it with a Difference of Gaussian
(DoG) filter. DoG filters are effectively similar to ZCA whiten-
ing [27], without the need to learn the filter kernels first.
Furthermore, the shape of DoG filters is a good approximation
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Figure 3. Samples of all seven classes from the JAFFE dataset [22]. The
two-letter codes in parentheses are used throughout this paper to refer to the
class. Each sample shows a different subject as well, out of the ten subjects
in the dataset.

of ideal decorrelation filters for grayscale images [28]. Whiten-
ing enables our CAE to learn Gabor-like filters, otherwise
filters would look more like principle components [29]. In
comparison to ZCA whitening, using DoG filters in the context
of convolutional networks also has the advantage that they can
be applied directly to arbitrarily-sized images. The number
of features is not set a-priori but determined experimentally.
Details are given in section III. Figure 2 shows 60 typical
Gabor-like filters learned by our CAE.

III. EXPERIMENTS

We evaluate our architecture for facial expression recogni-
tion on the well established JAFFE dataset [22]. The dataset
consists of 213 images, showing ten Japanese women per-
forming seven different facial expressions (neutral, happiness,
sadness, surprise, anger, disgust, and fear). For each com-
bination of subject and facial expression, there are between
two and four examples present in the dataset. All images have
an equal resolution of 256× 256 pixels and are in grayscale.
We usually refer to the seven classes using common two-letter
codes (i.e. NE for neutral) as shown in fig. 3.

Even though the JAFFE dataset was first published in
1998 [22], it is still relevant today and used as a benchmark for
facial expression recognition throughout the literature [30]–
[32]. It is a challenging dataset because there are only few
examples per subject / expression, even more so if a separate
testing set is excluded from training. Furthermore, the fact
that every subject performs every expression allows for inter-
esting experiments like for example the leave-one-out scheme
described later in this section.

The performance is analyzed with two different experiments
following the methodology of Subramanian et al. [32]. In the
first experiment, a leave-one-out scheme is used to split the
dataset into training and testing subsets. One sample from each
subject / expression combination is randomly taken out and
used for testing. In total, there are 143 training samples and
70 samples for testing [32]. This process is repeated 15 times
and performance measures are averaged.

In the second experiment, we use ten-fold cross validation
to determine the training and testing sets. The whole dataset

Table I
CLASSIFICATION F1-SCORES, STANDARD DEVIATIONS AND TRAINING
TIME FOR FIVE DIFFERENT NUMBERS OF FEATURE MAPS IN THE CAE
LAYER. THE TIME MEASURES A COMPLETE RUN OF TEN-FOLD CROSS

VALIDATION.

Feature maps 20 40 60 80 100

Mean F1-score 89.8% 91.2% 91.8% 93.7% 90.4%
Std. dev. 4.3% 9% 6.3% 2.6% 3.9%

Time (Minutes) 16.4 25 41.1 58.4 85.4

is randomly split into ten almost equally sized subsets of
about 21 samples each. Each subset is then used once for
testing while the remaining nine subsets compose the training
data. Finally, the performance measures of all ten splits are
averaged. As with the first experiment, this process is repeated
15 times.

As mentioned in section II, we optimize the number of
feature maps in the CAE and both first layers in the 3-channel
Sobel-based network. In both cases, we explore a range from
20 to 100 feature maps, in steps of 20. For this parameter
exploration we use the same ten-fold cross validation as it is
used in the second main experiment. For each parameter, the
average F1-score over all classes is determined, of which in
turn the mean is computed after running all ten partitions in
the cross validation.

Table I shows average F1-scores for the explored range as
well as standard deviations. The general trend is an increase
in performance as more feature maps are used, which is not
surprising. However, the F1-score drops to 90.4% on 100
feature maps, which might indicate that the large amount of
model parameters causes training to be more difficult. Even as
low as 20 feature maps result in a classifier that achieves just
short of 90% F1-score. This is a very good result, considering
that training a corresponding network takes less than two
minutes2.

For our Sobel-based network, the results are shown in
table II. Interestingly, a network that contains only 20 feature
maps in its first layers performs better than all other parameters
we tested. It is also noteworthy, that this particular network
performs better than our equivalent CAE-based network (com-
pare table I), which is not true for any of the other parameter
values. In general, it seems the Sobel-based architecture has
difficulties during training when too many feature maps and
consequently too many model parameters are present.

In order to determine the network parameters for our final
experiments, we are not just taking into account the F1-scores
of the presented ten-fold cross validation, but also the time
it takes to train a network. The goal is to find a suitable
compromise between both criteria. Considering the training
time is important here, because both main experiments are
repeated 15 times for each network architecture (CAE- and
Sobel-based). Tables I and II show that the training time

2This value corresponds to training a single network, not ten-fold cross
validation, and excludes the time it took to train the CAE.



Table II
CLASSIFICATION F1-SCORES, STANDARD DEVIATIONS AND TRAINING

TIME FOR FIVE DIFFERENT NUMBERS OF FEATURE MAPS IN BOTH SOBEL
LAYERS. THE TIME MEASURES A COMPLETE RUN OF TEN-FOLD CROSS

VALIDATION.

Feature maps 20 40 60 80 100

Mean F1-score 93.4% 89.5% 88% 90.8% 88%
Std. dev. 2% 5.8% 6% 5.8% 5.7%

Time (Minutes) 21.5 34.6 60.1 88.1 130.1

depends roughly linear on the number of features and ranges
from as low as 16.4 minutes to more than 2 hours. Based on
these considerations as well as the F1-scores discussed before,
we choose 40 feature maps for both architectures and all
following experiments. Choosing a value on the lower half of
the range allows us repeat our main experiments often, because
they can be trained quickly. On the other hand, both models
achieve good F1-scores (about 90% and 91%), which are well
within the average of the considered range here. Choosing the
same number of feature maps for both models also has the
advantage of better comparability.

Of course, our method requires determining several hyper-
parameters. These include the number of layers in each
channel, their number of feature maps and kernel sizes, as
well as the size of the fully-connected layer that merges
both channels. We concentrate our efforts here on the layer
that is trained in an unsupervised fashion, mainly because
the MCCNN architecture itself has already been explored in
previous work [18]. The same parameter is optimized in our
Sobel-based network in order to provide an equal ground for
all following experiments.

All experiments as well as the CAE training were performed
on a desktop machine with an Intel Xeon E5630 processor,
two Nvidia GeForce GTX 590 graphics cards and 24 GiB of
RAM. Theano was used to accelerate computations on both
GPUs [33], [34]. Training the CAE with 40 feature maps took
about 15 minutes and comprised 20000 parameter updates.
Training times for the whole network are given in Tables I
and II.

IV. RESULTS

A. Experiment 1

We first report the results of the leave-one-out experiment,
averaged over 15 runs. Table III shows the summary of our
results, as well as the results reported by Subramanian et al.
[32]. For our experiment, an average accuracy of 95.8% was
obtained with a standard deviation of 1.6. These results present
an improvement of almost 8% when compared to the McFIS
method. When compared with the architecture using Sobel-
based filters, the results are almost 3% higher. While the CAE-
based network consists of 2 channels, the Sobel-based one is
implemented with 3 channels. The training and recognition
time are improved as less parameters need to be updated, while
at the same time, more diverse information is present.

Table III
RESULTS AND COMPARISON FOR THE LEAVE-ONE-OUT EXPERIMENT.
REPORTED ARE AVERAGE ACCURACIES AND STANDARD DEVIATIONS.

Method Performance

CAE-based 95.8 ± 1.6
Sobel-based 93.1 ± 1.6
McFIS [32] 87.6 ± 5.79

Table IV
COMBINED CONFUSION MATRIX OF 15 LEAVE-ONE-OUT EXPERIMENTS.
VALUES ARE GIVEN IN PERCENT AND DO NOT NECESSARILY ADD UP TO

100% DUE TO ROUNDING.

Actual class

AN DI FE HA NE SA SU

Pr
ed

ic
tio

n

AN 94 0 2.7 0 0.7 0 0
DI 0 97.3 2.7 0 4.7 0 0
FE 0 0.7 90.7 0 0 0 0
HA 0 0 0 99.3 1.3 0 0
NE 0 2 0 0 93.3 0 4
SA 6 0 0 0 0 100 0
SU 0 0 4 0.7 0 0 96

A combined confusion matrix is shown in table IV. Each
cell in the matrix is computed as the average of the corre-
sponding values of all confusion matrices. The low standard
deviations are visible here as well, as most values are either
zero or quite low. Especially noticeable are the results for the
class fear (FE). The JAFFE dataset authors describe fear as
being difficult to express for Japanese people and consequently
exclude it from several experiments. This is consistent with our
results here, as fear has the lowest accuracy (90.7%) among
all classes.

In fig. 4 we show the best and worst confusion matrices
based on the accuracy. In the best case we achieved an
accuracy of 98.6%. In this particular experiment, only a single
sample of the training set was misclassified (neutral instead of
disgust). Subramanian et al. [32] report a best result of 94.5%
accuracy which is about 4% lower than ours. The right image
in fig. 4 shows the worst single experiment in which we still
achieved 92.9% accuracy. Here we can see that three classes
(happiness, sadness and surprise) were classified perfectly. All
other classes have only minor misclassification (at most 2 out
of 10).

B. Experiment 2

The second experiment uses ten-fold cross validation and
is repeated for 15 runs as well. A summary of the results is
shown in table V. The same table also shows results from the
literature for comparison. We achieve an accuracy of 94.1%
with a standard deviation of 4.3. Our CAE-based MCCNN
architecture achieves more than 5% better accuracy than the
McFIS method [32] and is on average slightly better the
Linear Programming method presented by Feng et al. [35].



AN

DI

FE

HA

NE

SA

SU

AN DI FE HA NE SA SU

Pr
ed

ic
tio

n

Actual class

0

2

4

6

8

10
AN

DI

FE

HA

NE

SA

SU

AN DI FE HA NE SA SU

Pr
ed

ic
tio

n

Actual class

0

2

4

6

8

10

(a) Best confusion matrix (b) Worst confusion matrix

Figure 4. Best (a) and worst (b) confusion matrices based on accuracies of a single leave-one-out experiment.

Table V
RESULTS AND COMPARISON FOR THE TEN-FOLD CROSS VALIDATION

EXPERIMENT. REPORTED ARE AVERAGE ACCURACIES AND STANDARD
DEVIATIONS.

Method Performance

CAE-based 94.1 ± 4.3
Sobel-based 92 ± 6.1
McFIS [32] 89.05 ± 3.214
Linear Programming [35] 93.8

The improvement over the Sobel-based network is not as
high (2.1%) but still consistent. It should be noted, that the
CAE-based network has one channel less than the Sobel-based
network, whereas the remaining topology is identical. It might
thus be concluded that the proposed method is less expressive.
However as the experiments show, the Gabor-like filters in our
network support classification very well.

Interestingly, the accuracy here is lower than for the leave-
one-out experiment reported earlier. At the same time, the
standard deviation is much higher (4.3% vs. 1.6%). We believe
this is a result of ambiguities in the dataset [22] and the
small (10%) testing set used here, compared to the previous
experiment (about 33%). There is a higher chance that a certain
class is represented by only ambiguous samples, which might
account for the higher standard deviation as well as a slightly
lower average accuracy.

In table VI, we show a combined confusion matrix of all
ten-fold cross validation experiments. Compared to the first
experiment (table IV), the higher standard deviation is visible
as many more cells are now greater than zero. However, many
cells outside the main diagonal are just slightly above zero
which means that most of the time very few sample were mis-
classified. The results are consistent with the previous ones re-
garding fear, which shows the lowest accuracy again (85.9%).
Judging by both experiments (tables IV and VI), fear is mostly
confused with anger, disgust and surprise.

Table VI
COMBINED CONFUSION MATRIX OF THE TEN-FOLD CROSS VALIDATION

EXPERIMENTS. VALUES ARE GIVEN IN PERCENT AND DO NOT
NECESSARILY ADD UP TO 100% DUE TO ROUNDING.

Actual class

AN DI FE HA NE SA SU
Pr

ed
ic

tio
n

AN 90.9 0.8 3 0 1.4 2.5 0
DI 0 89.6 4.3 0.8 4.9 0 0
FE 1.1 4.8 85.9 0 0 0 1.7
HA 0 2.4 0.5 96.3 3.7 0 0.9
NE 0 2.1 0.8 0 88 0 4.3
SA 8.1 0.3 0.5 0.5 0 97.5 0
SU 0 0 5 2.4 2 0 93.1

V. CONCLUSION

In this paper, we presented a variant of the Multi-Channel
Convolutional Neural Network. The architecture is character-
ized by multiple CNNs (channels), that first process infor-
mation independently. All streams merge in a fully-connected
layer, which is used for classification. Compared to previous
work [18], hard-coded Sobel filters are replaced by a single
channel, making the proposed model a 2-channel architecture.
The weights of this new channel are trained as Convolutional
Autoencoder, which usually results in Gabor-like filters when
trained on whitened natural images. This model is motivated
by two observations: First, using additional channels with
input from edge detectors (Sobel) proved useful in previous
work. Our Gabor-like filters provide qualitatively the same
information, but in a much more diverse scope, because
the CAE has 40 different feature maps. Second, the effort
it takes to fully train a CAE-based network is lower than
the previous Sobel-based network. Having one channel less
certainly contributes to this, but also the fact that the CAE
layer is reusable. The time it takes to train a CAE can easily
be amortized by using it multiple times.

Evaluation of our model was done using the JAFFE dataset



Figure 5. Visualizations of four first-layer filters of the CNN channel.

and we followed the methodology of two experiments done
by Subramanian et al. [32]. Both experiments were performed
on the proposed model as well as the Sobel-based model
for comparison. The experiments and results show, that the
proposed model is a very viable method for facial expression
recognition. It does not depend on any hand-crafted or task-
specific feature extraction but exploits unsupervised learning.
We easily reach state-of-the-art recognition rates with minimal
effort. In the leave-one-out experiment, we achieve an average
of 95.8% accuracy, which is 8.2% higher than what Subrama-
nian et al. [32] reported. The ten-fold cross validation leads
to an average accuracy of 94.1%.

The improvements over our previous Sobel-based model
range between two and three percent. Thus, our new model
does not only perform better in terms of classification perfor-
mance but is also faster to train, because it uses one channel
less. However, the first layer in the CAE channel has to be
taken into account as well, when considering training time,
because it is trained in a separate step and the CAE training
effort pays off the more often it is reused.

For future work, we would like to investigate what exact
role each channel plays during the implicit feature extraction
task. The CAE channel for example already contains diverse
information about the existence of edges. It seems intuitive
to assume, that the first channel (which is trained fully super-
vised) would not take on the same filter shapes. In this sense, it
is still unclear in what way both channels influence each other
and whether they extract complementary information. Another
possibility might be that both channels learn qualitatively the
same information and act as weak classifiers. In this case, the
fully-connected layer at the end might act as a boosting layer.
In some very preliminary experiments to understand better
what our architecture learns, we visualized the first layer filters
of the channel, which is trained fully supervised (see fig. 5).
On first sight and especially in comparison to the CAE filters
(compare Figure 2), the filter do not seem to have meaningful
structure after learning. On the other hand, the filter do not
just contain white noise. A possibly better approach, that we
want to pursue in the future, might be to visualize not only
first layer filters but also those in other layers. For example,
the deconvolutional networks used by Zeiler and Fergus [36]
could give valuable insights into our networks. However,
even without having analyzed the relationship between both
channels yet, our model achieves state-of-the-art recognition
rates for face expressions and is very fast to train.
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[35] X. Feng, M. Pietikäinen, and A. Hadid, “Facial expression recognition
with local binary patterns and linear programming”, Pattern Recognit.
Image Anal., vol. 15, no. 2, pp. 546–548, 2005.

[36] M. D. Zeiler and R. Fergus, “Visualizing and Understanding Con-
volutional Networks”, in Computer Vision – ECCV 2014, D. Fleet,
T. Pajdla, B. Schiele, and T. Tuytelaars, Eds., ser. Lecture Notes in
Computer Science 8689. Springer International Publishing, Jan. 1,
2014, pp. 818–833.


