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Abstract—Robust speech recognition under noisy conditions
like in human-robot interaction (HRI) in a natural environment
often can only be achieved by relying on a headset and re-
stricting the available set of utterances or the set of different
speakers. Current automatic speech recognition (ASR) systems
are commonly based on finite-state grammars (FSG) or statistical
language models like Tri-grams, which achieve good recognition
rates but have specific limitations such as a high rate of false
positives or insufficient rates for the sentence accuracy. In this
paper we present an investigation of comparing different forms
of spoken human-robot interaction including a ceiling boundary
microphone and microphones of the humanoid robot NAO with a
headset. We describe and evaluate an ASR system using a multi-
pass decoder — which combines the advantages of an FSG and
a Tri-gram decoder — and show its usefulness in HRI.

I. INTRODUCTION

With current speech recognition systems it is possible to
reach an acceptable word recognition rate if the system has
been adapted to a user, or if the system works under low-noise
conditions. However, on the one hand in human-robot inter-
action (HRI) or in ambient intelligence environments (AmIE),
the need for robust and automatic speech recognition is still
immanent [1], [2]. On the other hand research in cognitive
neuroscience robotics (CNR) and multimodal communication
benefits from a robust and functioning speech recognition as a
basis [3]. Headsets and other user-bound microphones are not
convenient in an natural environment in which, for instance,
a robot is supposed to interact with an elderly person. A
microphone built into the robot or placed at the ceiling, a wall,
or a table allows for free movement but reduces the quality of
speech signals substantially because of larger distances to the
person and therefore more background noise.

One method to deal with the additional problems is of
course a further adaptation of the speech recogniser towards
a domain-specific vocabulary and grammar. Enhancing recog-
nised speech with a grammar-based decoder (finite state gram-
mar, FSG) can lead to improved results in terms of recognised
sentences, but it also leads to a high rate of false positives,
since an FSG decoder tries to map the recognised utterances
to legal sentences. To deal with this problem, one can combine
the FSG with the classical Tri-gram decoder to reject unlikely
results. Such a multi-pass decoder can be applied also to
noisy sound sources like a ceiling boundary microphone or
microphones, installed on a robot.

In the past research has been done on combining FSG
and N-grams decoding processes: In 1997 Lin et. al. used
an FSG and an N-gram decoder for spotting key-phrases
in longer sentences [4]. Based on the assumption that sen-
tences of interest are usually surrounded by carrier phrases,

they employed N-gram decoding to cover those surrounding
phrases on the one hand and FSG decoding on the other
hand if a start word of the grammar was found by the N-
gram decoder. Furthermore, with their approach they rejected
FSG-hypotheses if the average word score exceeded a preset
threshold. However, this approach combined FSG and N-
grams while modifying and fine-tuning the decoding processes
on a very low-level, preventing to switch to another FSG or
N-gram model easily. Therefore it would be interesting to
exploit the dynamical result of an N-gram hypotheses list for
the rating of an FSG-hypothesis instead of a fixed threshold.

Levit et. al. combined 2009 an FSG decoder and a second
different decoder in a complimentary manner for the use in
small devices [5]. In their approach they used an FSG decoder
as a fast and efficient baseline recogniser, capable of recognis-
ing only a limited number of utterances. The second decoder,
used for augmenting the first decoder, was also FSG-based
but according to the authors could be replaced by a statistical
language model like N-grams, too. An augmentation for the
first decoder could be a ’decoy’, which is a sentence with
a similar meaning, similar to an already included sentence.
However, those decoys can only be trained off-line. In this
approach the result of the first decoder was not rated or
rejected afterwards, but the search space was shaped to avoid
the appearance of false positives.

Doostdar et. al. proposed 2008 an approach where an FSG
and a Tri-gram decoder processed speech data independently
based on a common acoustic model [6]. The best hypothesis of
the FSG decoder was compared with the n-best list of hypothe-
ses of the Tri-gram decoder. Without modifying essential parts
of the underlying system they achieved a high false positive
reduction and overall a good recognition rate, while they
restricted the domain to 36 words and a command grammar.
Although aiming for applying their system on service robots,
they limited their investigation to the use of a headset. Yet
it would be interesting to test such an approach far-field in
a real environment using the service robots’ microphones or
other user-independent microphones.

In contrast, Sasaki et. al. investigated 2008 the usability of
a command recognition system using a ceiling microphone
array [7]. After detecting and separating a sound source an
extracted sound was fed to a speech recogniser. The used
open source speech recognition engine was configured for the
use of 30 words and a very simple grammar allowing only 4
different sentence types like GO TO X or COME HERE. With
their experiments, the authors have shown that using a ceiling
microphone in combination with a limited dictionary leads
to a moderate word accuracy rate. Also they claim that their



approach is applicable to a robot, which uses an embedded
microphone array. A crucial open question is the effect on the
sentence accuracy if a more natural interaction and therefore
a larger vocabulary and grammar is being used. Based on the
presented moderate word accuracy the sentence accuracy is
likely to be small for sentences with more than three words,
leading to many false positives.

In this paper we present a speech recognition approach
with a multi-pass decoder in a home environment addressing
the research question of the effect of the decoder in the
far-field. We test the usability of HRI and investigate the
effect of different microphones, including the microphones
of the NAO humanoid robot and a boundary microphone,
placed at the ceiling, compared to a standard headset. After
analysing the background of speech recognition we will detail
the description of a multi-pass decoder in section 2. Then
we will describe the scenario for the empirical evaluation in
section 3, present the results of our experiments in section 4,
and draw a conclusion in section 5.

II. THE APPROACH

Before explaining the multi-pass decoder in detail, we first
outline some relevant fundamentals of a statistical speech
recognition system and the architecture of a common single-
pass decoder (see also [8]).

A. Speech Recognition Background

The input of a speech recogniser is a complex series of
changes in air pressure, which through sampling and quan-
tisation can be digitalised to a pulse-code-modulated audio
stream. From an audio stream the features or the characteristics
of specific phones can be extracted. A statistical speech
recogniser, which uses a Hidden Markov Model (HMM), can
determine the likelihoods of those acoustic observations.

With a finite grammar or a statistical language model, a
search space can be constructed, which consists of HMMs de-
termined by the acoustic model. Both, grammar and language
model, are based on a dictionary, defining which sequence of
phones constitute which words. The grammar defines a state
automaton of predefined transitions between words, including
the transition probabilities. Language models in contrast are
trained statistically based on the measured frequency of a word
preceding another word. With so-called N-grams, dependen-
cies between a word and the (IV — 1) preceding words can be
determined. Since /N-grams of higher order need substantially
more training data Bi-Grams or Tri-grams are often used in
current automatic speech recognition (ASR) systems.

During processing of an utterance, a statistical speech
recogniser searches the generated graph for the best fitting
hypothesis. In every time frame, the possible hypotheses
are scored. With a best-first search, or a specialised search
algorithm like the Viterbi Algorithm, hypotheses with bad
scores are pruned.

In principle it is possible to adapt ASR for improving the
recognition rate with two different approaches:

1) The acoustic model is trained for a single specific
speaker. This method leads to precise HMM’s for
phones, which allows for a larger vocabulary.

2) The domain is restricted in terms of a limited vocabulary.
This restricted approach reaches good recognition rates
even with an acoustical model trained for many different
speakers.

B. Multi-Pass Decoder

Both introduced methods, the finite state grammar (FSG)
based decoder as well as the Tri-gram decoder, have specific
advantages and limitations.

e The FSG decoder can be very strict, allowing valid
sentences without fillers only. Unfortunately, such an FSG
decoder maps every input to a path in the search space,
which is spanned from all valid starting words to all
valid finishing words. For example if the speaker is using
a sentence like NAO *EHM* PICK PHONE, the decoder
may map it to a most likely sentence like NAO WHERE
IS PHONE. Even if the speaker is just randomly putting
words together, the decoder may often produce a valid
sentence and therefore — very often — a false positive.

o With a Tri-Gram decoder an ASR system is more flexible
and can get decent results if the quality of the audio signal
is high and the data set for training the language model
is sufficiently large. However, since Tri-grams mainly
take into account the last two most probable words,
they cannot deal with long-range dependencies. Therefore
even if the word accuracy is reasonably high, the sentence
accuracy as a cumulative product is fairly moderate [8].

To overcome the limitations of both single decoders, we
can combine them to a multi-pass decoder. First, we use the
FSG decoder to produce the most likely hypothesis. Second,
we use the Tri-gram decoder — which is able to backoff to
Bi-grams or Uni-grams — to produce a reasonably large list
of best hypotheses. Even if the best hypothesis of the Tri-
gram decoder is not appropriate there is a good chance that
one of the similar sentences is. In the next step, we compare
the best hypothesis of the FSG decoder with the list of n-best
hypotheses of the Tri-gram decoder. If we find a match we can
accept this sentence, otherwise we reject the sentence. Figure 1
illustrates the HMM-based ASR system using the multi-pass
decoder.

C. Speech Recogniser and its Adaptation

In this study, we use the ASR framework Pocketsphinx,
because it is open source and has been ported and optimised
for hand-held devices [9]. In comparison to other promising
systems [10], [11] it provides the advantage of being an
effective research tool on the one hand and being applicable
to devices and robots with moderate computing power on the
other hand. Pocketsphinx comes with a speaker-independent
acoustic-model "HUB4’ based on English broadcast news.
Also available is a language model trained on the same data.

Since it is our aim to keep the system speaker independent,
we decided to limit the vocabulary and to reduce the format
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of a sentence to a simpler situated grammar or command
grammar, as it can be useful in HRI. Devices and robots in
our AmIE are supposed to be used for a specific set of tasks,
while the scenario can have different human interactors. The
acoustic-model HUB4 was trained over a very large set of data
(140 hours) including different English speakers [12]. With a
vocabulary reduction to 100 words and the new grammar, as
outlined in figure 2, we generated an own FSG automaton
on the one hand and trained an own language model on the
other hand. For the training of the language model, we used
the complete set of sentences which can be produced with our
grammar. The grammar allows for short answers like YES or
INCORRECT as well as for more complex descriptions of the
environment like NAO BANANA HAS COLOR YELLOW.

In summary we adapted Pocketsphinx to recognise instruc-
tion, information, and question sentences in English.

III. OUR SCENARIO

The scenario of this study is an ambient intelligent home
environment. To investigate opportunities and chances of tech-
nical devices and humanoid robots in home environments,
those scenarios are of increasing relevance [13], [14]. In
particular EU research projects like KSERA aim to develop a
socially assistive robot that helps elderly people [15]. Such a
scenario consists of a home environment including interactive
devices and a humanoid robot.

public <utterance> = <confirmation> | (nao <communication>);
<communication> = <information> | <instruction> | <question>;
<instruction> = <command> | <action>;

<information> = ((<object> | <agent>) close to (<object>

| <agent> | <place>))
| (<object> can be <affordance>)
| (<object> has color <color>);
(what can <object>)
| (which color has <object>)
| (where is (<object> | <agent>));

<question> =

<confirmation> = yes | correct | right | (well done) | no

| wrong | incorrect;
<command> = abort | help | reset | (shut down) | stop;
<action> = <head_action> | <hand_action> | <body_action>;

<hand_action> (<affordance> <object>)

| (show (<object> | <agent>) );

(turn body <direction>) | (sit down)

| (walk <number>) | (bring <object>)

| (go to (<agent> | <object>) ) | (come here);
(turn head <direction>)

| ((find | look at) (<object> | <agent>))

| (follow <agent>);

<body_action> =

<head_action> =

<agent> = nao | i | patient;
<object> = apple | banana | ball
| dice | phone | oximeter;
<direction> = left | straight | right;
<number> = one | two | three;
<affordance> = pick | drop | push;
<color> = yellow | orange | red | purple | blue | green;
<place> = home | desk | sofa | chair | floor | wall;

Fig. 2. Grammar for the scenario

A. Environment

Our AmIE is a lab room of 7x4 meters, which is furnished
like a standard home without specific equipment to reduce
noise or echoes, and is equipped with technical devices like a
ceiling boundary microphone and a NAO H25 humanoid robot.
A human user is supposed to interact with the environment and
the NAO robot and therefore should be able to communicate
in natural language. For this study the human user is wearing
a headset as a reference microphone. The scenario is presented
in detail in figure 3. The details of the used microphones are
as follows:

a) Ceiling Microphone: The ceiling boundary micro-
phone is a condenser microphone of 85 mm width, placed
three meter above the ground. It is using an omni-directional
polar pattern and has a frequency response of 30Hz - 18kHz.

b) NAO: The NAO robot is a 58 cm tall robot with 25
degrees of freedom (DOF), two VGA cameras, and four mi-
crophones, developed for academic purposes [16]. Besides his
physical robustness, the robot provides some basic integrated
functionalities like an initial set of prepared movements, a de-
tection system for visual markers, and a text-to-speech module.
Controllable over WLAN with a mounted C++ API namely
NaoQi, the NAO can be used as a completely autonomously
agent or as a remotely controlled machine. The microphones
are placed around the head and have an electrical bandpass of
300Hz - 8kHz. In its current version the NAO uses a basic
noise reduction technique to improve the quality of processed
sounds.

c) Headset: The used headset is a mid-segment headset
specialised for communication. The frequency response of the
microphone is between 100Hz - 10kHz.

To allow reliable comparison, the location of the speaker is
at a distance of 2m meter to the ceiling microphone as well
as to the NAO robot.
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B. Dataset

The set of data to test the approach was collected under
natural conditions within our AmlIE. Different non-native
English mixed male and female test subjects were asked to
read a random sentence, produced from our grammar. All
sentences were recorded in parallel with the headset, the
ceiling microphone and the NAO robot in a 16 bit format
and a sample rate of 48.000 Hz. In summary we collected
592 recorded sentences each, which led to 1776 audio files.

C. Evaluation Method

For the empirical validation, we converted all files to the
monaural, little-endian, unheadered 16-bit signed PCM audio
format sampled at 16000 Hz, which is the standard audio input
stream for Pocketsphinx.

With Pocketsphinx we run a speech recognition test on
every recorded sentence. Since it is not the focus of this
study to test for false negatives and true negatives, we did not
include incorrect sentences or empty recordings in the test.
The result of the speech recogniser was compared with the
whole desired sentence to check for the sentence accuracy as
means of comparability. If the sentence was completely correct

it was counted as true positive, otherwise a false positive. For
example if the correct sentence is NAO WHAT COLOR HAS
BALL, then NAO WHAT COLOR HAS WALL as well as NAO
WHAT COLOR IS BALL are incorrect.

To test for statistical significance of the false positive
reduction with the multi-pass decoder, we calculated the chi-
square (x2) score over the true-positives/false-positives ratios.
If, for example, the x2 score over the tp/fp ratio of the multi-
pass against the tp/fp ratio of the FSG decoder is very high,
then we have evidence for a high degree of dissimilarity [17].

IV. EMPIRICAL RESULTS

The empirical investigation of our approach consists of two
parts. First, we analysed the overall rate of true and false
positives of the multi-pass decoder in comparison to specific
single-pass decoders. Second, we determined the influence of
the size n of the list of best hypotheses. Every investigation
has been carried out in parallel for every microphone type as
described above.

A. Effect of Different Decoders

With the 592 recorded sentences we tested the speech recog-
nition using the FSG-decoder and the Tri-gram decoder in a
single-pass fashion and combined them in a multi-pass fashion,
using n-best list size of 10. In table I the results are presented
where every row contains the number of correctly recognised
sentences (true positives) and incorrectly recognised sentences
(false positives).

TABLE I
COMPARISON OF DIFFERENT DECODERS

(a) FSG decoder

True positives | False positives Tp/fp ratio
Headset 458 (77.4%) 101 (17.1%) 81.93%
Ceiling mic. 251 (42.4%) 251 (50.3%) 45.72%
NAO robot 39 (6.6%) 447 (75.5%) 8.02%
(b) Tri-gram decoder
True positives | False positives Tp/fp ratio
Headset 380 (64.2%) 212 (35.8%) 64.19%
Ceiling mic. 133 (22.5%) 459 (77.5%) 22.47%
NAO robot 14 (2.4%) 322 (54.4%) 4.17%
(c) Multi-pass decoder, n = 10
True positives | False positives Tp/fp ratio
Headset 378 (63.9%) 24 (4.1%) 94.03%
Ceiling mic. 160 (27.0%) 76 (12.8%) 67.80%
NAO robot 31 (5.2%) 130 (22.0%) 19.25%

tp/tp ratio = tp / (tp + fp) * 100

The data shows that for a headset every decoder led to a
relatively high rate of correct sentences, counting 458 (77.4%)
with the FSG, 380 (64.2%) with the Tri-gram, and 378
(63.9%) with the multi-pass decoder. The single-pass decoder
produced 101 false positives (tp/fp ratio of 81.93%) with FSG
and 212 false positives (tp/fp ratio of 64.19%) with Tri-gram,
while the multi-pass decoder produced 24 false positives (tp/fp
ratio of 94.03%).



For the ceiling microphone the rate of correct sentences
was fairly moderate, reaching 251 (42.4%) with the FSG, 133
(22.5%) with the Tri-gram, and 160 (27.0%) with the multi-
pass decoder. The number of produced false positives was
relativly high for the single-pass decoder reaching 298 (tp/fp
ratio of 45.72%) with FSG and 459 false positives (tp/fp ratio
of 22.47%) with Tri-gram, whereas the multi-pass decoder
produced 76 false positives (tp/fp ratio of 67.80%).

The rate of correct sentences for the NAO robot micro-
phones was very low, getting only 39 (6.6%) with the FSG,
14 (2.4%) with the Tri-gram, and 31 (5.2%) with the multi-
pass decoder. However, the single-pass decoder produced 447
false positives (tp/fp ratio of 8.02%) with the FSG and 322
false positives (tp/fp ratio of 4.17%) with the Tri-gram, while
the multi-pass decoder produced 130 false positives (tp/fp ratio
of 19.25%).

In table II some examples for the the recognition results
with different decoder and microphones are presented. The
results indicate that in many cases where sentences could not
be recognised correctly, some specific single words like APPLE
were recognised incorrectly. In some cases valid but incorrect
sentences were recognised by both decoders, but were success-
fully rejected by the multi-pass decoder. Furthermore, with the
NAO robot often only single words were recognised.

TABLE II
EXAMPLES OF RECOGNISED SENTENCES

’ True positive ‘ Rejected | False positive

(a) “NAO GO TO OXIMETER”

FSG decoder Tri-gram dec. Multi-pass dec.
Headset NAO GO TO | NAO WHAT | NAO GO TO
OXIMETER COLOR OXIMETER
OXIMETER
Ceiling mic. NAO SIT DOWN NAO SIT DOWN NAO SIT DOWN
NAO robot NAO GO TO | NAOBE
OXIMETER
(b) “NAO APPLE CLOSE TO PATIENT”
FSG decoder Tri-gram dec. Multi-pass dec.
Headset NAO APPLE
HAS CLOSE TO
PATIENT
Ceiling mic. NAO I CLOSE TO | NAO HEAD CLOSE
PATIENT TO PATIENT
NAO robot NAO FIND | NAO TO PATIENT
PATIENT
(c) “NAO WHICH COLOR HAS BALL”
FSG decoder Tri-gram dec. Multi-pass dec.
Headset NAO WHICH | NAO WHICH | NAO WHICH
COLOR HAS BALL | COLOR HAS BALL | COLOR HAS BALL
Ceiling mic. NAO WHERE IS | NAO WHERE IS
PHONE HEAD AT PHONE
NAO robot NO
(d) “WELL DONE”
FSG decoder Tri-gram dec. Multi-pass dec.
Headset WELL DONE WELL DONE WELL DONE
Ceiling mic. WELL DONE WELL DONE WELL DONE
NAO robot YES

B. Influence of Parameter n

To determine the influence of the size of the n-best list, we
varied n over {1,2,5, 10,20, 50, 100}. Figure 4 displays the
ratio of true positives and false positives in comparison to the
rate of correctly recognised sentences for every microphone
type as described above.
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Fig. 4. Comparison of true positives/false positives ratio and correctly
recognised sentences

On the one hand, for small n the percentage of false posi-
tives is smaller for every microphone type. On the other hand,
a small n results in a more frequent rejection of sentences.

Finding an optimal n seems to strongly depend on the
microphone used and therefore on the expected quality of
the speech signals. In our scenario a larger n around 20 is
sufficient for the use of headsets, in terms of getting a good
true positives to false positives ratio while not rejecting too
many good candidates. For a moderate microphone like the
ceiling microphone, a smaller n around 5 is sufficient. With
low-quality microphones like in the NAO robot the variance
of n does not point to an optimal configuration. Smaller n
result in very few correctly recognised sentences, while larger
n result in a very low tp/fs rate.



C. Result Summary

In summary, we observed that using a multi-pass decoder
reduced the number of produced false positives significantly.
For a low-noise headset as well as for boundary microphones
and inexpensive microphones installed on a mobile robot, the
experiment has shown that reducing the false positives to
a good degree does not lead to a substantial reduction of
true positives. The overall recognition rates with the NAO
were insufficient, while the ceiling microphone worked with
a reasonable rate using the multi-pass decoder. A good value
for n depends on the hypotheses space and the microphone
used. For our scenario, overall using n = 10 best hypotheses
was sufficient. If the expected quality is moderate and the
number of different words and possible sentences are high,
then a larger value for n is likely to lead to better results.

V. CONCLUSION

In this paper we presented a study of speech recognition
using a multi-pass FSG and Tri-gram decoder comparing a
ceiling microphone and the microphones of a humanoid robot
with a standard headset. The results of our approach are in line
with [6], showing that a multi-pass decoder can successfully
be used to reduce false positives and to obtain robust speech
recognition. Furthermore we can state that using a multi-pass
decoder in combination with a ceiling boundary microphone
is useful for HRI: Adapting to domain-specific vocabulary and
grammar on the one hand and combining the advantages of
an FSG and a Tri-gram decoder leads to acceptable speech
recognition rates. The size of the n-best list is not very crucial
and depends on the search space to some extent. Build-in
microphones of humanoid robots such as the NAO still come
with a low SRN due to noisy fans or motors, and need
intensive preprocessing to allow for speech recognition.

In the future the proposed method can be improved in
various ways. First, one could improve the quality of the
speech recorded by a (ceiling) microphone itself. Using for
example a sophisticated noise filter or integrating a large
number of microphones could lead to a more reliable result
[18]. Second, one could not only integrate different decoding
methods but also the context information into one ASR system
to accept or reject recognised utterances. For example vision
could provide information about lip movement and therefore
provide probabilities for silence or a specific phoneme [19].
Speech recognition serves as a starting ground for research in
HRI and CNR and as a driving force for a better understanding
of language itself. In this context we have shown that using a
multi-pass decoder and environmental microphones is a viable
approach.
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