
Object Learning with Natural Language in a
Distributed Intelligent System –

A Case Study of Human-Robot Interaction

Stefan Heinrich, Pascal Folleher, Peer Springstübe, Erik Strahl,
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Abstract. The development of humanoid robots for helping humans as
well as for understanding the human cognitive system is of significant
interest in science and technology. How to bridge the large gap between
the needs of a natural human-robot interaction and the capabilities of
recent humanoid platforms is an important but open question. In this
paper we describe a system to teach a robot, based on a dialogue in
natural language about its real environment in real time. For this, we
integrate a fast object recognition method for the NAO humanoid robot
and a hybrid ensemble learning mechanism. With a qualitative analysis
we show the effectiveness of our system.
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1 Introduction

The interest in robots as assistants or companions has grown tremendously dur-
ing the last years. Robots are developed to support humans in households as
well as in healthcare and therapy [11]. In addition, research progresses in the
direction of cognitive systems to understand cognitive functions in humans as
well as to create robots that can interact with humans naturally [10].

For the development of an intelligent system that can fulfil these criteria, we
have to bridge the large gap between the needs for human-robot interaction (for
example based on a dialogue in natural language) and the technical capabilities
of modern humanoid platforms and computing machines. The questions of how
such a system can be designed and how state-of-the-art methods from machine
learning and information processing can be integrated remains open [7].

To approach these questions, in this student’s show case we developed a com-
plex distributed system that is able to incorporate a humanoid robot, different
standard machines and recent frameworks for various tasks. As a novel contribu-
tion we developed and included object detection and hybrid ensemble learning
mechanisms that are able to operate in real time and within a real world environ-
ment. We show the effectiveness of these mechanisms in a qualitative analysis.
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2 Scenario

Our research focuses on human-robot interaction in a real world scenario with
real time conditions to learn about communication and grounding of language
as well as about effective learned situated interaction [8]. Here a humanoid robot
NAO1 is supposed to learn cues about objects in its environment based on natu-
ral language and visual information, and to recognise and classify similar objects
correctly (see Fig. 1a for an overview). The learning process is guided by a dia-
logue with a human teacher about some objects (compare Fig. 1b).

(a) Learner and teacher (b) Objects

Fig. 1. Scenario of learning objects by natural language in human-robot interaction.

The teacher can inform the robot about unknown objects, and is also able to
confirm the correct classification and thus the correct pointing to objects, giving
the robot the opportunity to become more certain with its decisions over time:

– Teaching Dialog: A user can request the robot to learn. The robot then
asks what he is supposed to learn and the user states an object category (e.g.
<This is an apple>). The robot then asks the user to verify the linguistic
expression the robot has understood for the object in the field of view. After
verification (e.g. <Right>) by the user the robot will learn the object.

– Classification Dialog: A user can also ask the robot to classify an object.
The robot responds by reporting a description of the object in the field of
view based on recently learned experiences.

– Find Dialog: In addition a user can request the robot to find an object
among a number of different objects in the field of view. If the robot recog-
nises the described object, then it will report a relative position and point
to the object. Otherwise it will express his uncertainty about the requested
object.

1 The NAO is a 57 cm tall humanoid robot with, 25 degrees of freedom (DOF),
two VGA cameras, and four microphones, developed for academic purposes –
www.aldebaran-robotics.com
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3 Architecture of the Distributed Intelligent System

The described scenario demands a lot of capabilities of an intelligent system:
First of all the robot has to observe the scene and determine objects of various
complexity under fairly different light conditions in real time. Secondly, the sys-
tem has to provide reliable speech recognition and the ability to speak to the
human in natural language. Thirdly, the system must learn objects very fast and
also be scalable to a reasonable number of objects. Finally, the system has to
incorporate all capabilities in a coherent interaction scheme.

To achieve the goals we set up a distributed system of up to 16 service nodes,
written in ROS2, both on the NAO robot and some standard PCs. The system
can be divided into the four modules core, vision, motion, and interface (see
Fig. 2 for an overview).
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Fig. 2. An overview of the system components.

– Core: The heart of the system is the Controller that implements the logic of
the dialogue by means of a finite state machine, set up by Smach3. A database
is used to store training data of items that a user wanted the robot to learn
and to allow for a qualitative evaluation.

– Interface: To interact with the real world the Controller can request the
camera system to get real time images from the NAO, can request to recog-

2 The Robot Operating System (ROS) is a middle-ware for the use with various robotic
platforms; ROS supports different programming languages and multiple operating
systems as well as multiple hardware elements – www.ros.org

3 Smach is a python-based library for building hierarchical state machines –
www.ros.org/wiki/smach/
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nise speech with the employed PocketSphinx4 with a hybrid decoder [5], and
command the NAO’s text-to-speech system to respond with speech.

– Vision: The Controller can request the vision system to determine a small
extract from the image called Region of Interest Picture (RoiPic). For this
task the RoiPicFinder isolates image regions by thresholding over certain
ranges of hue, saturation, and value (HSV ) for binarising in relevant parts
and background, and applies the contour finder from OpenCV5 for segmenta-
tion [9]. Note: Here, one also could use more precise but less fast methods like
connected component labelling or clustering [4]. Finally, the RoiPicFinder
computes the axis aligned bounding boxes, which are used to crop and re-
turn the RoiPic. Fig. 3a-c visualise the processing steps.
Furthermore, the vision system offers a multiple-purpose feature extracting
module that can determine various features from the RoiPic to return an
input for a learner in the hybrid ensemble learning system. The learning sys-
tem is realised by the RoiPicProcessor and can combine an arbitrary number
of learners based on different features.

– Motion: The motion controller can be requested to move the robot body
in the environment, e.g. to point to an object with the arm.

All modules are interconnected but distributed and autonomous, allowing to
extend the system, e.g. with different feature extractors or to enrich the robot’s
behaviour by a more capable motion, thus offering a richer interaction with the
environment. However, the central idea here is to research into learning objects
by natural language, thus the focus of this study is on the hybrid ensemble.

4 Hybrid Ensemble Learning

For the learning we developed a hybrid ensemble system based on a set of neural
associator networks called Learners [3]. Each network is a three-layer MLP that
takes the result of a feature extractor as input and computes the classification
confidences for a chosen number of classes as output. The ensemble votes for
the class c ∈ C with the highest confidence oensemble,c, which is determined as
follows:

oensemble,c =
maxl∈L (ol,c · gl)∑

l∈L (ol,c · gl)
, (1)

where for every Learner l ∈ L the output o is weighted by a chosen value g.
For the neural Learners we employed ENCOG6, while for the feature ex-

tractors we developed three different types of features ourselves, as described
below:
4 PocketSphinx is an open source automatic speech recognition (ASR) system, opti-

mised for hand-held devices and robots – www.cmusphinx.sourceforge.net
5 The Open Source Computer Vision (OpenCV) library is a framework for state-of-

the-art computer vision algorithms – www.opencv.willowgarage.com/wiki/
6 ENCOG is a machine learning library focused on advanced neural networks and

recent training methods – www.heatonresearch.com/encog/
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Pixel Pattern Features: The simplest features we extract from a RoiPic is the
pixel pattern of the object. To determine these features for the so called TiniPic,
we scaled the isolated image from a RoiPic to the fixed size of 16 × 16 pixels
with RGB values. The resulting 768 data points were normalised to floating
point values within [−1, 1] and could be fed into a Learner. Fig. 3 presents the
steps to determine the scaled TinyPic.

(a) Region of interest (b) Threshold filter (b) Isolated object (c) Scaled

Fig. 3. Region of interest processed to determine a 16 × 16 pixel pattern.

Colour and Texture Features: For the human eye, colour and textural char-
acteristics of an object are important [6]. Based on this bio-informed concept
we developed a sophisticated extractor to determine twelve colour and texture
features from a RoiPic as detailed in Tab. 1. For all features we normalised the
values to the interval [−1, 1] to be able to input them to a Learner.

Table 1. Developed Colour and Texture Features.

proportion of coloured pixels being of a proportion of pixels that have colour
certain colour (for six, nine, and twelve information (exceeding saturation
colours – each for 0◦ and 30◦) and brightness threshold)

sine of average colour of coloured pixels cosine of average colour of coloured pixels

average brightness of object average saturation of object

average brightness of coloured pixels average saturation of coloured pixels

average grey value (average brightness proportion of pixels, which are part of
of not coloured pixels) the object (not background)

colour spectrum of coloured pixels brightness spectrum of not coloured pixels

The “proportion of colour” features are calculated by dividing the colour
space in six, nine, and twelve colours respectively. Further proportion of colour
features are computed by shifting the HSV colour value by 30 before assigning it
to the new colour space. The proportion of saturation and brightness is achieved
by dividing their spaces in eight components. The test for matching the twelve
colours is done by comparison to the HSV scale. The intervals for the colours
are centred around 0◦ (red), 30◦ (orange), etc. and overlap as the intervals span
±20◦ from the centre. With this method a pixel can be both e.g. red and orange,
which is close to what happens in human perception.
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Standardised SURF features: The conventional SURF [2] algorithm is able
to robustly detect and recognise local features of an object in an image. However,
the format of the conventional SURF features makes it impossible to combine
SURF with many other learning methods, e.g. associator networks, because the
dimensionality of the representation for a specific object is not known a-priori.
Usually SURF results in a very large set of features for a complex object and a
very small set of features for plain objects. To overcome this issue we standard-
ised the output of the SURF extractor as follows:

We reduced the 64 double values to eight double values by summing up blocks
of eight numbers and determined a seven bit number, where each bit represents
a rise (bit set to 1) or a fall (bit set to 0). The remaining highest bit in the byte
was determined by the Laplacian, which was calculated by the SURF extractor.
The resulting kind-of “hash” (256 bits) is consistent in sparseness, leads to an
unique characterisations of an object, and can be fed to a Learner.

5 Evaluation

To evaluate the system we tested its behaviour in a number of dialogues with dif-
ferent human teachers and observed a very natural interaction and good learning
success without notable delays: The computations of the system are performed
in parallel to the speech output, providing a real-time response at any time.

To offer a more comparable evaluation we also ran several experiments to
quantify the object detection and object learning capabilities. For all experiments
we set up the system with an ensemble consisting of five colour and texture
Learners, three pixel pattern Learners, and two standardised SURF Learners.
The neural networks underlying these classifiers have been specified with 100
hidden nodes, 21 output nodes, sigmoidal transfer functions, and randomised
weights in [−0.25, 0.25]. They have been trained with RPROP [3] for either a
maximum of 100 epochs or until a mean error of at most ε = 0.01 was reached.

5.1 Object Detection

To evaluate the quality of our detected objects by means of the determined
region of interest (dimensions and position), we developed the following metric:

q =
ARF − |ARF −AGT |

AGT + |ARF −AGT |+ de(POSGT , POSRF )
, (2)

where A is the area in pixels, de the euclidean distance, POS the bounding box
reference point, RF the results of the RoiPicFinder, and GT the ideal result.

For all ten objects we collected 20 samples covering different rotation and
scaling as well as different lighting conditions in our standard lab environment
(compare Fig. 1) and ran two experiments. In the first experiment we employed
the near optimal grey scale value during the thresholding step, while in the
second experiment we used HSV values. For five representative objects the results
of the quality of the obtained regions of interest are shown in Tab. 2, pointing
out that our developed method led to
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a) a good object detection for most objects – except for objects with high
diversity in the texture – with near optimal values (in 0.074 seconds), and

b) an overall very good object detection with HSV values (in 0.71 seconds).

Table 2. Results for the quality q of determined regions of interest. For thesholding
different values have been used: near optimal grey scale (left) and HSV (right).

Object Class average min max

Apple 0.886 0.552 0.989

Banana 0.111 -0.383 0.986

Dice 0.903 0.683 0.999

Mobile 0.793 0.446 0.998

Pear 0.690 0.252 0.996

Object Class average min max

Apple 0.945 0.675 0.997

Banana 0.859 0.671 0.994

Dice 0.960 0.909 0.987

Mobile 0.949 0.844 0.996

Pear 0.959 0.824 1.000

5.2 Object Learning and Generalisation

For testing the generalisation capabilities we used the standard metrics precision
pprecision = tp/(tp + fp) and recall precall = tp/(tp + fn), where we defined all
correct classifications as tp (true positives), all classifications for an incorrect
class as fp (false positives), and all classifications with a confidence o < 0.45
as fn (false negatives). For every object we divided the set of samples in a
training set with 15 samples and a test set with 5 samples and conducted two
experiments. In the first one we trained and tested with all objects, while in the
second we trained and tested only with the three very similar objects “Dice”,
“Mobile”, and “Tempo”. The results show that for a diverse set of objects the
colour and texture classifiers achieve very high results, thus performing still high
for similar objects (see Tab. 3). The hybrid ensemble leads to high up to very
high results in all settings.

Table 3. Classification results on the test set for all (left) and similar (right) objects.

Classifier pprecision precall
Pixel Pattern 0.590 0.976

Color & Texture 0.984 1.000

Standardised SURF 0.391 0.895

Ensemble 0.979 0.939

Classifier pprecision precall
Pixel Pattern 0.644 1.000

Color & Texture 0.893 1.000

Standardised SURF 0.621 1.000

Ensemble 1.000 1.000

6 Conclusion

In this paper we investigated the needs for human-robot interaction and devel-
oped a distributed intelligent system to enable a humanoid robot to learn about
its environment by a human teacher via a dialogue. The combination of recent
frameworks and a number of specially developed methods for object detection
and learning led to a system working in real time and in a real environment.
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For the object detection we learned that using simple well elaborated methods
already can alleviate the problem of real time processing tremendously. Finding
good parameters e.g. for thresholding still is an issue but can be overcome by
more recent methods once they can be computed very fast [4]. The learning
with hybrid ensembles works well and taught us to take very diverse classifiers
into account, which are also inspired by human capabilities, e.g. the processing
of texture information [6]. A very diverse or even multi-modal set of classifiers
needs to be integrated in a smart way, but this can be solved with other learning
mechanisms on top, e.g. advanced self-organising networks [1].

In the future we aim to push further the natural interaction of the robot.
A robot could, for instance, explore a whole room on its own and learn about
objects by touching and manipulating them. This can help to understand the
behaviour of young children and the need for autonomous learning systems [10].
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