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Abstract. Recent research has revealed that hierarchical linguistic struc-
tures can emerge in a recurrent neural network with a sufficient number
of delayed context layers. As a representative of this type of network
the Multiple Timescale Recurrent Neural Network (MTRNN) has been
proposed for recognising and generating known as well as unknown lin-
guistic utterances. However the training of utterances performed in other
approaches demands a high training effort. In this paper we propose a
robust mechanism for adaptive learning rates and internal states to speed
up the training process substantially. In addition we compare the gen-
eralisation of the network for the adaptive mechanism as well as the
standard fixed learning rates finding at least equal capabilities.
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1 Introduction

Research in cognitive intelligent systems recently demonstrated the effectiveness
of continuous time recurrent neural networks (CTRNNs) as a method to ex-
plain higher cognitive functions, namely functions that can extract and evaluate
information from time series like non-verbal gestures or verbal utterances [8].
Complex CTRNNs based on Elman or Jordan networks have been proposed and
investigated to classify and generalise complex linguistic sequences [9, 10, 12].

However the training of complex sequences with long-term dependencies is
difficult [3], for example the training of a multiple timescale recurrent neural
network (MTRNN) with reasonable network size is computationally intensive,
requiring up to one million training epochs for complex sequences [4]. One of
the issues for these networks with a large number of parameters is to identify
good learning rates for the weight updates during the learning depending on
the given problem respective the specific network parameters and the shape of
the sequences. With large learning rates the training of a network exhibits a
faster convergence to smaller mean errors, but the probability is higher to miss
minima in the error landscape and arrive at oscillating or divergent behaviour.
With small learning rates the convergence becomes prohibitively slow.
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For multi-layer feed forward networks it has been shown that the resilient
propagation (RPROP) algorithm can address these problems by adapting the
learning rate directly and independently for every weight and bias based on
the gradient information [5]. In this paper we transfer a variant of the RPROP
algorithm to the promising MTRNNs for weights and biases. Furthermore we
propose an adaptation of learning rates of the context controlling units propor-
tionally to the learning rates of the weights. We show the effectiveness of these
methods in an analysis based on the training of a large number of very complex
linguistic sequences.

2 MTRNN Architecture

The MTRNN network is composed of an input- and output-layer (IO) and an
arbitrary number of hidden context layers. Each layer is connected with itself
and with the preceding and succeeding adjacent layers. For each layer a time
constant τ is used, which increases from one layer to the next, leading to an
increasingly slower adaptation of the layer’s neurons to a processed sequence.
Fig. 1 visualises the scheme for an MTRNN with the IO layer and two context
layers, called Context fast (Cf) and Context slow (Cs). Within the Cs layer, a
subset of the neurons is defined as the Context slow controlling (Csc) units, whose
initial states influence a sequence. A detailed description of the architecture can
be found in the work of Yamashita and Tani 2008 [12].
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Fig. 1. Schema for a Multiple Timescale Recurrent Neural Network

For the training a variant of the real-time backpropagation through time
(RTBPTT) algorithm is used [11], which is a temporal extension of the error
propagation rule [6]. In the first step of every training epoch n, the activations
are calculated and stored for all time steps in a forward pass, accumulating the
error E between the activation values and the desired activation on the IO units.
In the second step the partial derivatives for the internal states u of the neu-
rons are determined in a backward pass (BP) considering the respective transfer
function. Finally with the determined gradients the weights w and biases b are
updated:

wn+1
i,j = wi,j − ηi,j

∂E

∂wi,j
= wi,j − ηi,j

∑
t

1

τi
xt,j

∂E

∂ut,i
, (1)
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bn+1
i = bi − βi

∂E

∂bi
= bi − βi

∑
t

∂E

∂ut,i
, (2)

where the partial derivatives for w and b are the sums of weight and bias changes
over the whole sequence respectively, and η and β denote the learning rates for
the weight and bias changes.

The initial internal states c0,i of the Csc units define the behaviour of the
network and are also updated as follows:

cn+1
0,i = c0,i − ζi

∂E

∂u0,i
iff i ∈ ICsc , (3)

where ζi denotes the learning rates for the initial internal state changes.

3 Adaptive Learning Rates

In our approach the learning rates η, β, and ζ are adaptive based on the local
gradient information inspired by the RPROP algorithm [5]. In contrast to the
original RPROP learning rates are adapted and multiplied directly with the
partial derivatives instead of only using the sign of the partial derivatives to
determine the change of the learning step:

ηi,j =


min

(
ηn−1i,j ξ+, ηmax

)
iff

(
∂E

∂wi,j
· ∂E
∂wi,j

n−1)
> 0

max
(
ηn−1i,j ξ−, ηmin

)
iff

(
∂E

∂wi,j
· ∂E
∂wi,j

n−1)
< 0

ηn−1i,j otherwise

, (4)

βi =


min
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)
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(
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∂bi
· ∂E
∂bi

n−1)
> 0

max
(
βn−1
i ξ−, ηmin

)
iff

(
∂E

∂bi
· ∂E
∂bi

n−1)
< 0

βn−1
i otherwise

, (5)

where ξ+ ∈ ]1,∞] and ξ− ∈ ]0, 1[ are the increasing or decreasing factors re-
spectively and ηmax > ηmin are upper and lower bounds for both learning rates
η and β. If the partial derivative of the current epoch n is pointing to the same
direction as in the former epoch n − 1, then the learning rate is increased. If
the direction of the partial derivative is pointing to the other direction, then the
minimum has been missed and the learning rate is decreased.

For the update of the initial internal states c0,i the learning rates ζ are
adapted proportionally to the average learning rates η of all weights that are
connected with unit i and neurons of the same (Cs) and the adjacent (Cf) layer:

ζi ∝
1

|ICf|+ |ICs|
∑

j∈(ICf∪ICs)

ηi,j . (6)

Since the update of the c0,i depends on the same partial derivatives (time step 0)
as the weights, we do not need additional parameters in this adaptive mechanism.
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4 Scenario

Our research is focused on communication between humans and robots and on
grounding of language in a teaching scenario [8]. A humanoid robot is supposed
to learn cues about its environment based on natural language and visual in-
formation, and to recognise and generalise unheard utterances correctly (see
Fig. 2a for an overview). The MTRNN is one of the cognitive modules process-
ing the linguistic part. For the current work we investigated the hierarchical
self-organisation and recognition of known and unknown linguistic utterances
that stem from a grammar as presented in Fig. 2b. The small grammar is based
on a vocabulary of 34 words and can generate exactly 100 different utterances.
Every utterance is represented as a symbolic sentence s = (c1, . . . , cl), where
the characters c are taken from the alphabet Σ = {’a’, ..., ’z’, ’ ’, ’.’, ’ !’, ’?’} with
|Σ| = 30 symbols.

To encode the symbolic sentences into neural activation, we follow closely
the encoding scheme suggested by Hinoshita et al. 2011 [1]: The occurrence of
a character ck is reflected by a spike-like neural activity of a specific neuron
at relative time step r. In addition some activity is spread backward in time
(rising phase) and some activity is spread forward in time (falling phase) repre-
sented as a Gaussian over the interval [r − ω/2, . . . , r − 1, r, r + 1, . . . , r + ω/2].
All activities of spike-like peaks are normalised by the soft-max function for ev-
ery absolute time step. A detailed description of the encoding scheme can be
found in [1]. For our scenario we set the constants according to their work to
ω = 4, σ2 = 0.3, µ = 4, υ = 2. The ideal neural activation for a sample sentence
is illustrated in Fig. 2c. For our corpus we obtained encoded sequences of lengths
between 34 and 54 time steps.

(a) Learner

S → INFORM | INSTRUCT | QUESTION
INFORM → (this | DIR) is a OBJ.
INFORM → OBJ feels PRT.
INFORM → OBJ can be AFF.
INFORM → OBJ has color COL.
INSTRUCT → AFF the OBJ!
QUESTION → where is a OBJ?
QUESTION → how feels OBJ?
QUESTION → what can be OBJ?
QUESTION → which color has OBJ?
OBJ → apple | banana | dice | phone
DIR → above | below | left | right
AFF → pick | pull | push | touch
PRT → heavy | light | soft | hard
COL → blue | green | red | yellow

(b) Grammar
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(c) Encoded sequence

Fig. 2. Scenario of language learning in human-robot interaction.

For the decoding of the sentences at every designated time step t the ith
symbol from Σ is selected for the neuron i ∈ IIO with the highest activity yt,i.
If a punctuation mark (’.’, ’ !’, and ’?’) is the winning symbol, the end of the
sentence is found and no further activity has to be taken into account.
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5 Empirical Analysis

For our scenario we employed the same network parameter settings as in [1]
except that we doubled the number of Cf neurons: The authors stated that
the Cf neurons represent the words, though in their corpus 17 different words
were used while in our corpus 34 words are incorporated. Specifically we used
IIO = 30, ICf = 80, and ICs = 11 neurons with timescale parameters τIO = 2,
τCf = 5, and τCs = 70. In addition we used a feedback rate ϕ = 0.1 and
initialised the weights in the interval [−0.025, 0.025].

In the experiments we analysed four different setups: three with fixed learning
rates ηi,j = βi = ζi ∈ {0.05, 0.005, 0.0005} ,∀i, j ∈ Iall and one with the adaptive
mechanism. The choice for these settings is based on the original MTRNN study
and recent applications [7, 12]. For the adaptive learning we set the parameter
ξ+ = 1.2, ξ− = 0.5, ηmax = 10.0, and ηmin = 10−8. Because of the parallel archi-
tecture of the MTRNN we implemented the network in OpenCL. In addition to
the speed up of around 3x for a network with a size of 121 neurons in compari-
son to a conventional implementation, the parallel implementation allows for an
only linear increase of the computational demands if the number of neurons is
increased.

With different seeds for every setup we randomly initialised 10 networks
and conducted two studies: First, we ran a preliminary experiment where we
randomly selected 5 out of the 100 sentences and trained for θ = 60, 000 epochs.
Second, we performed the main experiment where we randomly selected 50 out
of the 100 sentences for training over θ = 600, 000 epochs and kept the other 50
sentences for testing. In both studies we trained for the reason of comparability
over the same number of epochs and used no other termination criteria.

For testing the recognition capabilities we used the standard measures pre-
cision pprecision and recall precall, defined as follows:

pprecision =
tp

tp+ fp
, precall =

tp

tp+ fn
, (7)

while we defined all correct and matching sentences as tp (true positives), all
grammatically correct but not matching sentences as fp (false positives), and
all incorrect sentences as fn (false negatives).

5.1 Training Effort

Results of the preliminary study revealed the faster convergence for training the
networks using the adaptive mechanism (see Fig. 3a). On average after 14, 000
training epochs a mean error value of 0.003 was achieved and the networks
started to oscillate slightly. The training with fixed learning rates η = β = ζ =
0.05 showed the second fastest convergence after 39, 000 training epochs towards
the same error value. For the setups with lower learning rates no convergence
values were reached during 60, 000 training epochs.

The learning rates show a very diverse development during training (see
Fig. 3c). On the one hand, the learning rates for the weights quickly reach very



6 Stefan Heinrich, Cornelius Weber, Stefan Wermter

high values up to 0.5 on average and standard deviations up to 3.8: An inspection
of single ηi,j values revealed higher learning rates for neurons in the IO layer and
lower on the Cs layer. On the other hand, learning rates for biases and the Csc
states alter to very low values down to 0.005 and 0.01 respectively. The overall
trend of the development of the learning rate is descending but shows large jumps
indicating a gradient descent along another direction.

For the main experiment the convergence behaviour is similar to some extent:
Training of 50 sentences with the adaptive mechanism shows the fastest conver-
gence to a mean error of 0.006 after 120, 000 training epochs (see Fig. 3b). With
fixed learning rates of η = β = ζ = 0.05 the convergence value was reached after
380, 000 epochs. However some differences are important: First, with the fixed
learning rates, three out of the ten networks diverged during the training with
some weights moving infinite. Second, some of the remaining networks achieved
slightly smaller mean error rates towards 0.005 while other reveal devastating
jumps of the error, emphasising a high degree of problem-dependence of specific
fixed learning. Networks trained with smaller fixed learning rates achieved no
convergence during 600, 000 training epochs, but did not lead to divergence.

Adaptive η,β,ζ Fixed η=β=ζ=0.05 Fixed η=β=ζ=0.005 Fixed η=β=ζ=0.0005
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(a) 5 sequences: Average mean error
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(b) 50 sequences: Average mean error
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(c) 5 sequences: Average learning rates
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(d) 50 sequences: Average learning rates

Fig. 3. Comparison of mean error and learning rates during training.
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The learning rates for the adaptive mechanism also show very high diversity
during the training: The rates for the weights developed quickly to an average
mean value up to 0.3 with standard deviation up to 2.5 (see Fig. 3d). In contrast
to the preliminary study, in the main experiment the learning rates for the
changes of the biases decreased much more to average values of 10−6.

5.2 Recognition Capabilities

The recognition results for the setups which converged during training are pre-
sented in Tab. 1. Although the networks show equal shortcomings for unknown
utterances, the recognition of known utterances is good. Note that for compar-
ison of the convergence behaviour of the training error, we did not use early
stopping and obtained over-fitted networks. Additionally we strictly judged a
sentence as incorrect even if only minor substitution errors occurred. Overall
the networks show similar recognition capacity for both setups.

Table 1. Comparison of testing results.

(a) Validation on training data

Adaptive Fixed
η, β, ζ η = β = ζ = 0.05

pprecision 1.0 1.0

precall 0.8255 0.8486

(b) Validation on test data

Adaptive Fixed
η, β, ζ η = β = ζ = 0.05

pprecision 0.6667 0.1429

precall 0.0134 0.0029

6 Conclusion

The MTRNN is a promising CTRNN able to classify and generalise complex
sequences. Trained on complex sequences, for example on linguistic utterances,
this network showed high computational demands, though. To overcome this
issue, Peniak et al. implemented in 2011 the MTRNN in CUDA, showing mod-
erate to good speed ups for standard to large network sizes [4]. With OpenCL as
a successor to CUDA, we were able to transfer these advantages from computers
with superior graphic cards to standard computers with up-to-date CPUs.

On the algorithmic side the speed up of learning of a related recurrent neural
network with parametric bias (RNNPB) was achieved by Kleesiek et al. in 2012
[2]. However, the context controlling units in a MTRNN depend differently on
the sequence than the parametric bias neurons, making it impossible to transfer
the mechanism to MTRNNs.

The adaptive mechanism for learning rates proposed in this paper is practi-
cable and highly effective. For complex sequences and data sets the convergence
of networks during training can be achieved after 100k epochs instead of several
100k or even a million epochs. Furthermore the adaptive process for the learning
rates of weights, biases, as well as initial Csc units helps to avoid the search for
’good’ learning rates for a given problem and a given network setup.
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In the future we plan to analyse in detail the influence of the increasing
and decreasing factors of the adaptive mechanism. A function based only on
the proportion of the local gradient could speed up the learning even further
and could spare another parameter. Furthermore we plan to integrate the vision
information to the network to investigate the recognition capabilities of mixed
linguistic sequences and visual object references.

Acknowledgments. The authors would like to thank J. Kleesiek and S. Magg
for inspiring and very helpful discussions as well as E. Strahl for assistance with
the numerous OpenCL computations.
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