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Abstract. How the human brain understands natural language and
what we can learn for intelligent systems is open research. Recently, re-
searchers claimed that language is embodied in most – if not all – sensory
and sensorimotor modalities and that the brain’s architecture favours
the emergence of language. In this paper we investigate the characteris-
tics of such an architecture and propose a model based on the Multiple
Timescale Recurrent Neural Network, extended by embodied visual per-
ception. We show that such an architecture can learn the meaning of
utterances with respect to visual perception and that it can produce
verbal utterances that correctly describe previously unknown scenes.
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1 Introduction

Natural language is the cognitive capability that clearly distinguishes humans
from other living beings and often is called the key to intelligence. In the past
researchers have contributed valuable models to explain the binding of language
to experience, but also to ground language in embodied perception and action
based on recent neuroscientific data and hypotheses [3, 6]. In addition early mod-
els captured the fusion of language and multi-modal perceptions or aimed at
bridging the gap between formal linguistics and bio-inspired systems [15, 16].

However, due to the vast complexity of language, some models rely on well-
understood Chomskyan formal theories, which are difficult to maintain in the
light of recent neuroscientific findings, e.g. of non-infinite-recursive mechanisms
and the evident involvement of various – if not all – functional areas in the
human brain in language [1, 2, 14]. Other integrating or constructive models are
constrained to single words, neglecting the temporal aspect of language [10].

In a recent study Hinoshita et al. claimed that for human language acquisition
just an “appropriate” architecture is sufficient and provided a model based on
a Multiple Timescale Recurrent Neural Network (MTRNN) [11]. They found
that such a system composes language hierarchically in a self-organised way,
if the architecture includes dynamic interaction of components with different
characteristics, e.g. information processing on different timescales. Although the
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model was reproducing learned symbolic sentences quite well, generalisation was
not possible, because the generation of sentences was initiated by the internal
state of some neurons, which had to be trained individually for every sentence.

In this paper we incorporate embodied perception based on real world data
in an MTRNN model and show that such a novel system is able to generalise
to completely new situations by recomposing learned elements, and also self-
organises toward the meaning of the learned verbal utterances.

2 Extended MTRNN Model

For our proposed model we employ the MTRNN to process verbal utterances
over time [19], extended by several feed-forward layers to integrate embodied
perceptions during the processing of utterances. The MTRNN part is composed
of an Input- and Output layer (IO) and two context layers called Context fast
(Cf) and Context slow (Cs). In general, the MTRNN is an extended Elman
Recurrent Neural Network (ERNN) on the one hand and a special case of the
Plausibility Recurrent Neural Network (PRNN) on the other hand [5, 18]. In
contrast to the ERNN, the MTRNN allows for full connectivity of neurons to all
neurons of the same and of adjacent layers, and introduces a mechanism forcing
neurons in the context layers to process information with different timescales.
Compared with the PRNN it restricts this concept of hysteresis to an increasing
slowness from the first to the last layer and also restricts the architecture to one
horizontal set of layers. Our extension part consists of an Embodied Input layer
(EI), an Embodied Fusion layer (EF), and an Embodied Controlling layer (EC).
Fig. 1 provides an overview of our architecture.
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Fig. 1. Architecture of a Multiple Timescale Recurrent Neural Network extended by
embodied perception from the scene. A sequence of phonemes (utterance) is processed
over time, while the perceived situated information is constantly present.
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During learning of the system the MTRNN is trained with verbal utterances
and self-organises the neural activity and thereby the internal state values of
some of the neurons in the Cs layer (so called Context Controlling units (Csc)).
These self-organised values are then transferred to the EC layer and associated
with the present embodied perception. For training we use an adaptive mecha-
nism based on the resilient propagation algorithm [8]. During testing, the system
approximates EC values from the visual perception input that are transferred
to the Csc units, which in turn initiate the generation of a corresponding verbal
utterance.

A full formal description of the MTRNN architecture can be found in the
work of Yamashita and Tani [19]. In our model the MTRNN is specified by
timescale values of τ = 2, τ = 5, and τ = 70 for the IO, Cf, and Cs layers
respectively, based on previous studies [11, 19] and preliminary experiments (not
included), which show that these settings work best for the language learning
scenario. For the IO layer we employ a soft-max function, while for the neurons
in the remaining layers we use the following modified logistic transfer function:

f(x) =
1.7159

1 + exp (−x · 0.92)
− 0.35795 . (1)

The function is modulated in slope and range to capture the characteristics of
the synchronic transfer function that has been proposed by LeCun for faster
convergence in association tasks [13]. As error function on the IO layer we use
the Kullback–Leibler divergence:

E(W ) =
∑
t

∑
i∈IIO

dt,i · log

(
dt,i
yt,i

)
, (2)

where W represents the weight matrix, y denotes the output of neuron i at time
step t, and d identifies the desired activity.

3 Scenario

Our scenario for this model is the interaction between a human teacher and a
robotic learner, which is supposed to learn language from scratch by grounding
speech acts in its embodied experience, but also is supposed to use its learned
language to describe novel situations. The robot is placed in a scene and receives
an utterance from the teacher, who describes the scene, e.g. “the apple has
colour green”. The system should learn, in a self-organised way, how to bind
the visual scene information with this verbal expression to be able to describe
another scene like “the banana has colour green” correctly. The focus of
this study is on generalisation using possibly learned components.

To control our setup, all verbal utterances stem from a small symbolic gram-
mar as presented in Fig. 2a. However, every symbolic sentence is transformed
into a phonetic utterance based on phonemes from the ARPAbet and four addi-
tional signs to express pauses and intonations in propositions, exclamations, and
questions: Σ = {’AA’, ..., ’ZH’}∪{’SIL’, ’PER’, ’EXM’, ’QUM’}, with size |Σ| = 44.
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To encode an utterance u = (p1, . . . , pl) into neural activation over time, we
adapted the encoding scheme suggested by Hinoshita et al. [11], but we use a
phoneme-based instead of a symbol-based representation: The occurrence of a
phoneme pk is represented by a spike-like neural activity of a specific neuron at
relative time step r. In addition, some activity is spread backward in time (rising
phase) and some activity is spread forward in time (falling phase) represented
as a Gaussian over the interval [r − ω/2, . . . , r − 1, r, r + 1, . . . , r + ω/2]. All ac-
tivities of spike-like peaks are normalised by the soft-max function for every
absolute time step. A detailed description can be found in [11]. For our scenario
we set the constants accordingly to µ = 4, ω = 4, σ2 = 0.3, and υ = 2. The ideal
neural activation for an encoded sample utterance is visualised in Fig. 2b.

To encode the visual shape perception into sustained neural activity, we
aimed at capturing the salient features of the objects in the field of view, inspired
by saccadic eye movements of humans [9]. On an image taken by the NAO robot
we employ the mean shift algorithm for segmentation [4], and the Canny edge
detection as well as the contour finder for object discrimination. Subsequently,
we calculate the centre of mass and 16 distances to salient points around the
contour. Finally, we scale the distances by the square root of the object’s area and
order them clockwise – starting with the largest – to determine the characteristic
shape, which is scale and rotation invariant. Fig. 2e provides two example results
of this process and Fig. 2f visualises typical characteristics for all employed object
shapes (scaled to [0, 1]). Encoding of the perceived colour is realised by averaging
the three R, G, and B values of the shape, while the perceived position is encoded
by the two values of the centroid coordinate in the field of view.

S → INFORM
INFORM → POS is a OBJ.
INFORM → OBJ has colour COL.
OBJ → apple | banana | dice | phone
POS → above | below | left | right
COL → blue | green | red | yellow

(a) Grammar.
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Fig. 2. Representations and scenario of language learning in human-robot interaction.
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4 Evaluation and Analysis

To test and analyse our model, we collected a data set consisting of all possible
scenes and their respective verbal description. From the grammar we obtained
32 different combinations, which we set up as scenes and in turn used for col-
lecting different examples. The corresponding verbal utterances were reasonably
complex sequences with a length of 32 to 46 time steps (compare Fig. 2b). Sub-
sequently, we ran a series of experiments for which we carefully, but randomly
divided the data into a training set and a test set (50:50) – making sure that
every scene is included only in one of these sets – and initialised a network. For
every setup we repeated this process 50 times with different random seeds. The
parameters of the network were mostly chosen based on the experience in [11]:
We used |IO| = 44 and |EC| = 21 constrained by the input representations, but
varied the sizes of Cf, Cs and EF to test for robustness. The size of EC depends
on and is equal to the size of Csc, which we determined with |Csc| = d|Cs|/2e.
In addition, we used a feedback rate ϕ = 0.1 and initialised the weights in the
interval [−0.025, 0.025] and the initial Csc in the interval [−0.01, 0.01].

4.1 Generalisation

To be able to compare the generalisation capabilities, we use the standard mea-
sure F1-score determined by precision and recall, and defined as follows:

pprecision =
tp

tp+ fp
, precall =

tp

tp+ fn
, F1-score = 2 · pprecision · precall

pprecision + precall
, (3)

where we specify all correct and matching sentences as tp (true positives), all cor-
rect but not matching sentences as fp (false positives), and strictly all incorrect
sentences as fn (false negatives).

The results in Tab. 1 show that the system can be trained perfectly in most
cases, and also produces correct utterances for new scenes on a moderate level:
For a suitable parameter setting, networks reach an F1-score of up to 1.0 on the
training set and 0.545 on the test set, with an average over all random seeds of
0.999 on the training set and 0.136 on the test set.

Table 1. Comparison of F1-score for different network dimensions.

|Cf |/|Cs| 40/11 40/11 40/11 80/23 80/23 80/23 160/47 160/47 160/47
|EF | 8 16 24 8 16 24 8 16 24

training set best 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

test set best 0.316 0.222 0.316 0.316 0.400 0.545 0.316 0.476 0.400

training set average 0.889 0.904 0.908 0.950 0.999 0.999 0.979 0.994 0.995

test set average 0.059 0.049 0.043 0.091 0.136 0.136 0.096 0.091 0.123

Note that due to the random selection, in several cases the system had to
describe a scene, for which it had not seen any aspect (shape, colour, or position)
before. This was intended to keep the scenario realistic and observe the effects.
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4.2 Network Behaviour

To provide a better understanding of the system, we analysed the neural activity
of the Cf layer for the trained networks. We aimed to test, whether this layer had
organised itself to represent the words in the utterances (compare [11]). Using
principle component analysis (PCA) we reduced the dimensionality to visualise
trajectories over time for specific words. The starting and the end point of the
trajectory were defined as the first highest activity for the first phoneme and the
last highest activity for the last phoneme of the word in the IO layer.

The results reveal several characteristics (see Fig. 3 for the trajectories of a
typical network): First, the neural activity in the Cf layer is nearly identical for
the same words from trained utterances. Second, the same words from untrained
utterances have a quite similar activity pattern. Third, words of the same type
(shape, colour, or position words) have a very related activity pattern. From the
data we can observe, that the networks self-organise patterns for words about
shapes, colours, and positions. Forth, words with similar phonetic representation
have different activities, if the type of the word is different. Low correlation was
found of activity for phonetically similar but semantically different words.
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(a) Words of similar type.

−4 −2 0 2

−4

−2

0

2

4

PC1

P
C

2

AE P AH L (apple)
K AH L ER (colour)
IH Z ... AH (is a)

(b) Words with similar phonetics.

Fig. 3. Comparison of neural activation in the Cf layer for different words. The di-
mensionality has been reduced from |Cf | to two dimensions (PC1 and PC2) and the
beginning (∗) as well as the end (◦) of the words have been marked. The dark/blue
lines represent words from utterances of the training set and the bright/red lines show
words from utterances of the test set. Arrows indicate the same phoneme “AH”.

In addition, we found the tendency that the activation of a word primes the
activation of other grammatically related words. In terms of trajectories it can
be observed that the end point of the word “colour” is close to the starting
point of all colour words, and the end point of a position word is close to the
starting point of “is a ...” (compare Fig. 3a and b).
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5 Discussion

The combination of visual perception and an architecture that includes different
timescales in processing verbal sequences provides a system that self-organises
towards the meaning of learned utterances in a real world scenario. Our exper-
iments have shown that such a system apparently is able to understand verbal
utterances and describe novel scenes with the correct corresponding verbal utter-
ances. The analysis revealed that novel scenes are described by recomposing the
correct words, which have been grounded in the perception of different shapes,
colours, or positions.

For some incorrect sentences we observed both cases: Minor substitution er-
rors in terms of a single wrong phoneme or a pause that was too long (“SIL SIL”
instead of “SIL”), as well as no meaningful phoneme chains at all. In the first
case, listening humans would presumably consider this a normal inaccuracy and
automatically correct the recognition. The second case clearly shows that gen-
eralisation was sometimes difficult. It is open to clarify, whether this degree of
difficulty is inherent, e.g. if the error rate is comparable to certain learning stages
in young children during early language learning [12].

During training of the system, we found that the connection weights from the
Cf to the Cs layer as well as from the IO to the Cf layer converged towards zero in
many cases. This means that the highly dynamic networks organised themselves
towards a directed flow of information from the context to the phonetic output
instead of a mutual exchange of information. This is plausible in the light of
neuroscientific evidence [10], but for future experiments implies that the MTRNN
architecture might already be more complex than necessary and should be tested
with less initial connectivity. In addition we found that incorporating an adaptive
training mechanism and a novel transfer function already allowed to reduce the
complexity of the training itself.

Parameter exploration has shown that for this architecture a good balance
of the number of neurons and the number of training samples is important.
This is in line with experience from associator networks [13], but less desirable.
Further investigations should include the consideration of architectures that are
dynamic in connectivity as well as in size. In addition the architectures should
be tested with more complex scenes and verbal descriptions, including interrela-
tions of multiple objects and embodied experience of a broader set of real world
situations.

In conclusion, our study supports that the embodiment of language in percep-
tion and a hierarchical structure with different timescales are important aspects
of an appropriate architecture for language. For such an architecture a feasi-
ble constraint can be our mostly feedforward but compositional structure, also
suggested for the (visual) cortex [7]. In the future we need to further refine the
architectural characteristics to identify the most important building blocks for
natural language processing. The understanding of the brain’s architecture for
language can explain the humans’ most important cognitive capability, but also
can inform future software frameworks for service robots that should interact
with and understand humans.
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