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Abstract. Convolutional neural networks (CNNs) have become effec-
tive instruments in facial expression recognition. Very good results can
be achieved with deep CNNs possessing many layers and providing a
good internal representation of the learned data. Due to the potentially
high complexity of CNNs on the other hand they are prone to overfit-
ting and as a result, regularization techniques are needed to improve the
performance and minimize overfitting. However, it is not yet clear how
these regularization techniques affect the learned representation of faces.
In this paper we examine the effects of novel regularization techniques
on the training and performance of CNNs and their learned features. We
train a CNN using dropout, max pooling dropout, batch normalization
and different combinations of these three. We show that a combination
of these methods can have a big impact on the performance of a CNN,
almost halving its validation error. A visualization technique is applied to
the CNNs to highlight their activations for different inputs, illustrating
a significant difference between a standard CNN and a regularized CNN.
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1 Introduction

The increasing size and complexity of neural networks in the recent past give
more freedom to developers and provide solutions for more complex problems,
but also make them more prone to overfit the given input data. This is especially
the case in supervised settings when there is only a very limited amount of
training data.

To deal with this problem various regularization methods have been devel-
oped to reduce overfitting. These techniques include established techniques such
as early stopping, where training is stopped as soon as the validation error stops
to improve and L2 regularization, the neural network equivalent of the Ridge
regression. More recently new methods for regularization were introduced, such
as dropout [2], drop-connect [13], max pooling dropout [3], stochastic pooling
[4] and to some degree batch normalization [5].
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Dropout, max pooling dropout and batch normalization have been intro-
duced in the previous four years. While they have been used and examined
individually, the authors know of no work in which all three methods are tested
and evaluated in conjunction with each other.

This research applies some of the most recently developed regularization
methods to a CNN trained on images from the Cohn-Kanade dataset [7]. The
Cohn-Kanade dataset contains human faces expressing different emotions, such
as happiness, anger or surprise. We train a CNN on this dataset, using dropout,
max pooling dropout and batch normalization. The effect of different combi-
nations of these three techniques on the training of the CNN is examined by
monitoring the development of the validation error over time, as well as by vi-
sualizing CNNs’ activations for different input images.

2 Background

In this chapter we will first give a brief overview over the tested regularization
methods, i.e. dropout [2], max pooling dropout [3] and batch normalization [5].

2.1 Dropout

In 2012 Hinton et al. [2] introduced the dropout method to prevent artificial neu-
ral networks from overfitting. Dropout prevents co-adaptation of the network’s
weights to the training data. To achieve this each hidden unit of the network is
omitted with a given probability - usually 0.5 - for any training sample.

This means that for each training sample a selected subset of units, including
their incoming and outgoing connections, are temporarily removed from the
network. If a dropout probability p of 0.5 is used, roughly half of the activations
in each layer are deleted for every training sample, thus preventing hidden units
from relying on other hidden units being present.

For testing the network on independent test data, the “mean network” is
used. It contains all the hidden units, but has to compensate for the fact that
during testing roughly twice as many hidden units are active, compared to the
training phase. Due to this the weights are rescaled proportional to the dropout
probability, for example for a dropout probability of 0.5 all weights are divided
by two [2].

2.2 Max Pooling Dropout

Max pooling dropout is a dropout variant especially designed for CNNs, intro-
duced by Wu and Gu [3]. In a standard CNN we have alternating convolutional
and pooling layers. Common pooling mechanisms include for example max or
average pooling. Wu and Gu suggested using dropout within the pooling layers
to introduce stochasticity into the training process. Instead of deterministically
choosing the strongest activation in the pooling region, max pooling dropout
allows smaller activations to be chosen instead.
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To achieve this, dropout is applied to each pooling regions, before max pool-
ing is performed. Using max pooling dropout is therefore sampling from a multi-
nomial distribution to select an index i to choose the pooled activation ai. As
such max pooling dropout can be seen as a special variant of stochastic pooling
[4], with the difference that activations are used with a probability proportional
to their rank, instead of the strength of their activation.

2.3 Batch Normalization

During training the distribution of inputs to a given layer changes as parame-
ters in the previous layer are updated. Therefore, parameter initialization and
the learning rate can have a high impact on the progress of the training. This
phenomenon, also called internal covariate shift, is addressed by the technique
called batch normalization [5]. Batch normalization works by normalizing each
layer’s input for each mini batch during training. This allows much higher learn-
ing rates, more freedom regarding parameter initialization and also acts as a
regularizer.

To that end each layer’s input is normalized. To preserve what each layer
can represent for each activation x(k), a pair of parameters < γ(k),β(k) > is
introduced, which scales and shifts the normalized values. These additional pa-
rameters are learned along with the original model parameters and make sure
the representational capability of the network is not changed.

Batch normalization can work as a form of regularization, since a training
example is seen in conjunction with other examples in a mini batch. Due to
shuffling, the composition of mini batches changes during training, so the network
no longer produces deterministic values for a given training example.

3 Methodology

To test the previously described regularization methods we examined a CNN
and trained it to classify images from the Cohn-Kanade dataset [7]. The Cohn-
Kanade dataset consists of images depicting human faces in seven emotions:
anger, contempt, disgust, fear, happiness, sadness and surprise. In line with
other research [8] we only used six classes, neglecting contempt for our training
and testing. Each example of emotion contains a sequence of up to 60 frames,
that starts with a neutral expression and continues to the peak of the expression.
Our training and testing set comprised the last three images of each sequence.
These images were rescaled to 128 × 128 pixels, converted to gray scale and
whitened.

3.1 Experiments

The CNN used for the experiments consists of six layers. The first three layers are
convolutional layers, followed by two fully connected layers and one softmax layer
for classification on top. Max pooling is performed after each convolutional layer
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Fig. 1. CNN architecture: our CNN consists of three convolutional layers with 10, 15
and 20 filters, each with a filter size of 5× 5. 2× 2 max pooling is performed after each
convolutional layer. The convolutional layers are followed by two fully connected layers
with 500 and 200 units and one classification layer with 6 units.

and the number of filters per convolutional layer are 10, 15 and 20 respectively.
A filter size of 5×5 is used on each convolutional layer. The two fully connected
layers consist of 500 and 200 units and the logistic regression layer has 6 units
for classification, see Figure 1.

As activation function ReLU was used on all layers and weight initialization
was performed according to current guidelines [6]. The initial learning rate is
0.001, which is linearly reduced by 1% per epoch. A momentum of 0.9 was used
and L2 regularization with a small penalty of 0.0001 was introduced since it
improved stability during training.

With this fixed architecture we then proceeded to test the effects of the
different methods on the set classification task. The following eight settings were
tested:

1. no regularization,
2. standard dropout after each layer,
3. max pooling dropout after each convolutional layer,
4. batch normalization (BN) after each layer,
5. max pooling dropout after each convolutional layer and standard dropout

after each fully connected layer,
6. max pooling dropout after each convolutional layer and BN after each layer,
7. standard dropout after each layer and BN after each layer,
8. max pooling dropout after each convolutional layer and standard dropout

after each fully connected layer and BN after each layer.

For each individual setting training was performed using stochastic gradient
descent for a total of 150 epochs. We split our dataset into ten independent
subsets of equal size and performed 10-fold cross-validation in the manner pre-
sented by Liu et al. [9]. After training was completed we applied a visualization
technique [10] to our CNN, to demonstrate the potential impact of regulariza-
tion methods on the learned features. For this we deconvolve our CNN and then
visualize the activations of the third convolutional layer for various input images.
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3.2 Results

The most important evaluation criterion for the proposed methods is whether
they are able to decrease the validation error, i.e. improve the system’s gener-
alization capability. Figure 2 depicts plots of the development of the validation
error over time for each regularization method. The plots show the average vali-
dation error of all runs for a given regularization method and the combination of
that method with batch normalization. Table 1 gives the average best validation
error and the standard deviation of the best validation errors for each tested
regularization method.

Except for batch normalization each combination of regularization methods
outperformed no regularization. The improvements from all combinations from
max dropout and batch normalization onward are statistically significant when
compared to no regularization. The results also indicate that the combination of
several regularization methods, as opposed to using one single method, further
improves regularization. Each combination of at least two regularization methods
performed better than using only one single method.

Table 1. Average accuracy and standard deviations for 10-fold cross-validation for the
combinations of different methods. Sorted in order of increasing accuracy.

Method Accuracy Std

Batch Normalization (BN) 86.9% 4.4
No Regularization 89.6% 4.5
Dropout 92,4% 3.3
Max Dropout 92,8% 3.4
Max Dropout + BN 93.3% 4.0
Dropout + BN 93,9% 4.1
Max Dropout + Dropout + BN 94.3% 4.2
Max Dropout + Dropout 94.3% 2.5

The addition of batch normalization to any regularization methods did not
improve the final accuracy. However Figure 2 shows quite clearly that the addi-
tion of batch normalization had the advantage of converging quicker to better
results. Since the differences in the results between any regularization method
and that regularization method in combination with batch normalization are not
statistically significant, it seems that the addition of batch normalization helps
the training process.

Figure 3 shows a visualization [10] of each filter on the third convolutional
layer for the input image depicted in the respective leftmost column. The images
on the left of the second and third column depict the activations of a standard
CNN trained without regularization and the images on the right a regularized
CNN trained with the combination of max dropout and dropout. It can be
seen that the activations of the regularized CNN are much more focused on
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certain parts of the face, while the standard CNN is activated for much bigger
regions. This can explain the higher accuracy of the regularized CNN, as the
regularization methods seem to force it to focus on certain aspects of the face.
The filters of the standard CNN on the other hand are often quite blurry and
indistinct, explaining its lower accuracy.
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Fig. 2. Development of validation errors during training time.

3.3 Discussion

The differences in the filters’ activations shown in Figure 3 for the third convo-
lutional layer between the standard and the regularized CNN are notable. Many
of the standard CNN’s filters do not focus on specific parts of the face, but are
instead spread over the whole input. As a result we have many activations in
areas of the input that are not relevant to the classification, such as the corners
of the image.

In all images of the Cohn-Kanade dataset the faces are quite centered in
the image and as a result the corners of the inputs do not provide relevant
information for the classification task. This is reflected by the activations of the
regularized CNN, which are mostly focused on the facial features themselves.
Here the filters are much more selective and mostly focus on the center part
of the image. This focus is likely to improve the overall accuracy of the CNN
compared to one without applied regularization.

Indeed, Khorrami et al. [8] showed in their work that the most important fea-
tures are centered around the eyes, the nose and the mouth. The visualizations
show that the regularized CNN mainly focuses on these areas. It is also note-
worthy that our accuracy is comparable to previous results [8],[11], [12]. While
we do not achieve state-of-the art accuracy it has to be noted that we do not
perform data augmentation and only use roughly a tenth of the number of filters
as e.g. Khorrami et al. [8]. It can be expected that the accuracy of our network
can be further improved by utilizing data augmentation techniques even without
increasing the number of used filters.
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Fig. 3. Visualization of third convolutional layer’s activations for the input image on
the left of each row. The left image of the second and third column depicts the acti-
vations of a standard CNN, while the right image of the respective column shows the
activations of the same filter in a CNN regularized with a combination of max pooling
dropout and common dropout.

4 Conclusion

In this work we showed that for the training of a CNN the combination of max
dropout and standard dropout can achieve very high accuracy on the Cohn-
Kanade dataset, even without applying data augmentation and with a com-
paratively small number of used filters. A visualization of the trained networks
shows a big difference between a regularized and a standard CNN, exemplify-
ing the effects of regularization firsthand. While the standard CNN’s filters are
often blurry and indistinct, the regularized CNN’s filters exhibit a much higher
selectivity and are more focused on important features.

In our experiments batch normalization had no effect on the generalization
capability of a trained CNN. However, it did not affect the accuracy of a CNN
in a negative way, while simultaneously reducing the training time until good
results are achieved. It therefore seems that the addition of batch normalization
to the training procedure is advantageous.

Finally, we have shown that with the right combination of applied regular-
ization techniques it is possible to achieve good results with small networks and
without data augmentation. In the future, these regularization techniques can
be applied together with data augmentation and more complex CNNs, either
with more filters or more layers, to potentially achieve an even higher accuracy
on challenging datasets.
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