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Abstract 

Purpose 

Neural document clustering techniques, e.g., self-organising map (SOM) or growing 

neural gas (GNG), usually assume that textual information is stationary on the quantity.  

However, the quantity of text is ever-increasing. We propose a novel dynamic adaptive 

self-organising hybrid (DASH) model, which adapts to time-event news collections not 

only to the neural topological structure but also to its main parameters in a non-stationary 

environment.  

Design/methodology/approach 
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Based on features of a time-event news collection in a non-stationary environment, we 

review the main current neural clustering models. The main deficiency of them is a need 

of pre-definition of the thresholds of unit-growing and unit-pruning. Thus, the dynamic 

adaptive self-organising hybrid (DASH) model is designed for a non-stationary 

environment. 

Findings 

We compare DASH with SOM and GNG based on an artificial jumping corner data set 

and a real world Reuters news collection. According to our experimental results, the 

DASH model is more effective than SOM and GNG for time-event document clustering. 

Practical implications 

A real world environment is dynamic. This paper provides an approach to present news 

clustering in a non-stationary environment.  

Originality/value 

Text clustering in a non-stationary environment is a novel concept. We have 

demonstrated DASH, which can deal with a real world data set in a non-stationary 

environment. 

Keywords: Text Clustering, Knowledge Engineering, Self-Organising Map, Time-Event 

Text Processing 



3 

 

Introduction 

In an era of Internet, a vest amount of textual information can overwhelm users. By 

grouping similar concepts of documents, an organised structure quickly reduce the search 

space and help users to access relevant documents (van Rijsbergen, 1979). Many 

document clustering approaches, including statistical solutions and artificial neural 

networks, have been proposed for these tasks (e.g. Chang and Chen, 2006; Chen and 

Chen, 2006; Hung et al., 2004; Pullwitt, 2002; Jain et al., 1999). Particularly, in the field 

of artificial neural networks, self-organising maps (SOMs) have been proposed for 

document clustering (Kohonen, 1984). Documents containing a similar concept are 

grouped into the same unit on a map and units representing a similar concept are located 

nearby on the map. Therefore, documents are self-organised to an ordered map, which 

can be treated as an Internet browsing interface such as the WebSOM project (Honkela et 

al., 1997).  

Real-world textual information such as news is dynamic and continuously growing. 

In a news collection, some specific events occur over a specific period. In other words, 

the news topic is changing over time. However, most of document clustering approaches 

are based on a common assumption that the documents are organised as a stationary 
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collection (i.e., a fixed number of documents). Thus, although the particular structure of 

the current stationary document collection has been identified, this becomes outdated for 

new information.  

Therefore, motivated by the need for non-stationary organisation of information, we 

propose a novel neural clustering model, the dynamic adaptive self-organising hybrid 

(DASH) model for time-event documents in a non-stationary environment. We use the 

Reuters corpus volume one, RCV1 (Rose et al., 2002), to model time-event documents 

and evaluate the DASH model based on classification accuracy and average quantization 

error (AQE). 

 

Background and purpose 

Traditionally, the factor of time is not involved in an artificial learning environment for 

clustering. However, documents, e.g. news articles, usually have some relationship with 

time. Similar articles related to the same specific event are presented in a specific time 

period. Topics of news articles are gradually changed over time and the latest event 

generally attracts more attention (Smeaton et al., 1998). For the word usage, some 

specific terms have a strong relationship with some specific topics. Thus, it can be 
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anticipated that the word usage is also slightly changing over time and more co-occurring 

words are used for two news articles if they happened recently.  

The size of the document population is always increasing in a real world. Thus an 

organised structure of documents built based on a traditional static training set is 

inevitable to produce a wrong decision for an ever-changing test set. A time-event 

document clustering model is a model which is able to cluster documents changed over 

time and reflect the latest knowledge from the latest time-event documents. In other 

words, a time-event document clustering model is able to learn continuously, stay 

up-to-date and provide the results at any time. 

A time-event document clustering model shown in Figure 1 associates document 

time-stamps based on time. Each data set contains several news articles issued within a 

short period. The incremental learning model adapts to the latest data set by continuously 

adjusting the learned structure. When the knowledge from the existing data set in the 

model is outdated, the existing clustering results are replaced gradually by a new 

structure based on a new data set.   
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Figure 1: A conceptual architecture of time-event document clustering 

 

Self-organising map 

Inspired by the biological concept, in which neurons with similar functions are placed 

together, Kohonen proposed a self-organising map (SOM) using a time-based decaying 

learning rate and a pre-defined topological structure of units such that adjacent units 

contain similar weights so units self-organise into an ordered map (Kohonen, 1984). The 

SOM is a powerful algorithm for the visualisation of high-dimensional data. It is able to 

project the high-dimensional data onto a low-dimensional map, usually a 

two-dimensional grid of units. These geometric relationships between units in a grid 

represent the relationships between high-dimensional data. In other words, the SOM is 

able to abstract the most important data relationships for them to be visualised on a 

two-dimensional map. These features, i.e. visualisation and abstraction, present the SOM 
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as a robust tool for many tasks such as document clustering, information visualisation, 

pattern recognition, data mining, image analysis and so on (e.g. Honkela et al., 1997; 

Kohonen, 2001).  

The SOM model is usually designed for a static data collection due to its 

pre-defined topology and time-based decaying learning rate.  It is trained by a static 

training set and tested by an unseen test set.  Thus, the model can generalise well under 

the assumption that the unseen test set is similar to the training set. However, the real 

world information is continuously growing and often changes over time, which means 

that the boundary of the unseen test set is hard to be defined and therefore the unseen test 

set is usually different from the training set. Therefore, it is hard to presuppose the 

suitable learning length and inner structure of data in a non-stationary environment. 

 

Related neural clustering models 

Many neural clustering models have been proposed for a non-stationary clustering task. 

These models are focused on the ability of continuous learning in a non-stationary 

environment. For example, the growing cell structure (GCS) (Fritzke, 1994), growing 

neural gas (GNG) (Fritzke, 1995), incremental grid growing (IGG) (Blackmore and 

Miikkulainen, 1993), growing neural gas with utility criterion (GNG-U) (Fritzke, 1997) 
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and grow when required (GWR) (Marsland et al., 2002), contain unit-growing and 

unit-pruning functions which are analogous to biological functions of remembering and 

forgetting in a non-stationary environment. These models also depend on the 

pre-definition of several thresholds which are used as guidance of neural behaviours for 

specific data sets. However, it is not trivial to determine those thresholds in a 

non-stationary environment. A set of better parameters often requires several iterations of 

trial and error or rules of thumb from experience (Hsu and Halgamuge, 2003). Even 

though a proper threshold has been found, this threshold may not be suitable for the 

future in a non-stationary environment. Therefore, it is not a good idea to use such a 

constant threshold for a big data set. Unfortunately, the GCS, GNG, IGG, GNG-U and 

GWR apply a constant threshold for detection of unsuitable units. We argue that a 

unit-pruning or connection-trimming threshold should be automatically adjusted to suit 

different data sets during training. 

 

The proposed time-event document clustering model 

By inspecting limitations of existing dynamic neural models, such as GNG, we propose 

the dynamic adaptive self-organising hybrid model (DASH). DASH follows the neural 

self-organising rule and can be treated as an extension of GNG in a non-stationary 
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environment for time-event document clustering. In this paper, we only stress on the 

different features of DASH for conciseness. DASH adapts not only its main parameters 

(mainly including the connection trimming threshold and the growing frequency) but 

also its architecture to input samples. The DASH algorithm is divided into five main 

stages, which are initialisation, learning, growing, pruning and self-adjusting (Figure 2). 

 
Figure 2: Five stages of the dynamic adaptive self-organising hybrid model 



10 

 

In the initialising stage, we define a map quality index, τ , which decides the 

objective average quantization error (AQE) for a child map. The AQE is the average of 

the Euclidean distance between every input vector and its best matching unit. Like GNG, 

we define an age threshold, β, for a connection between output units i and j. Unlike 

GNG, which uses a constant age threshold, the β of DASH cooperates with the current 

highest age of connection to decide whether a connection is too old.  

In the learning and growing stages, like GNG, the DASH model starts with two 

units, uses fixed learning rates and applies the competitive Hebbian learning principle to 

connect the best matching unit and second best matching unit for an input stimulus 

(Martinetz, 1993). Unlike GNG, which increases the age only for connections of BMU’s 

neighbours, DASH increases the age for all connections except the BMU. Furthermore, 

GNG grows every pre-defined constant cycle which is determined by trial and error. In 

contrast, this cycle is a part of the DASH model, which is mutually decided by the 

objective AQE and the number of input samples in the current map. The growing 

behaviour of the DASH model is illustrated in Figure. 3a-3h.  
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Figure 3: The growing processes for the DASH model. Units are represented as circles 

and lateral connections between units are represented as lines. 

For a non-stationary data set, a trained unit or training unit should be updated by a 

unit which is trained with new input samples. This is performed by the unit-pruning or 

connection-trimming function in the pruning stage. A connection between output units i 
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and j is trimmed if it is relatively old compared to other connections, i.e. β>
maxage

ageij . 

This is a quasi-global connection-trimming function since the maximum age is got from 

connections built by a current data set in the model only. The connection-trimming 

function used by GNG is sub-optimal because a local age variable of a connection does 

not grow when units of this connection are not activated. That is, the aged connection 

may be kept forever so that the capability of self-adjustment for a model to new stimuli 

is diminished.  

DASH uses a self-adjusted connection-trimming variable based on input vectors. 

Thus, in self-adjusting stage, this threshold is increased if units are not growing (Eq. 1) 

and is decreased if the number of units has reached the reference number of units in a 

map (Eq. 2). The reference number of units is a temporal maximum unit number for the 

current map and is also increased when this number is reached (Eq. 3).  

)2()()1( βββ Jtt −×=+ , (1)

where ß is a connection age threshold, t indicates time, Jß is the ß adjusting 

parameter which is between 0.5 and 1. 

βββ Jtt ×=+ )()1( . (2)

)2()()1( Oll JtOtO −×=+ , (3)
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where Ol is the reference number of units in a map and JO is its adjusting parameter 

which is between 0.5 and 1. 

 

Experiments on an artificial non-stationary data set 

To demonstrate the ability of DASH in a non-stationary environment, we design a 

jumping-corner data set and compare with SOM (Kohonen, 1984) and GNG (Fritzke, 

1995) because they are typical models in the static neural clustering group and dynamic 

neural clustering group respectively. In the beginning, an existing time-stamped data set 

contains 900 two dimensional vector inputs which are between (0, 0) and (3, 3) at 

intervals of 0.01 from the bottom left corner of a 9 by 9 grid. A new time-stamped data 

set in the top right corner substitutes for the existing data set in the bottom left corner at 

iteration 4 500.  

We use the same parameters for all models if applicable. For example, the training 

length for all models is ten epochs. The learning rate for BMU and neighbours of BMU 

is 0.1 and 0.001 respectively for GNG and DASH as suggested by Ahrns et al. (1995). 

The learning rate for SOM is decayed from 0.1 to 0.001. The number of units is 91 for 

GNG and DASH. The number of units is 100 for the SOM because we use a square SOM 

topology. 
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All models learn well in the beginning because the data set is a uniform distribution. 

However, when the existing data set is replaced by the new data set, some units of the 

SOM cannot be re-trained since the learning rate is decayed. Thus, dead units, which 

represent no associated input samples, are inevitable for a SOM in a non-stationary 

environment (Figure 4a).  

The GNG model traces the data set by modifying its neural topology. It forms two 

separate areas after the existing data set is replaced by the new data set. The topological 

structure keeps tracing the new data set in the top right corner but it is still in the bottom 

left corner. This is not because these output units in the bottom left corner still represent 

their associated input samples well but because none of these units in this area has been 

activated after some iterations. Thus, there are many dead units for a GNG in a 

non-stationary environment (Figure 4b).  

Conversely, the DASH model removes unsuitable existing units while new input 

vectors occur and finally represents the new data set well without any dead unit (Figure 

4c). This experimental result shows that our DASH outperforms a typical static neural 

clustering model, i.e, the SOM, and a typical dynamic neural clustering model, i.e., the 

GNG, in a non-stationary environment. 
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Figure 4: Three convergence maps for SOM, GNG and DASH. The small dots are

the input vectors and the circles are the output units. 

 

Evaluation criteria 

Even though it is possible to see clusters through the SOM-like maps, human qualitative 

judgements should not be the only evaluation criterion. Unlike qualitative assessment, 

quantitative criteria can be divided into two types: internal and external (Steinbach et al., 

2000). The internal quantitative measure is data-driven and the average quantization 

error (AQE) is applied in this paper. 

The quantization error is suggested by Kohonen as a measurement used in the 

vector quantization technique and is an indicator of the quality of the model (Kohonen, 

2001). The AQE is defined as the average of the Euclidean distance between every input 

vector and its best matching unit (BMU).  Given a data set X containing input vectors xi, 

the AQE is described as Eq. 4.   
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where wi is the weight vector of BMU for input sample i and N is the total number of

input vectors. 

 The external quantitative measure evaluates how well the clustering model matches 

some prior knowledge which is usually provided by humans. The most common form of 

such external information is human manual classification knowledge, so classification 

accuracy (CA) is used in this paper. Kohonen et al. (2000) defined the classification error 

thus: "all documents that represented a minority newsgroup at any grid point were 

counted as classification errors … the node and the abstracts belonging to the other 

subsections were considered as misclassifications.” That is, each document has a 

pre-defined newsgroup label. After the training process, the category of a map unit is 

assigned according to the highest number of pre-defined labels of documents.  

Therefore, every unit represents its major article labels. The pre-defined label of each 

document which is mapped into this unit will be replaced by the unit label. Thus, if the 

unit label of each document matches its pre-defined label, it is a correct mapping. The 

classification accuracy is calculated from the number of correct mappings relative to the 

number of input articles. 
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Experimental design on new Reuters news corpus volume one 

We work with the current version of the Reuters news corpus, RCV1 (Rose et al., 2002), 

and concentrate on the eight most dominant topics (Table 1) for our data sets. Since a 

news article can be pre-classified as more than one topic, we consider the multi-topic as a 

new combination of topics. Thus, the 8 chosen topics are expanded into 40 combined 

topics for the first 10 000 news articles (Table 2).  

Table 1: The description of chosen topics and their distribution over the whole new 

Reuters corpus 

Topic Description Distribution 

c15 Performance 149 359 

c151 Accounts/Earnings 81 201 

c152 Comment/Forecasts 72 910 

ccat Corporate/Industrial 372 099 

ecat Economics 116 207 

gcat Government/Social 232 032 

m14 Commodity markets 84 085 

mcat Markets 197 813 
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Table 2: The distribution of topic composition for the first 10 000 full-text news data set 

and the second 10 000 full-text news data set.  The meanings of topics are described in 

Table 1. 

The 10 000 full-text news data set 

No Topic composition Existing set New set 

1 ecat/mcat 155 104 

2 ccat 1 780 2 033 

3 c15/c151/ccat/ecat/gcat 6 2 

4 c15/c151/ccat 999 916 

5 m14/mcat 877 846 

6 ecat 771 672 

7 ccat/gcat 293 392 

8 ccat/ecat/gcat 162 174 

 …… …… …… 

39 c15/c151/ccat/gcat 1 3 

40 c15/c152/ccat/ecat/mcat 1 0 

Total number of news articles 10 000 10 000 
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Two data sets are used for the simulation of a non-stationary environment. The first 

one is to treat the first 10 000 full-text news articles as the existing data set and the 

second one is to treat the following 10 000 full-text news articles as the new data set. 

Besides using two data sets, three scenarios whose new data set is introduced at a 

different time are applied. The training length for all models is 42 000, 46 000 and 62 

000 iterations for scenario 1, scenario 2 and scenario 3 respectively. The existing data set 

is used for all scenarios in the beginning and the new data set is introduced in scenario 1 

at iteration 10 000, scenario 2 at iteration 30 000 and scenario 3 at iteration 50 000. In 

other words, there are 32 000 (42 000 – 10 000), 16 000 (46 000 – 30 000) and 12 000 

(62 000 – 50 000) iterations to train models based on the new data set for scenarios 1, 2 

and 3 respectively. 

We use a traditional vector space model (VSM) such as TFxIDF to represent a 

full-text document as a numeric vector (Salton, 1989). We remove the stop words, allow 

only words shown in WordNet (Miller, 1985), which only contains open-classed words, 

i.e. nouns, verbs, adjectives and adverbs, and lemmatise each word to its base form. We 

further pick up the 1 000 most frequent words from the word master list to represent the 

original 15 760 words since this method is as good as some dimensionality reduction 

technique (Chakrabarti, 2000). 
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We compare the DASH model with SOM and GNG in a non-stationary environment. 

We use the same training length and the similar number of units of the DASH model for 

the SOM and GNG. The learning rate for BMU and neighbours of BMU is 0.1 and 0.001 

respectively for GNG and DASH. The learning rate for SOM is decayed from 0.1 to 

0.001. GNG makes use of two pre-defined parameters to control its topographic structure, 

i.e. the growing frequency and the connection-trimming threshold. Different values are 

used in different tasks in GNG by Fritzke (1995), because they are data-driven. In our 

experiments, the connection-trimming threshold for GNG for all scenarios is 62. Based 

on this threshold, the growing frequency cooperates with the controlled training length to 

produce the controlled number of units. In our experiments, the growing frequency 

threshold is 406, 407 and 520 for scenarios 1, 2 and 3 respectively. In the DASH model, 

the map quality index, τ, should be set before training. In our experiments, the value of

τ, is 0.9 to control the shape of the DASH map. There are two main parameters which 

need to be set before training. The initial values of βand Ol are 0.95 and 100 

respectively. However, these two parameters are self-adjusted and adapted to the current 

data set in the model. 
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Results on new Reuters news corpus volume one 

We evaluate our model by AQE and classification accuracy, which have also been used 

in the work of Kohonen et al. (2000). AQE and classification accuracy for each scenario 

are shown in Tables 3 and 4. According to these results, the DASH outperforms other 

models with a higher classification accuracy and a lower AQE for all scenarios.  

 

Table 3: A comparison of SOM, GNG and DASH evaluated by classification accuracy in 

a non-stationary environment 

 Scenario 1 Scenario 2 Scenario 3 

SOM 67.82% 65.75% 62.22%

GNG 66.16% 65.11% 64.70%

DASH 68.69% 69.63% 68.05%
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Table 4: A comparison of SOM, GNG and DASH evaluated by AQE criterion in a 

non-stationary environment 

 Scenario 1 Scenario 2 Scenario 3 

SOM 0.937 0.948 0.956

GNG 0.869 0.867 0.870

DASH 0.812 0.818 0.815

The results can be further examined by analysing the variations of AQE based on 

time (Figure 5). In scenario 2, when the existing data set is replaced by the new data set 

at iteration 30 000, the AQE of all models are much higher. The SOM has a higher AQE, 

compared with the GNG and DASH models because a fixed topographic structure is 

unsuitable for the current data samples.   
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Figure 5: AQE for SOM, GNG and DASH in scenario 2. 
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The relationship of unit number to training length is shown in Figure 6a. The SOM 

uses a pre-defined structure with 144 units, while GNG and DASH have a dynamic 

structure. In general, the number of units for the GNG and DASH models is continuously 

growing. When the new data set is introduced at iteration 30 000, many unsuitable units 

are removed by the DASH model in a short period (Figure 6a). This is performed by the 

connection-trimming variable, i.e. β. It is adjusted automatically based on the current 

data set and the final value of β is about 0.3 in scenario 2 (Figure 6b). However, the 

removal of units is not evident for GNG (Figure 6a).   
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Figure 6: (a) The units of SOM, GNG and DASH in scenario 2.  (b) The β parameter 

of DASH in scenario 2. 
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SOM suffers from a non-stationary environment when the new data set is 

introduced at a later training stage. This is mainly because its time-based learning rate 

has decayed to a very small value. Another reason is that the SOM does not equip a 

unit-removing or connection-trimming function to remove unsuitable outdated units. In 

other words, the training length in scenarios 2 and 3 is not enough for the new data set 

for the SOM to keep the same performance in scenario 1. 

GNG also suffers from a non-stationary environment due to its local 

connection-trimming function. It is very hard to pre-determine the connection-trimming 

threshold and growing frequency for GNG in a non-stationary environment. Conversely, 

the DASH model self-adjusts its parameters and performs better than SOM and GNG.  

Various initial settings of the connection trimming parameter, β, have been tried.  

DASH is more stable than GNG due to the function of self-adjustment in a 

non-stationary environment. We show their convergence maps in scenario 2 and the 

DASH model does not contain any dead unit on a map (Figure 7). 
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Figure 7: Three convergence maps for SOM, GNG and DASH in scenario 2. The

small dots are the input vectors and the circles are the output units. 

 

Conclusions and future work 

In the non-stationary environment, a clustering model runs continuously since the 

new document set is formed consecutively for training while the old document set is still 

at the training stage.  Thus, output units of the map learned from the old data set are 

continuously adjusted to reflect the new data set. Based on the same or very similar 

resources (i.e. training length and the number of units), the DASH model outperforms 

SOM and GNG in a non-stationary environment by a greater classification accuracy and 

a lower average quantization error.  

Even though the DASH model is designed for document clustering, it is appropriate 

for use in different applications, which may provide other interesting research directions. 

For example, one possible area is the novelty detector, which can detect surrounding 



26 

stimuli, and is suitable for the characteristics of the DASH model. Image or multimedia 

content-based organisation is another area, in which DASH could be useful for 

content-based image or multimedia information retrieval. By combining text and 

multimedia organisation using recursive training, the DASH model could be an 

alternative approach to the building of a hierarchical digital library.  
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