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Abstract—This paper proposes a new architecture for robot 

control. A test scenario is outlined to test the proposed system 
and enable a comparison with an existing system, which is able 
to fulfil the scenario and thus be used as a benchmark. The 
scenario is a navigation task, to allow a robot to approach a 
specified landmark. The proposed architecture will make use of 
two control units, one to allow a pan/tilt camera to track the 
landmark as the robot moves, and a second to control the 
robots drive motors. These units will be trained via 
reinforcement learning, and provide the potential for platform-
independent robot control.  

I. INTRODUCTION 
N the past several different systems have been developed 
employing reinforcement learning for robot control. These 

systems have used different input modalities, from 
coordinates provided in simulated environments [1], to 
visual input for simulated or real world robot control [2]-[4]. 
Reinforcement learning is a technique, which uses 
reinforcement signals to train the ‘agent’ (a network, robot 
etc. to learn sequence policies). The reinforcement signal is 
given when the ‘agent’ achieves or misses the goal. Initially 
the ‘agent’ explores its environment randomly until it 
achieves the set goal, then as the ‘agent’ learns, the 
exploration becomes more structured (see [5] for a good 
introduction to some reinforcement techniques). 

The following Section provides an overview of several 
systems developed to control mobile robots using 
reinforcement learning. All of these systems have been 
designed to control a specific robot platform. To control a 
different robot platform the systems would require 
redevelopment. However, there are commonalities with 
many robots; these can potentially be used in conjunction 
with reinforcement learning to develop platform-
independent control systems.  
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The focus of this paper is to develop a platform-
independent control system for a robot navigation task, 
which couples pan/tilt cameras to gather visual information 
and reinforcement learning. The pan/tilt camera will be used 
to locate a predefined landmark. The centre point of this 
landmark will then be used to allow the camera to keep it in 
the centre of its ‘gaze’. With the landmark centred in the 
image the pan and tilt angles of the camera can be used to 
deduce the relative position of the landmark to the robot, 
and be fed into a motor control unit to allow the robot to 
approach the landmark. Reinforcement learning will be used 
to train two control units, one to keep the landmark in the 
centre of the camera image and a second to control the 
robots drive motors. 

The remainder of the paper is structured as follows. 
Section II provides an overview of existing systems 
developed for robot control tasks using reinforcement 
learning. Section III highlights the scenario for the control 
task, followed by a discussion of an existing system 
developed for the scenario, complete with results. In Section 
IV a discussion of the proposed architecture is provided, 
starting with the motivation for the work. This is followed 
by a discussion of the architecture to address the defined 
scenario. The final part of section IV discusses the robotic 
platforms on which the proposed architecture will be tested. 
Section V provides a discussion on the possibilities of the 
proposed architecture with possible extensions. A 
conclusion to the proposed work is provided in section VI. 

II. OVERVIEW OF EXISTING SYSTEMS 
Reinforcement learning has been successfully applied to 

different robot control tasks, and an overview of some of 
these systems is given here. It has been used to control a 
simulated robot in the field of robot soccer [1]. The paper 
concentrates on the results Hafner and Riedmiller obtained 
from the simulated environment, however they also state 
that they are working on adapting the system to work on 
their omnidirectional robot. They highlight a common 
problem which is the length of time it took to learn the 
defined tasks. This problem needs to be considered when 
using reinforcement learning on robots. 

 As part of a European funded project to study Mirror 
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Neurons we developed a visual system; the system allowed a 
PeopleBot robot to pick an object from a table [2]. This 
system used visual input and reinforcement learning to 
position the robot with the object between its grippers. 
However, it had a limited range, as the object needed to be 
in the visual field of the camera at all times during the run. 
The camera was also held in a fixed position, so was unable 
to track the object if it moved out of view. Work has been 
undertaken to extend this system [3],[4]. 

We extended the system by allowing the pan/tilt camera 
to move [3]. This increased the range of the robot vision, as 
the camera could track the object. We focused on the 
network developed to perform a coordinate transform to 
deduce the angle and distance to the object in robot centred 
coordinates. These values were used as the inputs to the 
reinforcement network. However, the system has not yet 
been tested on a real robot. The use of the coordinate 
transform network introduces possible errors to the system 
and increases the complexity.  

 We provided an alternative extension, using an 
omnidirectional camera [4]. This was successfully 
implemented on the PeopleBot and used a sequence of 
reinforcement subsystems to allow the robot to reach the 
object from a greatly increased range. Here, the original 
network was unaltered and a new network was used to 
locate the object via omnidirectional vision and a specified 
landmark. Once at the landmark the object was visible in the 
pan/tilt camera. However, as the original network was used, 
the camera remained stationary and if the object moved out 
of sight, the system would still be unable to track the it. To 
avoid a lengthy online training time, the network was 
initially trained on a simulator. This was then exported to the 
robot for the final training, which fine tuned the network to 
control the motor system of the robot. This principle will be 
used by the system proposed in this paper. 

Sierra et al describe their work, where a simulated robot is 
controlled using various reinforcement learning algorithms 
[6], coupled with the control architecture described in [7] for 
the sharing of the visual component. Here the vision system 
is competed for by the different subsystems such as the 
navigation system to allow the robot to move to the 
landmark or the pilot system which performs obstacle 
avoidance.  

Gaskett et al developed a control system for a robot using 
a fixed camera, and used reinforcement learning to remove 
the need for camera calibration [8]. All of these systems 
have demonstrated the applicability of reinforcement 
learning to robot control problems. However, the main 
problem faced by reinforcement learning is the ‘curse of 
dimensionality’: increasing the number of inputs increases 
the dimensionality of the state space, which is used to model 
the input variables. We avoid this problem in our proposed 
architecture as the subsystems have been designed to only 
require two inputs to avoid the curse of dimensionality. 

III. SCENARIO AND INITIAL WORK 

A. Scenario 
The initial scenario that will be used to test the proposed 

architecture is similar to that used by Gaskett et al [8]. The 
robot will be placed at a random starting position with a 
direct line of sight to the specified landmark and will be 
required to move to the landmark. To allow tracking of the 
landmark as the robot moves, the camera will be free to 
pan/tilt. With the camera being free, two control units are 
required: one for the camera to keep the landmark in the 
centre of the image and another for motor control, allowing 
the robot to move to the landmark. Once the robot is able to 
move to the specified landmark the system can be extended, 
by compiling a library of landmarks could be used to allow 
the robot to perform topological navigation [9], moving 
from one landmark to the next.  

B. Learning Robot Control using an Omnidirectional 
Camera 
A system has been designed based on omnidirectional 

vision and reinforcement learning [4]. A brief overview of 
the system follows.  
 

 
Fig. 1.  Architecture used in the initial work.  
 

Fig. 1 illustrates the architecture used for the network 
allowing the robot to move to a predefined landmark. There 
are two input units, which are the normalised (x,y) 
coordinates of the landmark in the omnidirectional image. 
The trained network then produces the required action to 
ensure the landmark is ahead of the robot, which then moves 
forward towards it.  

The network was trained using the actor critic 
reinforcement learning algorithm [6]. Equation (1) is used to 
calculate the activation of the hidden units to find which unit 
encodes the position of the landmark in the omnidirectional 
image. The activation of the hidden units are defined as: 
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Each node in the hidden layer is covered by a Gaussian 

hill of activation, which is described by (1). p is the 



 
 

 

perceived position of the landmark in the omnidirectional 
image, si represents the coordinates of the centres of each of 
the Gaussians and σ is the standard deviation of the 
Gaussian. The activation of the critic is calculated using (2) 
and is a weighted sum of the activations of the place cells. 
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Equation (3) calculates the predicted errors of the possible 

actions taken by the robot. The calculated value is then used 
during the training of the critic. Rt (the reward at time t) only 
equals 1 when the robot is at the goal. As there will be no 
next time step at this point C(pt+1) is 0. At all other times Rt 
equals 0; thus they are never included in the calculation at 
the same time. γ is the constant discounting factor. pt+1 is 
calculated by predicting the change in position cause by the 
action to be performed. This varies from action to action.  

 ( ) ( tttt pCpCR −+= +1γδ (3) 
 
Equation (4) is used in the training of the critic and this 

uses the predicted error calculated in (3). 
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To calculate the activation of the actor nodes (5) is used. 

The activation is a weighted sum of the activations of the 
surrounding hidden units to the current location.  

 
(5) 

 
During the training of the network, exploration of the 

environment was made possible using (6) and a random 
variable. The probability of each action is calculated and 
incrementally summed; when the result crosses the 
generated variable that action is executed.  
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The actor units are trained using (7) in a modified form of 
Hebbian learning. Here the weight is only updated if the 
action is performed. This is achieved by setting gj(t) to 1 if 
the action is chosen or to 0 otherwise.  

 
(7) 

The results gained from the experimentation undertaken 
on the robot are shown in table I. Here, the PeopleBot robot 
was placed in visual range of the landmark and was required 
to move to it. The robot was required to find the landmark in 
the omnidirectional image, turn and approach the landmark. 
Each trial was deemed successful if the robot approached 
the landmark to a range of 10cm or less. An unsuccessful 
trial occurred if the robot didn’t approach to the required 
range, or it did not find the landmark. Eight starting 
positions were tested during the experiments, each starting 

position was given ten trials and the success of each trial 
was recorded. These trials took between 20 and 60 seconds 
to complete. This time depended on the amount the robot 
was required to turn to position the landmark ahead of itself. 
Also, as the test was conducted on an actual robot there were 
some external factors affecting the time, such as the motors 
occasionally stalled as the robot was turning. For training 
statistics of the network see [4]. 

 
TABLE I 

RESULTS FROM ROBOT TRIALS 
Landmark 
Position % Success 

Rear Left 80 
Front 70 
Right 70 
Rear Right 70 
Left 70 
Front Left 30 
Front Right 30 
Rear 30 
Overall 56.25 

 
The experiments provided positive results for the system, 

illustrating the system is capable fulfilling the scenario. 
However, a problem occurred when the landmark was 
initially in one of the following three positions: (i) to the 
front left of the robot, (ii) to the front right of the robot, and 
(iii) to the rear of the robot. Fig. 2 illustrates the cause of this 
problem, which is the design of the omnidirectional camera. 
There are three blind spots present, where the supporting 
pillars for the conical mirror are. When the landmark was 
initially behind one of these pillars the system often failed to 
find them and produced unsuccessful trails. However, the 
results produced when the landmark was in view from the 
start had a success rate of 72%. In the remaining trials the 
landmark may have become occluded by the supporting 
pillars and thus lost from sight resulting in the unsuccessful 
trials. This problem may have been solved by further 
training on the robot. 

 

 
Fig. 2.  Top down view of the omnidirectional camera with the 
support pillars and relative positions of the landmarks are shown. 

 



 
 

 

This system successfully allowed a PeopleBot robot to 
move to the predefined landmark using reinforcement 
leaning. However, it is not possible to transfer the trained 
control system to a different robotic platform. The 
experience gained during the development of this system has 
led to the architecture proposed in the following Section.  

IV. OVERVIEW OF THE ARCHITECTURE 

A. Motivation for Architecture 
It is well known that developing control software for 

robots is a very time consuming and difficult process when 
the system is hard-coded [10]. Hard-coding here means the 
robot is manually programmed with required actions given 
the state of the environment. To design a robust system all 
possible occurrences need to be considered and coded where 
appropriate. An alternative to hard-coding the control is to 
learn it over time, from experience via interaction with the 
environment. Wolpert et al discuss motor learning and the 
different approaches that can be used (supervised, 
unsupervised and reinforcement learning) to learn the motor 
control from a Neurologists perspective [11]. The learning 
approach adopted by this paper is reinforcement learning as 
discussed in Section III. This method of training has been 
successfully used for robot control [1]-[4]. 

All of the systems discussed have been designed to 
control one specific platform for either a real or simulated 
robot. There has been a trend to design the more advanced 
systems in robotic simulators to avoid problems faced in the 
‘real world’. It is the aim of the remainder of this paper to 
discuss the possibility of developing a control architecture 
trained by the actor critic reinforcement learning rule [12] to 
control two very different robot architectures, a PeopleBot 
and Sony Aibo robot. With the use of reinforcement 
learning the networks can be partially trained in a simulator 
for general camera and motor control. These partially trained 
networks can then be used to control the robots. Further 
training is then carried out on the robots to specialize the 
networks with the actual movement of the individual robots 
and cameras. 

As already discussed different systems tend to work in 
different coordinate systems. For example we worked with a 
robot-oriented coordinate frame [3]. A network was 
successfully trained to produce this coordinate transform. 
However, this limits the applicability of this system to other 
robotic platforms and the coordinate transform would have 
to be trained on every new platform. The goal of the 
transform used was to get the position of the target relative 
to the robot. This information can be gained directly from 
the position of the camera if the target is in the centre of the 
camera image. By using the pan and tilt angles of the camera 
to get the relative position of the target, in principle a system 
can be developed that is platform-independent. 

B. Proposed Architecture 
The core of the architecture will be the two control 

networks; one to control the pan and tilt of the camera and a 
second to control the motors. Two networks will be used to 
avoid the curse of dimensionality. Using one network would 
require a high dimensional hidden layer to model the state 
space and different input / output modalities combined. The 
input would be a combination of the location of the 
landmark and the camera alignment. The output of the 
network would have to combine camera/motor action. We 
avoid this complexity with the modular use of the two 
networks. 

The visual recognition of the landmark will be decoupled 
from the core control allowing flexibility of the landmark to 
be approached. Fig. 3 highlights the proposed architecture. 

 

 
Fig. 3.  Overview of the architecture. The core components are the 
2 control units, which enable platform independency. The 
Landmark search / recognition may need altering slightly for each 
platform. 

 
In the testing scenario initially there will be a direct line 

of sight from the robot to the landmark. However, the 
landmark may not be in the visual field of the robot’s 
camera, requiring a search mechanism to be present in the 
overall architecture. This unit is to move the camera and 
robot until the landmark is present in the camera image. As 
this architecture is being developed to allow a platform-
independent control system, the landmark detection unit will 
be kept simple; it is not in the scope of this paper to test 
advanced object recognition systems, but the portability of 
the proposed architectures between robotic platforms. Hence 
the landmark will be a unique object in the environment and 
will not be occluded by other objects.  

Once the landmark is detected, control will be passed to 
the two control units to move the robot to the required 
location. To allow the camera control unit to track the 
landmark as the robot moves it will need updating with the 
position of the landmark in the camera image. This will be 
achieved via the landmark recognition unit. The function of 
this unit is to recognise the landmark in the camera image 
and get the pixel values of the centre of the landmark to pass 



 
 

 

to the camera control unit. As the camera and robot moves, 
this unit will be invoked to produce the new coordinates of 
the landmark. With the landmark centred in the camera 
image the following will occur as the robot moves: (i) if the 
robot rotates to the left, the landmark will move to the right 
of the image causing the camera to pan to the right to track 
the landmark, (ii) if the robot rotates to the right, the 
landmark will move to the left of the image causing the 
camera to pan to the left to track the landmark, (iii) if the 
robot moves forward, the landmark will move to the bottom 
of the image causing the camera to tilt down to track the 
landmark and (iv) if the robot moves backward, the 
landmark will move to the top of the image causing the 
camera to tilt up to track the landmark. 

The two control units require coupling, which will allow 
them to work in unison. There are several options available 
for the coupling of the units. Two possible couplings are (i) 
to have both control units running concurrently, altering the 
alignment of the camera and the robots motors 
simultaneously. The main drawback to this option would be 
if the camera control unit was not fast enough to keep track 
of the landmark, it could be lost from sight. This could be 
addressed during experimentation by reducing the speed of 
the drive motors, allowing more time for the camera to 
realign to the new position of the landmark; (ii) to only 
initiate the motor control unit once the landmark was within 
a threshold distance from the centre of the camera image. 
However, this approach may lead to a ‘stop-start’ system, 
with the robot moving slightly then stopping until the 
camera realigns itself with the landmark. Therefore, for the 
remainder of the paper it is assumed that (i) will be used for 
the coupling of the control units. 

The two control units will be trained using the actor critic 
reinforcement learning rule shown in (1)-(7). Each network 
will be partially trained in a simulator to learn the general 
control required for the camera and robot movements. These 
partially trained units can then be exported to the robotic 
platform to be controlled. As the units are only partially 
trained, further training will be required on the robot to get 
the specific control for the individual robots. Having already 
learned the basic control for the landmark tracking and 
motor control in the simulator the time required for the 
training on the robot will be greatly reduced. This training 
will thus fine-tune the control units to work with the actual 
movements of the camera and robot. 

Fig. 4 illustrates the architecture for the camera control 
unit. There are two input units one critic unit and four output 
units. As cameras on different robots may have different 
resolutions the two inputs will be the normalised x y 
coordinates of the landmark in the image. As the landmark 
will cover many pixels the centre point of the landmark will 
be used as input to the camera control unit. The hidden area 
will in effect cover the image, and the node that contains the 
centre point of the landmark will be the node to produce the 
required camera action to move the landmark closer to the 

centre of the image. The hidden area is covered by Gaussian 
hills to find the node that encodes the landmark position. 
Here the coordinates are fed into the hidden layer and the 
node which produces the highest firing rate is the node 
encoding the landmark position. 

 

 
Fig. 4.  Architecture to be used for the camera control unit. 
 

To provide an example we will set the dimensions to 
32nodes on the x-axis and 24nodes on the y-axis. With these 
dimensions, an image with a resolution of 640*480 can be 
easily normalised as each node would represent a grid of 
20*20 pixels in the image. Fig. 5 provides an example of an 
image from a camera with the hidden layer superimposed to 
show which node would encode the position of the 
landmark.  

 

 
Fig. 5.  Example camera image with a landmark highlighted and 
the node that encodes the landmark position is illustrated. 
 

In fig. 5 the centre of the landmark is at (190, 152). This 
results in the node located at (10, 8) to encode the position 
of the landmark. It is this node which would produce the 
camera action required to move the landmark to the centre 
of the image. The output from the network is the direction to 
move the camera and is one of the following four actions; (i) 
tilt upward, (ii) tilt downward, (iii) pan left, or (iv) pan right. 



 
 

 

Once the camera has been moved, the new coordinates of 
the landmark would be calculated and fed into the camera 
control unit, say (11, 8). This will be repeated until the 
landmark is positioned in the centre of the image. This unit 
can be tested by moving the object through the camera 
image and seeing if the camera is able to track the object. It 
could work independently from the motor control unit to 
track an object. 

Unlike the camera control unit, the motor control unit 
cannot work in isolation. This needs the camera control unit 
to track the landmark as the robot moves through the 
environment towards the landmark. The architecture of the 
motor control unit is very similar to that of the camera and is 
shown in fig. 6.  

 

 
Fig. 6.  Architecture to be used for the motor control unit. 

 
The architecture has two input nodes, one critic node and 

four output nodes. The hidden area encodes the input to the 
network of the pan and tilt angles of the camera. The 
network produces the required action to get the landmark to 
the base of the robot. The actions available are: (i) move 
forward, (ii) move backward, (iii) rotate to the left, and (iv) 
rotate to the right. The dimension of the hidden layer should 
be defined in such a way that the different pan/tilting 
capabilities of different robots can be represented. These 
angles will be normalised to feed into the network to 
produce the required motor action to move the robot towards 
the goal location.  

Fig. 7 provides an example of the camera position at two 
different stages in the process of approaching the landmark. 
Fig. 7 (a) shows the camera at a position indicating that the 
landmark is to the front right of the robot. The motor control 
unit then needs to move the robot in such a way to get the 
landmark at its base and results in the camera position 
shown in Fig. 7 (b). 

 The goal of the motor control unit is to control the robots 
movement so the camera control unit tracks the landmark 
and produces the camera alignment shown in fig. 7 (b). With 
the camera ‘looking’ down the landmark is at the base of the 
robot. The motor control unit needs to learn the effect that 
robot movement has on the relative position of the landmark 
and thus the movement of camera alignment. This should be 
learned in such a way that the robot can move to manipulate 

the alignment of the camera so that it is aligned as illustrated 
in fig. 7 (b). In the example provided in fig. 7, the robot 
would need to rotate to the right and move forward to 
produce the transition from fig. 7 (a) to (b). 

 
Fig. 7.  Example of different camera alignments (a) position of the 
camera with the landmark located to the front right of the robot and 
(b) position of the camera when the robot is at the landmark.  

 

C. Test Platforms 
As the architecture is designed to allow platform 

independency it is vital it is tested on different robot 
platforms. The first robot that is used for testing id a 
PeopleBot robot shown in fig. 8. This is a wheel-based robot 
and was the platform used in our earlier system [4]; this 
allows a direct comparison with the performance proposed 
system. A direct comparison will be available on the 
performance of the proposed architecture and that of [4]. 
The second platform to be used is a Sony Aibo dog shown 
in fig. 9. These different robots were chosen since they 
belong to very different platforms. If the architecture is 
successful in controlling both robots it will provide some 
validation that the new architecture supports platform-
independence. 

  

 
Fig. 8.  PeopleBot robot 
 



 
 

 

The PeopleBot is a relatively large wheel based robot 
with a width of 47cm, length of 50cm and a height of 124cm 
[13]. The robot is supplied with a Canon VC-C4 Camera 
which is roughly 100cm above floor level. The resolution of 
the camera is 460*350. It is capable of panning 100O to the 
left and right, and can tilt 30O up and 90O down [14].  

The Sony Aibo is a 4 legged robot and is much smaller 
than the PeopleBot. It has a width of 152mm, a height of 
281mm and length of 250mm [15]. The camera is a 100 000 
pixel CMOS sensor positioned in the nose of the robot and 
produces an image of 172*143. As the camera is located in 
the nose it is pan/tilted by movement of the robot’s head. It 
is capable of tilting 20O up, tilting 65O down, and panning 
90O to the left and right (these angles are approximate 
values).  

 

 
Fig. 9.  Sony Aibo robotic dog 
 
Even though the two test platforms are completely 

different, the architecture makes use of the similarities that 
are present. This is due to the availability of a pan/tilt 
camera in both robots, because although they are situated at 
totally different heights, they can still be used in the same 
way. Both robots will be at the landmark when the cameras 
have a 0 pan/tilt angle and the camera is pointing downward 
with the landmark in the centre of the camera images 
highlighted in fig. 10 (b) and (c). The need for a coordinate 
transform mechanism has been avoided by the use of this 
principle and enabled the platform independency.  

 

 
Fig. 10.  Example of the camera alignments for the two test robots 
(this is the same as the example provided in fig. 7). 

 

Fig. 7 provided an example of general camera alignments 
when the landmark was detected to the front right of the 
robot and when it was at the base of the robot. Possible 
camera alignments on the test platforms are shown in fig. 9 
for these situations. Fig. 10 (a) and (c) shows the camera 
alignment of the PeopleBot and the Sony Aibo with a 
landmark located to the front right. Fig. 10 (b) and (d) show 
the camera alignments when the landmark is located at the 
base of each of the robots. From fig. 10 it can be seen that 
the two robots have very similar camera alignments in these 
situations, and it is this similarity that will allow the 
platform-independent control. Although the cameras work 
on different scales, the actions required by both robots to 
move to the landmark would be very similar.  

V. DISCUSSION 
The proposed architecture tackles several aspects of robot 

control. Traditionally robot control has been hard coded, and 
is highly platform dependant. Not only is hard coding the 
control mechanism time consuming, it is also not flexible. 
The architecture presented will be capable of learning the 
robot control, allowing a robot to move to a specified 
location in an environment, marked by a unique predefined 
landmark. 

The architecture designed will be trained via 
reinforcement learning, but the traditional problems 
associated with reinforcement learning have been avoided. 
The first of these is the ‘curse of dimensionality’. This has 
been avoided by the use of two modular networks to control 
the camera motors and the drive motors of the robots. To 
control both sets of motors from one network would require 
a four-dimensional hidden layer to model the state space. 
Also more output units would be required to control all 
motors from the one network. However, by using the two 
networks the need for the high dimensional hidden layer has 
been removed. Each of the control networks only need a 
two-dimensional hidden layer. 

The networks are trained via the actor critic reinforcement 
learning rule which can have lengthy training times. This 
can cause problems for training on-line due to the physical 
limitations of robots (battery life etc.). The two control units 
will be initially trained in a simulator to circumvent this 
problem. Once a rough control mechanism is learned the 
network can then be exported to the test platforms for the 
final training. As the rough control is already learned, the 
random exploration of the environment required to initially 
locate the rewards will be removed. It is expected that the 
time needed for the final training will be greatly reduced as 
it will be the fine tuning of the control of the different 
platforms, which will be learned not the entire control 
mechanism. It is in applying this theory of initial training 
and then fine tuning on the different robots that will allow 
the platform-independent control. This is made possible by 
the use of reinforcement learning, producing a general 
reward structure during the initial training, then adapting 
this during the fine tuning on the different robots. 



 
 

 

Although the control system is platform-independent, 
interfaces will need to be developed for allowing interaction 
between the control units and the robot. The interfaces that 
are required are for the capturing of images from the 
cameras and the physical movements of the robot. The 
action to be performed by the robot will come from the 
platform independent control system and the actual 
movement of the robot will come from the interface. Also 
some form of normalisation will be needed for the camera 
dimensions and pan/tilt angles as these vary from robot to 
robot. This could be a simple allocation of a set number of 
pixels/range of angles to a hidden unit. An example of this 
would be if 20 hidden units were to encode 200O of panning 
on the camera. Here each unit would encode 10O of the 
panning. The same principle can be used for the tilting of the 
camera and for the allocation of pixels to hidden units. 

The motivation for the proposed architecture came from 
the development of the system presented in [4]. Although 
the system was successful in allowing a PeopleBot robot to 
achieve the defined scenario, limitations were present. The 
system was highly dependant on the custom made 
omnidirectional camera which would hamper replication of 
the system.  

VI. CONCLUSION 
This paper has presented a method for developing a 

platform-independent control system for mobile robots using 
reinforcement learning. The scenario to test the proposed 
architecture has been developed allowing the different 
robots to be tested in that same scenario. Here the robots are 
required to move from their starting position to a goal 
location, which is defined by a set landmark. The scenario 
has been designed in such a way that it will be extensible 
once the robots are able to successfully move to the goal 
location.  

Initially the landmark will be a single stationary 
predefined object which is unique in the environment. With 
an image processing module, separate from the robot control 
units, a library of landmarks could be built to allow the 
robots to perform topological navigation. An alternative 
extension could be to have a moving object as opposed to a 
stationary landmark. The camera could track the object as 
the robot moves, this would thus allow a robot to track and 
follow a moving object. 
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