

Reinforcement Learning for Platform-Independent Visual Robot
Control

David Muse, Kevin Burn and Stefan Wermter

Centre for Hybrid Intelligent Systems
School of Computing and Technology, University of Sunderland

www.his.sunderland.ac.uk

Abstract—This paper proposes a new architecture for robot

control. A test scenario is outlined to test the proposed system
and enable a comparison with an existing system, which is able
to fulfil the scenario and thus be used as a benchmark. The
scenario is a navigation task, to allow a robot to approach a
specified landmark. The proposed architecture will make use of
two control units, one to allow a pan/tilt camera to track the
landmark as the robot moves, and a second to control the
robots drive motors. These units will be trained via
reinforcement learning, and provide the potential for platform-
independent robot control.

I. INTRODUCTION
N the past several different systems have been developed
employing reinforcement learning for robot control. These

systems have used different input modalities, from
coordinates provided in simulated environments [1], to
visual input for simulated or real world robot control [2]-[4].
Reinforcement learning is a technique, which uses
reinforcement signals to train the ‘agent’ (a network, robot
etc. to learn sequence policies). The reinforcement signal is
given when the ‘agent’ achieves or misses the goal. Initially
the ‘agent’ explores its environment randomly until it
achieves the set goal, then as the ‘agent’ learns, the
exploration becomes more structured (see [5] for a good
introduction to some reinforcement techniques).

The following Section provides an overview of several
systems developed to control mobile robots using
reinforcement learning. All of these systems have been
designed to control a specific robot platform. To control a
different robot platform the systems would require
redevelopment. However, there are commonalities with
many robots; these can potentially be used in conjunction
with reinforcement learning to develop platform-
independent control systems.

D. Muse is a PhD student at the University of Sunderland and is a
member of the Hybrid Intelligent Systems Research Group (phone: +44-
191-515-3291 fax: +44-191-5153-461 e-mail:
david.muse@sunderland.ac.uk).

Dr. K Burn is a Senior lecturer at the University of Sunderland (e-mail:
kevin.burn@sunderland.ac.uk)

Prof. S. Wermter is the Chair of the Hybrid Intelligent Systems research
group at the University of Sunderland (e-mail:
stefan.wermter@sunderland.ac.uk)

The focus of this paper is to develop a platform-
independent control system for a robot navigation task,
which couples pan/tilt cameras to gather visual information
and reinforcement learning. The pan/tilt camera will be used
to locate a predefined landmark. The centre point of this
landmark will then be used to allow the camera to keep it in
the centre of its ‘gaze’. With the landmark centred in the
image the pan and tilt angles of the camera can be used to
deduce the relative position of the landmark to the robot,
and be fed into a motor control unit to allow the robot to
approach the landmark. Reinforcement learning will be used
to train two control units, one to keep the landmark in the
centre of the camera image and a second to control the
robots drive motors.

The remainder of the paper is structured as follows.
Section II provides an overview of existing systems
developed for robot control tasks using reinforcement
learning. Section III highlights the scenario for the control
task, followed by a discussion of an existing system
developed for the scenario, complete with results. In Section
IV a discussion of the proposed architecture is provided,
starting with the motivation for the work. This is followed
by a discussion of the architecture to address the defined
scenario. The final part of section IV discusses the robotic
platforms on which the proposed architecture will be tested.
Section V provides a discussion on the possibilities of the
proposed architecture with possible extensions. A
conclusion to the proposed work is provided in section VI.

II. OVERVIEW OF EXISTING SYSTEMS
Reinforcement learning has been successfully applied to

different robot control tasks, and an overview of some of
these systems is given here. It has been used to control a
simulated robot in the field of robot soccer [1]. The paper
concentrates on the results Hafner and Riedmiller obtained
from the simulated environment, however they also state
that they are working on adapting the system to work on
their omnidirectional robot. They highlight a common
problem which is the length of time it took to learn the
defined tasks. This problem needs to be considered when
using reinforcement learning on robots.

 As part of a European funded project to study Mirror

I

Neurons we developed a visual system; the system allowed a
PeopleBot robot to pick an object from a table [2]. This
system used visual input and reinforcement learning to
position the robot with the object between its grippers.
However, it had a limited range, as the object needed to be
in the visual field of the camera at all times during the run.
The camera was also held in a fixed position, so was unable
to track the object if it moved out of view. Work has been
undertaken to extend this system [3],[4].

We extended the system by allowing the pan/tilt camera
to move [3]. This increased the range of the robot vision, as
the camera could track the object. We focused on the
network developed to perform a coordinate transform to
deduce the angle and distance to the object in robot centred
coordinates. These values were used as the inputs to the
reinforcement network. However, the system has not yet
been tested on a real robot. The use of the coordinate
transform network introduces possible errors to the system
and increases the complexity.

 We provided an alternative extension, using an
omnidirectional camera [4]. This was successfully
implemented on the PeopleBot and used a sequence of
reinforcement subsystems to allow the robot to reach the
object from a greatly increased range. Here, the original
network was unaltered and a new network was used to
locate the object via omnidirectional vision and a specified
landmark. Once at the landmark the object was visible in the
pan/tilt camera. However, as the original network was used,
the camera remained stationary and if the object moved out
of sight, the system would still be unable to track the it. To
avoid a lengthy online training time, the network was
initially trained on a simulator. This was then exported to the
robot for the final training, which fine tuned the network to
control the motor system of the robot. This principle will be
used by the system proposed in this paper.

Sierra et al describe their work, where a simulated robot is
controlled using various reinforcement learning algorithms
[6], coupled with the control architecture described in [7] for
the sharing of the visual component. Here the vision system
is competed for by the different subsystems such as the
navigation system to allow the robot to move to the
landmark or the pilot system which performs obstacle
avoidance.

Gaskett et al developed a control system for a robot using
a fixed camera, and used reinforcement learning to remove
the need for camera calibration [8]. All of these systems
have demonstrated the applicability of reinforcement
learning to robot control problems. However, the main
problem faced by reinforcement learning is the ‘curse of
dimensionality’: increasing the number of inputs increases
the dimensionality of the state space, which is used to model
the input variables. We avoid this problem in our proposed
architecture as the subsystems have been designed to only
require two inputs to avoid the curse of dimensionality.

III. SCENARIO AND INITIAL WORK

A. Scenario
The initial scenario that will be used to test the proposed

architecture is similar to that used by Gaskett et al [8]. The
robot will be placed at a random starting position with a
direct line of sight to the specified landmark and will be
required to move to the landmark. To allow tracking of the
landmark as the robot moves, the camera will be free to
pan/tilt. With the camera being free, two control units are
required: one for the camera to keep the landmark in the
centre of the image and another for motor control, allowing
the robot to move to the landmark. Once the robot is able to
move to the specified landmark the system can be extended,
by compiling a library of landmarks could be used to allow
the robot to perform topological navigation [9], moving
from one landmark to the next.

B. Learning Robot Control using an Omnidirectional
Camera
A system has been designed based on omnidirectional

vision and reinforcement learning [4]. A brief overview of
the system follows.

Fig. 1. Architecture used in the initial work.

Fig. 1 illustrates the architecture used for the network
allowing the robot to move to a predefined landmark. There
are two input units, which are the normalised (x,y)
coordinates of the landmark in the omnidirectional image.
The trained network then produces the required action to
ensure the landmark is ahead of the robot, which then moves
forward towards it.

The network was trained using the actor critic
reinforcement learning algorithm [6]. Equation (1) is used to
calculate the activation of the hidden units to find which unit
encodes the position of the landmark in the omnidirectional
image. The activation of the hidden units are defined as:

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−= 2

2

2
exp)(

σ
i

i

sp
pf

(1)

Each node in the hidden layer is covered by a Gaussian

hill of activation, which is described by (1). p is the

perceived position of the landmark in the omnidirectional
image, si represents the coordinates of the centres of each of
the Gaussians and σ is the standard deviation of the
Gaussian. The activation of the critic is calculated using (2)
and is a weighted sum of the activations of the place cells.

() ()pfwpC

i
ii∑=

)

(2)

Equation (3) calculates the predicted errors of the possible

actions taken by the robot. The calculated value is then used
during the training of the critic. Rt (the reward at time t) only
equals 1 when the robot is at the goal. As there will be no
next time step at this point C(pt+1) is 0. At all other times Rt
equals 0; thus they are never included in the calculation at
the same time. γ is the constant discounting factor. pt+1 is
calculated by predicting the change in position cause by the
action to be performed. This varies from action to action.

 () (tttt pCpCR −+= +1γδ (3)

Equation (4) is used in the training of the critic and this

uses the predicted error calculated in (3).

()titi pfw δ∝∆

()
()∑

=

k
k

j
j a

a
P

2exp
2exp

() ()tgpfz jtitji δ∝∆

() ()∑=
i

ijij pfzpa

(4)

To calculate the activation of the actor nodes (5) is used.

The activation is a weighted sum of the activations of the
surrounding hidden units to the current location.

(5)

During the training of the network, exploration of the

environment was made possible using (6) and a random
variable. The probability of each action is calculated and
incrementally summed; when the result crosses the
generated variable that action is executed.

 (6)

The actor units are trained using (7) in a modified form of
Hebbian learning. Here the weight is only updated if the
action is performed. This is achieved by setting gj(t) to 1 if
the action is chosen or to 0 otherwise.

(7)

The results gained from the experimentation undertaken
on the robot are shown in table I. Here, the PeopleBot robot
was placed in visual range of the landmark and was required
to move to it. The robot was required to find the landmark in
the omnidirectional image, turn and approach the landmark.
Each trial was deemed successful if the robot approached
the landmark to a range of 10cm or less. An unsuccessful
trial occurred if the robot didn’t approach to the required
range, or it did not find the landmark. Eight starting
positions were tested during the experiments, each starting

position was given ten trials and the success of each trial
was recorded. These trials took between 20 and 60 seconds
to complete. This time depended on the amount the robot
was required to turn to position the landmark ahead of itself.
Also, as the test was conducted on an actual robot there were
some external factors affecting the time, such as the motors
occasionally stalled as the robot was turning. For training
statistics of the network see [4].

TABLE I

RESULTS FROM ROBOT TRIALS
Landmark
Position % Success

Rear Left 80
Front 70
Right 70
Rear Right 70
Left 70
Front Left 30
Front Right 30
Rear 30
Overall 56.25

The experiments provided positive results for the system,

illustrating the system is capable fulfilling the scenario.
However, a problem occurred when the landmark was
initially in one of the following three positions: (i) to the
front left of the robot, (ii) to the front right of the robot, and
(iii) to the rear of the robot. Fig. 2 illustrates the cause of this
problem, which is the design of the omnidirectional camera.
There are three blind spots present, where the supporting
pillars for the conical mirror are. When the landmark was
initially behind one of these pillars the system often failed to
find them and produced unsuccessful trails. However, the
results produced when the landmark was in view from the
start had a success rate of 72%. In the remaining trials the
landmark may have become occluded by the supporting
pillars and thus lost from sight resulting in the unsuccessful
trials. This problem may have been solved by further
training on the robot.

Fig. 2. Top down view of the omnidirectional camera with the
support pillars and relative positions of the landmarks are shown.

This system successfully allowed a PeopleBot robot to
move to the predefined landmark using reinforcement
leaning. However, it is not possible to transfer the trained
control system to a different robotic platform. The
experience gained during the development of this system has
led to the architecture proposed in the following Section.

IV. OVERVIEW OF THE ARCHITECTURE

A. Motivation for Architecture
It is well known that developing control software for

robots is a very time consuming and difficult process when
the system is hard-coded [10]. Hard-coding here means the
robot is manually programmed with required actions given
the state of the environment. To design a robust system all
possible occurrences need to be considered and coded where
appropriate. An alternative to hard-coding the control is to
learn it over time, from experience via interaction with the
environment. Wolpert et al discuss motor learning and the
different approaches that can be used (supervised,
unsupervised and reinforcement learning) to learn the motor
control from a Neurologists perspective [11]. The learning
approach adopted by this paper is reinforcement learning as
discussed in Section III. This method of training has been
successfully used for robot control [1]-[4].

All of the systems discussed have been designed to
control one specific platform for either a real or simulated
robot. There has been a trend to design the more advanced
systems in robotic simulators to avoid problems faced in the
‘real world’. It is the aim of the remainder of this paper to
discuss the possibility of developing a control architecture
trained by the actor critic reinforcement learning rule [12] to
control two very different robot architectures, a PeopleBot
and Sony Aibo robot. With the use of reinforcement
learning the networks can be partially trained in a simulator
for general camera and motor control. These partially trained
networks can then be used to control the robots. Further
training is then carried out on the robots to specialize the
networks with the actual movement of the individual robots
and cameras.

As already discussed different systems tend to work in
different coordinate systems. For example we worked with a
robot-oriented coordinate frame [3]. A network was
successfully trained to produce this coordinate transform.
However, this limits the applicability of this system to other
robotic platforms and the coordinate transform would have
to be trained on every new platform. The goal of the
transform used was to get the position of the target relative
to the robot. This information can be gained directly from
the position of the camera if the target is in the centre of the
camera image. By using the pan and tilt angles of the camera
to get the relative position of the target, in principle a system
can be developed that is platform-independent.

B. Proposed Architecture
The core of the architecture will be the two control

networks; one to control the pan and tilt of the camera and a
second to control the motors. Two networks will be used to
avoid the curse of dimensionality. Using one network would
require a high dimensional hidden layer to model the state
space and different input / output modalities combined. The
input would be a combination of the location of the
landmark and the camera alignment. The output of the
network would have to combine camera/motor action. We
avoid this complexity with the modular use of the two
networks.

The visual recognition of the landmark will be decoupled
from the core control allowing flexibility of the landmark to
be approached. Fig. 3 highlights the proposed architecture.

Fig. 3. Overview of the architecture. The core components are the
2 control units, which enable platform independency. The
Landmark search / recognition may need altering slightly for each
platform.

In the testing scenario initially there will be a direct line

of sight from the robot to the landmark. However, the
landmark may not be in the visual field of the robot’s
camera, requiring a search mechanism to be present in the
overall architecture. This unit is to move the camera and
robot until the landmark is present in the camera image. As
this architecture is being developed to allow a platform-
independent control system, the landmark detection unit will
be kept simple; it is not in the scope of this paper to test
advanced object recognition systems, but the portability of
the proposed architectures between robotic platforms. Hence
the landmark will be a unique object in the environment and
will not be occluded by other objects.

Once the landmark is detected, control will be passed to
the two control units to move the robot to the required
location. To allow the camera control unit to track the
landmark as the robot moves it will need updating with the
position of the landmark in the camera image. This will be
achieved via the landmark recognition unit. The function of
this unit is to recognise the landmark in the camera image
and get the pixel values of the centre of the landmark to pass

to the camera control unit. As the camera and robot moves,
this unit will be invoked to produce the new coordinates of
the landmark. With the landmark centred in the camera
image the following will occur as the robot moves: (i) if the
robot rotates to the left, the landmark will move to the right
of the image causing the camera to pan to the right to track
the landmark, (ii) if the robot rotates to the right, the
landmark will move to the left of the image causing the
camera to pan to the left to track the landmark, (iii) if the
robot moves forward, the landmark will move to the bottom
of the image causing the camera to tilt down to track the
landmark and (iv) if the robot moves backward, the
landmark will move to the top of the image causing the
camera to tilt up to track the landmark.

The two control units require coupling, which will allow
them to work in unison. There are several options available
for the coupling of the units. Two possible couplings are (i)
to have both control units running concurrently, altering the
alignment of the camera and the robots motors
simultaneously. The main drawback to this option would be
if the camera control unit was not fast enough to keep track
of the landmark, it could be lost from sight. This could be
addressed during experimentation by reducing the speed of
the drive motors, allowing more time for the camera to
realign to the new position of the landmark; (ii) to only
initiate the motor control unit once the landmark was within
a threshold distance from the centre of the camera image.
However, this approach may lead to a ‘stop-start’ system,
with the robot moving slightly then stopping until the
camera realigns itself with the landmark. Therefore, for the
remainder of the paper it is assumed that (i) will be used for
the coupling of the control units.

The two control units will be trained using the actor critic
reinforcement learning rule shown in (1)-(7). Each network
will be partially trained in a simulator to learn the general
control required for the camera and robot movements. These
partially trained units can then be exported to the robotic
platform to be controlled. As the units are only partially
trained, further training will be required on the robot to get
the specific control for the individual robots. Having already
learned the basic control for the landmark tracking and
motor control in the simulator the time required for the
training on the robot will be greatly reduced. This training
will thus fine-tune the control units to work with the actual
movements of the camera and robot.

Fig. 4 illustrates the architecture for the camera control
unit. There are two input units one critic unit and four output
units. As cameras on different robots may have different
resolutions the two inputs will be the normalised x y
coordinates of the landmark in the image. As the landmark
will cover many pixels the centre point of the landmark will
be used as input to the camera control unit. The hidden area
will in effect cover the image, and the node that contains the
centre point of the landmark will be the node to produce the
required camera action to move the landmark closer to the

centre of the image. The hidden area is covered by Gaussian
hills to find the node that encodes the landmark position.
Here the coordinates are fed into the hidden layer and the
node which produces the highest firing rate is the node
encoding the landmark position.

Fig. 4. Architecture to be used for the camera control unit.

To provide an example we will set the dimensions to
32nodes on the x-axis and 24nodes on the y-axis. With these
dimensions, an image with a resolution of 640*480 can be
easily normalised as each node would represent a grid of
20*20 pixels in the image. Fig. 5 provides an example of an
image from a camera with the hidden layer superimposed to
show which node would encode the position of the
landmark.

Fig. 5. Example camera image with a landmark highlighted and
the node that encodes the landmark position is illustrated.

In fig. 5 the centre of the landmark is at (190, 152). This
results in the node located at (10, 8) to encode the position
of the landmark. It is this node which would produce the
camera action required to move the landmark to the centre
of the image. The output from the network is the direction to
move the camera and is one of the following four actions; (i)
tilt upward, (ii) tilt downward, (iii) pan left, or (iv) pan right.

Once the camera has been moved, the new coordinates of
the landmark would be calculated and fed into the camera
control unit, say (11, 8). This will be repeated until the
landmark is positioned in the centre of the image. This unit
can be tested by moving the object through the camera
image and seeing if the camera is able to track the object. It
could work independently from the motor control unit to
track an object.

Unlike the camera control unit, the motor control unit
cannot work in isolation. This needs the camera control unit
to track the landmark as the robot moves through the
environment towards the landmark. The architecture of the
motor control unit is very similar to that of the camera and is
shown in fig. 6.

Fig. 6. Architecture to be used for the motor control unit.

The architecture has two input nodes, one critic node and

four output nodes. The hidden area encodes the input to the
network of the pan and tilt angles of the camera. The
network produces the required action to get the landmark to
the base of the robot. The actions available are: (i) move
forward, (ii) move backward, (iii) rotate to the left, and (iv)
rotate to the right. The dimension of the hidden layer should
be defined in such a way that the different pan/tilting
capabilities of different robots can be represented. These
angles will be normalised to feed into the network to
produce the required motor action to move the robot towards
the goal location.

Fig. 7 provides an example of the camera position at two
different stages in the process of approaching the landmark.
Fig. 7 (a) shows the camera at a position indicating that the
landmark is to the front right of the robot. The motor control
unit then needs to move the robot in such a way to get the
landmark at its base and results in the camera position
shown in Fig. 7 (b).

 The goal of the motor control unit is to control the robots
movement so the camera control unit tracks the landmark
and produces the camera alignment shown in fig. 7 (b). With
the camera ‘looking’ down the landmark is at the base of the
robot. The motor control unit needs to learn the effect that
robot movement has on the relative position of the landmark
and thus the movement of camera alignment. This should be
learned in such a way that the robot can move to manipulate

the alignment of the camera so that it is aligned as illustrated
in fig. 7 (b). In the example provided in fig. 7, the robot
would need to rotate to the right and move forward to
produce the transition from fig. 7 (a) to (b).

Fig. 7. Example of different camera alignments (a) position of the
camera with the landmark located to the front right of the robot and
(b) position of the camera when the robot is at the landmark.

C. Test Platforms
As the architecture is designed to allow platform

independency it is vital it is tested on different robot
platforms. The first robot that is used for testing id a
PeopleBot robot shown in fig. 8. This is a wheel-based robot
and was the platform used in our earlier system [4]; this
allows a direct comparison with the performance proposed
system. A direct comparison will be available on the
performance of the proposed architecture and that of [4].
The second platform to be used is a Sony Aibo dog shown
in fig. 9. These different robots were chosen since they
belong to very different platforms. If the architecture is
successful in controlling both robots it will provide some
validation that the new architecture supports platform-
independence.

Fig. 8. PeopleBot robot

The PeopleBot is a relatively large wheel based robot
with a width of 47cm, length of 50cm and a height of 124cm
[13]. The robot is supplied with a Canon VC-C4 Camera
which is roughly 100cm above floor level. The resolution of
the camera is 460*350. It is capable of panning 100O to the
left and right, and can tilt 30O up and 90O down [14].

The Sony Aibo is a 4 legged robot and is much smaller
than the PeopleBot. It has a width of 152mm, a height of
281mm and length of 250mm [15]. The camera is a 100 000
pixel CMOS sensor positioned in the nose of the robot and
produces an image of 172*143. As the camera is located in
the nose it is pan/tilted by movement of the robot’s head. It
is capable of tilting 20O up, tilting 65O down, and panning
90O to the left and right (these angles are approximate
values).

Fig. 9. Sony Aibo robotic dog

Even though the two test platforms are completely

different, the architecture makes use of the similarities that
are present. This is due to the availability of a pan/tilt
camera in both robots, because although they are situated at
totally different heights, they can still be used in the same
way. Both robots will be at the landmark when the cameras
have a 0 pan/tilt angle and the camera is pointing downward
with the landmark in the centre of the camera images
highlighted in fig. 10 (b) and (c). The need for a coordinate
transform mechanism has been avoided by the use of this
principle and enabled the platform independency.

Fig. 10. Example of the camera alignments for the two test robots
(this is the same as the example provided in fig. 7).

Fig. 7 provided an example of general camera alignments
when the landmark was detected to the front right of the
robot and when it was at the base of the robot. Possible
camera alignments on the test platforms are shown in fig. 9
for these situations. Fig. 10 (a) and (c) shows the camera
alignment of the PeopleBot and the Sony Aibo with a
landmark located to the front right. Fig. 10 (b) and (d) show
the camera alignments when the landmark is located at the
base of each of the robots. From fig. 10 it can be seen that
the two robots have very similar camera alignments in these
situations, and it is this similarity that will allow the
platform-independent control. Although the cameras work
on different scales, the actions required by both robots to
move to the landmark would be very similar.

V. DISCUSSION
The proposed architecture tackles several aspects of robot

control. Traditionally robot control has been hard coded, and
is highly platform dependant. Not only is hard coding the
control mechanism time consuming, it is also not flexible.
The architecture presented will be capable of learning the
robot control, allowing a robot to move to a specified
location in an environment, marked by a unique predefined
landmark.

The architecture designed will be trained via
reinforcement learning, but the traditional problems
associated with reinforcement learning have been avoided.
The first of these is the ‘curse of dimensionality’. This has
been avoided by the use of two modular networks to control
the camera motors and the drive motors of the robots. To
control both sets of motors from one network would require
a four-dimensional hidden layer to model the state space.
Also more output units would be required to control all
motors from the one network. However, by using the two
networks the need for the high dimensional hidden layer has
been removed. Each of the control networks only need a
two-dimensional hidden layer.

The networks are trained via the actor critic reinforcement
learning rule which can have lengthy training times. This
can cause problems for training on-line due to the physical
limitations of robots (battery life etc.). The two control units
will be initially trained in a simulator to circumvent this
problem. Once a rough control mechanism is learned the
network can then be exported to the test platforms for the
final training. As the rough control is already learned, the
random exploration of the environment required to initially
locate the rewards will be removed. It is expected that the
time needed for the final training will be greatly reduced as
it will be the fine tuning of the control of the different
platforms, which will be learned not the entire control
mechanism. It is in applying this theory of initial training
and then fine tuning on the different robots that will allow
the platform-independent control. This is made possible by
the use of reinforcement learning, producing a general
reward structure during the initial training, then adapting
this during the fine tuning on the different robots.

Although the control system is platform-independent,
interfaces will need to be developed for allowing interaction
between the control units and the robot. The interfaces that
are required are for the capturing of images from the
cameras and the physical movements of the robot. The
action to be performed by the robot will come from the
platform independent control system and the actual
movement of the robot will come from the interface. Also
some form of normalisation will be needed for the camera
dimensions and pan/tilt angles as these vary from robot to
robot. This could be a simple allocation of a set number of
pixels/range of angles to a hidden unit. An example of this
would be if 20 hidden units were to encode 200O of panning
on the camera. Here each unit would encode 10O of the
panning. The same principle can be used for the tilting of the
camera and for the allocation of pixels to hidden units.

The motivation for the proposed architecture came from
the development of the system presented in [4]. Although
the system was successful in allowing a PeopleBot robot to
achieve the defined scenario, limitations were present. The
system was highly dependant on the custom made
omnidirectional camera which would hamper replication of
the system.

VI. CONCLUSION
This paper has presented a method for developing a

platform-independent control system for mobile robots using
reinforcement learning. The scenario to test the proposed
architecture has been developed allowing the different
robots to be tested in that same scenario. Here the robots are
required to move from their starting position to a goal
location, which is defined by a set landmark. The scenario
has been designed in such a way that it will be extensible
once the robots are able to successfully move to the goal
location.

Initially the landmark will be a single stationary
predefined object which is unique in the environment. With
an image processing module, separate from the robot control
units, a library of landmarks could be built to allow the
robots to perform topological navigation. An alternative
extension could be to have a moving object as opposed to a
stationary landmark. The camera could track the object as
the robot moves, this would thus allow a robot to track and
follow a moving object.

REFERENCES
[1] R. Hafner and M. Riedmiller, “Reinforcement learning on an

omnidirectional mobile robot” IEEE/RSJ International Conference on
Intelligent Robots and Systems for Human Security, Health, and
Prosperity, 2003

[2] C. Weber, S. Wermter, and A. Zochios, “Robot docking with neural
vision and reinforcement” Knowledge Based Systems, Vol. 12, No. 2-
4, pp. 165-72, 2004.

[3] C. Weber, D. Muse, M. Elshaw, and S. Wermter, “A camera-direction
dependent visual-motor coordinate transformation for a visually
guided neural robot” Applications and Innovations in Intelligent

Systems XIII - International Conference on Innovative Techniques and
Applications of Artificial Intelligence, pp. 151-164, 2005

[4] D. Muse, C. Weber, and S. Wermter, “Robot docking based on
omnidirectional vision and reinforcement learning” Research and
Development in Intelligent Systems XXII - International Conference
on Innovative Techniques and Applications of Artificial Intelligence,
pp. 23-36, 2005

[5] R.S. Sutton and A.G. Barto, “Reinforcement learning an introduction”
MIT Press, 1998

[6] D. Busquets, R. Lopez de Mantaras, C. Sierra, and T.G. Ditterich
“Reinforcement learning for landmark-based robot navigation” In
Proceedings of The International Conference on Autonomous Agents
and Multiagent Systems, 2002

[7] C. Sierra, R. Lopez de Mantaras, and D. Busquets, “Multiagent
bidding mechanisms for robot qualitative navigation” Lecture Notes in
Computer Science, Vol. 1986, pp. 198-205, 2002

[8] C. Gaskett, L. Fletcher, and A. Zelinsky, “Reinforcement learning for
visual servoing of a mobile robot” In Proceedings of the Australian
Conference on Robotics and Automation, 2000

[9] O. Trullier, S.I. Wiener, A. Berthoz, and J-A Myer “Biologically
based artificial navigation systems: review and prospects” Progress in
Neurobiology, Vol. 51, pp. 483-544, 1997

[10] W.D. Smart and L.P. Kaelbling, “Reinforcement learning for robot
control” In Proceedings of the SPIE: Mobile Robots XVI, Vol. 4573,
pp. 92-103, 2001

[11] D.M. Wolpert, Z. Ghahramani, and J.R. Flanagan, “Perspectives and
problems in motor learning” TRENDS in Cognitive Sciences Vol. 5,
No. 11, pp. 487-494, 2001

[12] D.J. Foster, R.G.N. Morris, and P. Dayan, “A model of hippocampally
dependent navigation, using the temporal learning rule” Hippocampus,
Vol. 10, pp. 1-16, 2000

[13] ActivMedia Robotics “Performance PeopleBotTM operations manual”
pp. 65

[14] ActivMedia Robotics “PTZ Robotic Cameras” pp. 13
[15] Sony EntertainmentRobot Aibo operating instructions ERS-210 pp. 63

	Introduction
	Overview Of Existing Systems
	Scenario and Initial Work
	Scenario
	Learning Robot Control using an Omnidirectional Camera

	Overview of the Architecture
	Motivation for Architecture
	Proposed Architecture
	Test Platforms

	Discussion
	Conclusion

