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Abstract – In this paper we describe a bioinspired hy-

brid architecture for acoustic sound source localisation 
and tracking to increase the signal to noise ratio (SNR) 
between speaker and background sources for a socially 
interactive robot’s speech recogniser system.  The model 
presented incorporates the use of Interaural Time Differ-
ence for azimuth estimation and Recurrent Neural Net-
works for trajectory prediction.  The results are then pre-
sented showing the difference in the SNR of a localised and 
non-localised speaker source, in addition to presenting the 
recognition rates between a localised and non-localised 
speaker source.  From the results presented in this paper it 
can be seen that by orientating towards the sound source 
of interest the recognition rates of that source can be in-
creased.  

 
Index Terms – Sound Source Localisation, Signal to 

Noise Ratio, Speech Recognition, Sociable Interactive Ro-
bots, Human Robot Interaction. 

I.  INTRODUCTION 

Audition is a modality that is becoming more important in 
the role of developing socially interactive robots [1] to operat-
ing within a natural environment.  Audition is the main com-
munication method of humans and animals; therefore it is an 
important factor in the development of socially interactive 
robots.  In order to integrate robots into society to interact and 
communicate with humans this process of interaction should 
be as natural as possible.   

It has been shown that humans react and ultimately find it 
easier to communicate with robots in a manner in which they 
feel comfortable [2-4] and therefore any pre-requisite knowl-
edge required for the control and interaction of such sociable 
robots should be where possible kept to a minimum.  Thus, 
robotic human interaction is becoming an important aspect of 
robotic research [1-2] for developing socially interactive ro-
bots capable of communicating with humans. 

The central auditory system (CAS) of the mammalian is ex-
tremely adept at using acoustics for communication purposes 
in both speech processing and auditory scene analysis (ASA).  
The CAS is also capable of localising sound sources within an 
acoustically cluttered environment enabling the mammalian to 
infer the relative position of any sources present.  Due to the 
abilities and accuracy that has been demonstrated by that of 

the mammalian’s CAS with respect to acoustics [5] the model 
presented within this paper draws its inspiration from the bin-
aural cues known to be used by the CAS in addition to mecha-
nisms believed to exist within biology to aid in the improve-
ment of signal to noise rations for speech recognition. 

II. COCKTAIL PARTY EFFECT 

A. Listening to one speaker 

One of the problems faced by both socially interactive ro-
bots and humans involves being able to intelligibly understand 
or interpret a source of interest within an acoustically cluttered 
environment.  This is a problem that has been faced by most 
people at various points in their life, either at a crowded party, 
or in the middle of a busy shopping centre.  This phenomenon 
is known as the ‘Cocktail Party Effect’ as first noted by E.C. 
Cherry in 1953 [6].  The processing of the ‘Cocktail Party 
Effect’ does not happen solely within the Auditory Cortex 
(AC) but begins at the pinnae of the ears.  This phenomenon is 
of major interest to neuroscientists and roboticists [7-8]. 

B. Signal to Noise Ratio 

One way in which this paper addresses the ‘Cocktail Party 
Effect’ is by making changes to the signal to noise ratio (SNR) 
with respect to both a speaker and background source.  The 
model presented in this paper demonstrates how a novel archi-
tecture for sound source localisation and predictive tracking 
can be used to increase the SNR in order to improve the accu-
racy of a speech recognition system by changing the position 
of the robot with respect to the desired sound source.  The 
SNR described in this paper refers to the power P (or energy 
function) ratio of a meaningful signal and background noise 
(or unwanted / irrelevant noise) as shown in (1). 
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The SNR is given in units of decibel (dB), is usually ex-
pressed in terms of a logarithmic scale, and is 20 times the 
logarithmic of the power (or energy function) ratio (2). 
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As can be seen from (2) the greater the power difference 
between the two signals then the larger the ratio and thus more 
energy is therefore being received from the source of interest 
with respect to the background source(s). 

In order to determine the SNR from (2) the power or energy 
needs to be calculated for the signals PSIGNAL and PNOISE.  
Equation 3 shows the equation used for representing the 
amount of energy contained within a signal.  The value re-
turned from this energy function does not have any units as the 
values used to represent the signals are normalised by the sys-
tems DSP to ±1 and are thus dependent on the gain of the sys-
tem. 
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iy  represents the normalised amplitude value of the signal 
at sample i, n is the number of samples within the recording 
and ε represents the total energy summed over all samples. 

III. LOCALISATION 

Sound source localisation plays an important part in audi-
tion with respect to signal levels of sources.  In order to de-
termine the location of an acoustic object within the environ-
ment and to either approach or track this object, the AC needs 
to have some method of determining the angle of incidence of 
that source i.e. the position along the horizontal plane. 

The model presented in this paper shows a novel architec-
ture for azimuth estimation and tracking for a mobile robot.  
This model is capable not only of estimating the angle of inci-
dence of the source but also maintaining an acoustic track as 
the source traverses through the environment.  Sections A and 
B describe the elements of the model that are responsible for 
the localisation and tracking functionality of the system. 

The full model presented in this paper and in [11] enables a 
robotic system to estimate the angle and track a sound source 
with respect to background noise thus increasing the SNR lev-
els in order achieve higher speech recognition accuracy.  Fig. 
1 shows a block diagram of the model presented. 

Stage 1 contains the azimuth estimation algorithms required 
to determine the angle of incidence of the signals received by 
the microphones.  Stage 2 uses the information provided by 
stage 1, i.e. azimuth angle, as input to the RNN for estimating 
the next position of the source within the environment.  Stage 
3 is the speech recognition system that interprets the informa-
tion contained within the signals. 

Several factors contribute towards the performance of such 
a system; these include the reduction in distance from the re-
ceivers to the source, therefore increasing the energy received 
and secondly, due to the pinnae of the mammalian ear, reflec-
tion of the background noise occurs as the head turns away 
from the background source and turns to face the speaker. 

A. Azimuth Estimation 

The azimuth estimation stage of the model is used to de-
termine the current angle of incidence of the source with re-

spect to the robots current frame of reference.  As the sound 
signal propagates through the air it is detected by the micro-
phones connected to the robot, digitally sampled and presented 
as two signal vectors g(t) and h(t).  These vectors contain the 
signals that are recorded from the environment; therefore the 
angle of incidence of the various sources with respect to the 
robot’s position will alter the interaural phase difference (IPD) 
of the signal as it is received at either microphone, thus creat-
ing a lag or delay between the two signal vectors.  It is this 
offset or lag that is used to calculate the angle of the source.   

It has been shown that within the mammalian CAS the 
phase difference or time delay of arrival of the signals is used 
for angle estimation.  This auditory cue is referred to as the 
Interaural Time Difference (ITD) [9].  The most notable 
mechanism used to explain the functionality of ITD is Jeffress 
‘coincidence detectors’ which are described as the likely neu-
ronal architecture within the CAS for coding the ITD cue [10]. 

The phase difference of the signals g(t) and h(t) is calcu-
lated using a method of cross-correlation, see (4).  Cross-
Correlation is used here to provide a measure of maximum 
similarity between the two vectors representing the signals 
detected by the two microphones.  This similarity offset (or 
phase delay) is used to determine the ITD of the two signals 
and ultimately the angle of incidence of the sound source. 
 

  (4) ∑
−

=
+≡

1

0
),(

N

k
kkjj kghgCorr

 

Fig. 2 shows the two signal vectors g(t) and h(t) being com-
pared for maximum similarity by cross-correlation.  The two 
signals are effectively slid across each other in the time do-
main creating a resulting product vector C containing the sum 
of the products of the values currently aligned at each time 
step, with a time step being equal to the time delay between 
sampling, i.e. ∆t = 1/f.  Fig. 3 shows the result of the sliding 
product with the highest peak value representing the point at 
which maximum similarity occurs. 
 

 
 
Fig. 1 – Block diagram of the sound source localisation and tracking system 
showing the two main stages coupled to the speech recognition system. 
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The position of the maximum value within C represents the 
point of maximum similarity and hence the lag between the 
two signals.  The shaded area within Fig. 2 highlights a refer-
ence point showing a section of the signals in which similarity 
resides.  In Fig. 3 it can be seen that maximum similarity be-
tween g(t) and h(t) occurs at a lag of -17 samples. 

As previously discussed, within the vector C each lag or 
step has a time increment ∆t of 22.67µs due to a sample rate of 
44.1 kHz.  Thus, depending upon the value of the lag within 
the correlation vector (-17 in Fig. 3) the ITD between the arri-
val of the signal at the two microphones can be determined. 

Equations 5 through 10 show how the angle of incidence 
for the source can be determined from the cross-correlation of 
the two vector recordings g(t) and h(t) and ultimately the in-
formation from the resulting correlation vector C. 
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length(g) and length(h) gives the number of samples in the 
vectors g(t) and h(t) respectively. 
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CMAX represents the position in C of the maximum value 
(i.e. maximum similarity) and σ is the delay or lag. 
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The function used for angle calculation; a = the length re-
quired, c = distance between the microphones = 0.30 meters. 
 

 σ×∆=ITD  (8) 
 

ITD is the time delay of arrival of the signal at the two mi-
crophones, ∆ is the time delay between samples and σ is the 
lag in phase between g(t) and h(t) as calculated from (5). 
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length(a) is the extra distance the signal is required to travel 
to the contralateral microphone once detected by the ipsilateral 
microphone, cair = speed of sound in air at 24°C = 345 m/s. 
 

 
Fig. 2 – The sliding window effect of cross-correlation with the two shaded 
areas representing the correlating signals. 

 
 Fig. 3 – A plot of the resultant correlation vector C produced by the cross-
correlation of the signal vectors g(t) and h(t). 
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ϑ  represents the angle of incidence of the sound source on 
the horizontal plane. 
 

B. Tracking and Prediction 

Tracking and prediction is the second stage of the model 
presented in this paper and deals with maintaining a track on 
the sound source as it moves within the environment.  This 
stage of the model incorporates the use of a recurrent neural 
network (RNN) for trajectory estimation prediction.  The use 
of a RNN is required due to the temporal aspect of predicting 
a trajectory.  In order to estimate the next position of the 
source it is necessary to know the previous positions that the 
source has taken in its movement. 

Due to the restrictions of standard feedforward networks 
i.e. having no temporal aspect and therefore only being able to 
classify the pattern currently being presented, it is necessary to 
introduce recurrent connections into the network.  The activa-
tions of the hidden layer units at time tn+0 from the RNN are 
copied via 1:1 projections to a context layer and are therefore 
available to the network at time tn+1 when the next pattern is 
presented; Fig. 4 shows the network architecture including 
number of units per layer used in the model. 

Due to the networks recurrent nature, the system is able to 
retain a kind of short-term memory that can be used to provide 
additional ‘previous’ temporal information during pattern rec-
ognition.  Equation 11 shows the formula for copying the acti-
vations from the hidden layer units to the context units. 

The RNN adopts the standard backpropagation algorithm 
for adapting the weights in order to facilitate training; this is 
shown in (12).  However, due to the temporal nature of a RNN 
as compared to that of standard feedforward networks, the 
equation in (12) is rewritten to include the temporal aspect of 
the network as provided via the context layer; this is referred 
to as backpropagation through time [12]. 

To ensure the network correctly identifies the temporal or-
der, each pattern is stored in a separate sub-group.  Fig. 5 
shows an example of a collection of patterns for a sub-group.  



The patterns within these groups are presented to the network 
in their sequential order whilst each sub-group is presented 
randomly.  This ensures the temporal ordering is maintained 
for recognition purposes. 
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where, ∆wij is the weight change between units i and j, n is 
the current pattern event, η is the learning rate = 0.25, δj is the 
error of unit j, oi is the output of unit i, α is the momentum 
term to prevent weight oscillation by adding a small amount of 
the previous weight change to the current weight change. 

V.  EXPERIMENTATION 

Three separate environmental configurations were used to 
test the robustness and recognition rates of the system.  The 
first experiment conducted involved creating two static sound 
sources i.e. a speaker and background source.  In this experi-
ment the sources were positioned at 0° azimuth with respect to 
the robot as shown in Fig. 6a. 
 

 
Fig. 4 – The architecture of the recurrent neural network. 

 
 

 
Fig. 5 –A training sub group for one of the possible source speeds. 

The second configuration within this experimental test also 
involved the use of static sources.  However, the configuration 
saw the speaker source remain fixed at 0° with respect to the 
robot whilst the background ‘clutter’ source was positioned at 
an angle of 45° to the left of the robot as shown in Fig. 6b. 

With the second experimental test the background source 
was fixed at a position of 0° whilst the speaker source is posi-
tioned 45° left of the robot.  The first configuration within the 
second experimental test represented that of Fig. 7a.  How-
ever, this experiment required three separate steps as opposed 
to two for that of experiment one.  In the second and third con-
figurations of this test the robot attended to the 45° angle of 
the speaker source as opposed to remaining stationary.   

In order for the robot to attend to the speaker position with-
out missing any important information, the system is provided 
with what we deem an attention word.  Attention words can 
also be seen in communication between humans, e.g. with the 
use of “Excuse me”, “garçon” or “waiter!” which are used to 
simply gain the attention of someone you wish to speak to 
before actually providing them with the important information 
you wish them to interpret.  Once the system has orientated 
then the flow of information may continue. 

Due to the system’s ability to track the speaker as it moves 
through the environment this attention word is therefore only 
required once per tracking of a speaker source.  Fig. 7 shows 
the sound source and microphone positions for the orientating 
stage of the second experimental testing phase. 

Predicted degree  
of Sound Source 

Finally, the third experimental setup involves the use of a 
static background source positioned at 0° with a dynamically 
moving speaker source.  Here the system is initialised to the 
configuration shown in Fig. 6a and the speaker source is then 
positioned at increments of 15° along a circle of radius 1.5m 
around the robot.  Fig. 8 shows the incremental positions for 
the dynamic source. 

VI. RESULTS Current degree 
of Sound Source The results presented in this paper are only concerned with 

the changes in SNR in addition to the increase in accuracy and 
repeatability this brings to the speech recogniser.  The results 
for azimuth estimation and sound source tracking are not pre-
sented here, for more information on these results please refer 
to Murray et al. [11]. 
 

 
Fig. 6 – a) Shows the first configuration of the first experimental setup with 
both sources at 0° azimuth, b) Shows the second configuration with the 
speaker source at 0° and background source at 45°L of the robot. 
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Figure 9 shows the individual background and speaker sig-
nals to allow a comparison between these and the combined 
signals at the various azimuth positions.  Fig. 10 shows the 
results of the static test experiment displaying how changes in 
azimuth can affect the SNR of the signals.  Within Figs. 9 and 
10 the y-axis represents the amplitude of the signals whilst the 
x-axis shows the number of samples ∆.  Each sample is taken 
at a time interval of 22.67µs.  Therefore, the duration of the 
background source is 22.67µs*4x105 ≈ 9 seconds and the 
speaker duration approximately 22.67µs*1x105 ≈ 2.3 seconds. 

The first column in Fig. 10 shows both the background and 
speaker sources positioned at 0°, thus it can be seen that both 
the left and right channels have similar SNR levels.  However, 
if the background source is at an angle of 0° with the speaker 
moved to 45° right of the microphones then it can be seen that 
the SNR between speaker and background increases for one of 
the channels (right channel) and the signal level rises higher 
above the background level.  The right microphone still de-
tects the same levels of background signal (due to the speakers 
and background source remaining fixed). 

The difference in the SNR of the signals shown in Fig. 10 
can be determined if we calculate the energy in the signals 
between the overlapping sample positions – samples 200000 
to 300000.  These samples are the points at which the speaker 
signal is generated during background generation and are 
compared against the same points from the background 
source.  Table 1 shows the SNR differences from experiment 
one.  For this experiment ten trials where conducted using two 
different background signals and two speaker signals. 

Table 1 gives the energy (based on the energy function 
shown in (3)) of the signals shown in Figs. 9 and 10 in addi-
tion to the SNR differences.  As the results in table 2 show, the 
positions of the two sources with relation to the robots 0° ref-
erence point changes the SNR between them and therefore 
changes the relative amount of energy received from each 
source.  Fig. 11 shows these results plotted with angle change 
vs. SNR difference.  The signals detected by the robot are 
stored to file and presented to the speech recogniser to deter-
mine if the signal can be interpreted.  Table 3 shows the re-
sults of the experiments for all the speaker words of varying 
duration and amplitude. 
 
 

 
 
Fig. 7 – a) The second configuration of the experiment with the speaker 
source placed at 45°L, b) shows the third configuration once the ‘orientation’ 
has taken place and the robot is facing the speaker source. 
 

 

 
Fig. 8 – The dynamic configuration and increments for the speaker source as it 
moves in increments of 15° around the robot with a radius of 0.8m. 
 

 
Fig. 9 – Shows the separate signals for the background and speaker source for 
both the left and right channels as recorded by the robots microphones. 
 

 
Fig. 10 – Shows the combined background and speaker signals for both the 
left and right channels as recorded by the robot at 0°, 0° and 0°, 45° respec-
tively. 
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TABLE 1 – THE CHANGE IN SNR FOR THE SIGNALS IN FIG. 10 - LEFT CHANNEL. 

Source Energy SNR SNR(dB) 
Background 31.618 N/A N/A 
Speaker at 0° 38.327 1.2122 1.6714 

Speaker at 45° 33.523 1.0603 0.5082 

TABLE 2 – THE SNR CHANGES FROM VARYING BACKGROUND AND SPEAKER 
SOURCE POSITIONS WITH RESPECT TO THE ROBOT. 

Source Angle Energy Gains 
Speak Backgnd Speaker Backgnd SNR SNR(dB) 

0 0 39.795 30.963 1.2853 1.09 
0 15 39.795 29.764 1.3370 1.261 
0 30 39.795 27.453 1.4495 1.6123 
0 45 39.795 26.601 1.496 1.7493 
0 60 39.795 26.112 1.524 1.8298 
0 75 39.795 25.239 1.5767 1.9776 
0 90 39.795 24.361 1.6336 2.1313 

15 0 39.028 30.963 1.2604 1.0053 
30 0 38.523 30.963 1.2442 0.9488 
45 0 37.312 30.963 1.2051 0.8100 
60 0 36.597 30.963 1.182 0.7260 
75 0 35.201 30.963 1.1369 0.5571 
90 0 34.362 30.963 1.1098 0.4523 

 

 
Fig. 11 – The effect of angle position on the SNR of two sources 

TABLE 3 – RECOGNITION RATES TAKING INTO ACCOUNT SNR DIFFERENCES. 

Speaker Angle Recognition % Trials 
Speaker Background Left Right 

0o 0o 17 20 
0o 45o Left 10 24 
0o 90o Left 12 45 

45o Left 0o 21 17 
90o Left 0o 51 14 

VII. CONCLUSIONS 

This paper highlights a need for robotic sound source local-
isation when dealing with sociable robotic systems that are to 
communicate with humans in a natural environment.  It has 

been shown in this paper that when a robot orients itself to-
wards a speaker, recognition rates improve.  Table 3 shows 
that with both sources positioned at 0° recognition rates are at 
approximately 20%.  However, when the system orients itself 
towards the speaker a higher recognition accuracy of 51% is 
achieved.  It must be noted that these results are not intended 
to be a best measure from a speech systems recognition point 
of view, but are designed to show an orientation performance 
increase.  Therefore, the source levels and distances are cho-
sen to provide reduced recognition rates from the system.  
Thus with a reduced recognition accuracy it could be demon-
strated how orientating towards the source can increase the 
performance of the system.  It can be noted that by simply 
orientating towards the source a gain of more than 2.5-fold can 
be achieved in the recognition rate and thus improve the ro-
bustness and reliability of such a system. 

VIII. FURTHER WORK 

Further work can be performed to increase the recognition 
rates of the system.  This would include the use of pinnae that 
can help to further filter out and reflect unwanted signals giv-
ing higher recognition rates.  Incorporating a blind source 
separation (BSS) algorithm would also be of benefit to such a 
system as this would allow the speaker signal to have in-
creased SNR whilst using BSS to separate the unwanted sig-
nals from the desired signal allowing more of the signal of 
interest to be acquired from the convolved sources. 
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