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Abstract. This paper presents a spiking neural network (SNN) for bin-
aural sound source localisation (SSL). The cues used for SSL were the
interaural time (ITD) and level (ILD) differences. ITDs and ILDs were
extracted with models of the medial superior olive (MSO) and the lateral
superior olive (LSO). The MSO and LSO outputs were integrated in a
model of the inferior colliculus (IC). The connection weights between the
MSO and LSO neurons to the IC neurons were estimated using Bayesian
inference. This inference process allowed the algorithm to perform ro-
bustly on a robot with ∼40 dB of ego-noise. The results showed that the
algorithm is capable of differentiating sounds with an accuracy of 15◦.

Keywords: Binaural sound source localisation, Spiking neural networks,
Bayesian inference, Inferior colliculus.

1 Introduction

Audition can inform us about the spatial location of distant events. Sounds can
provide information comparable to visual stimuli in scenarios where vision is
impeded. SSL can help robots to cope with environment hazards and to com-
municate [6]. A meta-objective of artificial SSL systems is their portability to
different robots. This paper describes the design and implementation of Liu et
al. [2] algorithm for sound localisation on a Nao robotic platform with ∼40 dB
of ego-noise.

Voutsas and Adamy [9] created a multiple delay-lines model using SNNs.
Their model has 30◦ resolution, and uses ITDs with good results only for sounds
with low fundamental frequencies. However, integration across-frequencies kept
localisation accuracy high for broadband stimuli.

Rodemann et al. [5] developed a model with 10◦ resolution based on ITDs,
ILDs and the interaural envelop difference (IED). Different localisation cues are
computed in parallel and a weak winner-takes-all strategy integrates different
cues. In all testing conditions the higher frequencies had greater localisation
errors, and merging the cues in an IC model remained an open improvement.
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Willert et al. [10] and Nix and Hohmann [3] presented probabilistic mod-
els (both with 15◦ resolution) of the MSO, the LSO and the IC. They used
Bayesian inference to estimate the connections between modules. In both cases,
a more realistic neural processing could be obtained through the implementation
of SNNs. The results from these studies have provided valuable insights on the
design requirements of a biomimetic SSL system.

Finally, Liu et al. [2] implemented models of the MSO, LSO and IC using
SNNs. Connections from the MSO and LSO to the IC were estimated using
Bayesian inference. The algorithm had good performance at 30◦ resolution, using
a human-shaped foam head, and under low levels of noise. Whether the system
would perform quite as well on a non-humanoid robot head with strong ego-noise
was open research.

For biological plausibility our model was implemented with artificial SNNs.
The algorithm simulates the functioning of the human cochlea, the cochlear
nucleus (CN), the medial nucleus of the trapezoid body (MNTB), the superior
olivary complex (SOC) and the inferior colliculus (IC).

First the cochlea is emulated with the Patterson-Holdsworth filter bank [8]
separating the sound wave in several centre frequency channels. Hair-cells are
simulated by phase-locking the sound waves. Interaction between the CN and
the MNTB is represented in the topology of connections arriving at the medial
superior olive (MSO) and the lateral superior olive (LSO) [7]. Interaural time
differences (ITD) were extracted in the MSO, and interaural level differences
(ILD) in the LSO. Finally, MSO and LSO outputs were merged in the IC. The
topology of connections was based on anatomical findings in mammals [4].

2 Computational Model

First sound is decomposed with the Patterson-Holdsworth filter bank [8] in
f ∈ {1 . . . nf} frequency components equally separated on a logarithmic scale.
Each of the nf frequency components is analysed separately. The maximum am-
plitudes of the sound waves are used to generate spikes directed to the MSO and
LSO. See Fig. 1 for MSO, LSO and IC activation examples.

Figure 3 shows the MSO connectivity scheme. In the model the MSO has
i ∈ {1 . . . nMSO} neurons for each of the nf frequency components. SMSO

i,f is the
number of spikes produced by neuron MSOi,f for a given sound. The value of
nMSO depends on the smallest ITD the system is able to detect. Such sensitivity
is limited by the distance between the robot microphones, and by the sample
rate of the sound card used for recording the sounds. Each neuron MSOi,f is
maximally sensitive to sounds produced at angle αi. The MSO output angle
OMSO = αi for the i that maximizes

∑
i S

MSO
i,f , following the winner-takes-all

rule.
The maximum ILD resolution maxILD that can be achieved depends on the

geometry of the robot’s head, and it is essential to know its value to perform
efficient SSL based on ILDs. For SSL with humanoid dummy heads [2] it is
possible to obtain the value of maxILD from literature. However, for Nao’s head it
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(a) MSO (b) LSO (c) IC

Fig. 1. Activation for a sound produced at 15◦. Notice that lower and higher frequencies
are more informative in the MSO and LSO respectively and that the IC has a more
coherent spatial representation across frequencies.

was necessary to estimate the maxILD from the statistics of the LSO activation.
We estimated the best LSO performance for all and each of the nf frequency
components from a range of maxILD values. Figure 2 shows the MSO and LSO
output errors plotted against maxILD values between 0.1 and 3 dB.

(a) (b)

Fig. 2. (a) MSO and LSO output errors estimated from their best frequency compo-
nents (dotted lines), and average error from all frequencies (solid lines). In both cases
the MSO error (blue lines) is constant for all maxILD values and the best perfor-
mance was reached at ∼0.8 dB. (b) LSO errors for each frequency component. Higher
frequencies (solid lines) have better performance than lower ones (dotted lines).

Figure 3 shows the LSO connectivity scheme. In the model the LSO has
i ∈ {1 . . . nLSO} neurons for each of the nf frequency components. The maximum
value of nLSO is limited by the bits of the sound data. Therefore, it is possible to
have many more neurons in the LSO than in the MSO. For the sake of simplicity,
nLSO was chosen to be the same as nMSO.

The computation of the connection weights from the MSO and LSO to the
IC was inspired by the work of Willert et al. [10] using Bayesian inference. No
connections were generated between neurons sensitive to different frequencies.
Figure 3 shows the IC connectivity scheme.
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Fig. 3. Multiple delay lines deliver spike-trains to MSO cells according to Jeffress
model [7]. MSO neurons respond to frequencies between 200-4000 Hz. The difference of
the wave amplitudes that produced a spike in the MSO is used to generate a spike in
the LSO. LSO neurons respond to frequencies between ∼1-4 kHz. The MSO has exci-
tatory connections to the IC in all frequencies. The LSO has excitatory and inhibitory
connections to the IC in frequencies >1 kHz.

The benefit from this integration is related to the overlap at the higher fre-
quencies of MSO excitatory connections and LSO inhibitory connections. The
LSO provides misleading information for the lower frequencies and useful in-
formation for the higher frequencies. The MSO provides useful information in
all the frequencies, but also potentially misleading information in the higher fre-
quencies. Therefore, the LSO inhibitory connections can help to keep only useful
information given by the MSO at higher frequencies. Thus, the system makes
more efficient use of auditory cues along the audible frequency range.

In the model the IC has j ∈ {1 . . . nIC} neurons for each of the nf frequency
components. SICj,f is the number of spikes produced by neuron ICj,f for a given
sound. The value of nIC equals the total number of azimuth angles θ in half
circle in front of the robot where a sound is produced. EMSO

i,j,f and ELSOi,j,f are
the MSO and LSO excitatory connection weights from the ipsilateral neurons
MSOi,f and LSOi,f to neuron ICj,f . ILSOi,j,f is the LSO inhibitory connection
weight from the contralateral neuron LSOi,f to neuron ICj,f . The IC uses the
weighted input from the MSO and LSO to compute its output angle OIC = θj
for the j that maximizes SICj,f , where

SICj,f =
∑
i

(
SMSO
i,f · EMSO

i,j,f + SLSOi,f · ELSOi,j,f − SLSOi,f · ILSOi,j,f

)
. (1)

2.1 Bayesian Framework

Let p(SMSO
i,f |θj) be the likelihood that neuron MSOi,f produces a spike in the

time frame ∆t for a sound produced at angle θj :

p
(
SMSO
i,f |θj

)
=

SMSO
i,f∑
i′ Si′,f

. (2)
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Spikes are summed over all MSO neurons sensitive to frequency component f .
The prior p (θj) = 1 / nIC is the probability of a sound to be produced at angle
θj and it is the same for all angles. Let p(SMSO

i,f ) be the evidence that neuron
MSOi,f produces a spike in the time frame ∆t:

p
(
SMSO
i,f

)
=
∑
j

p
(
SMSO
i,f |θj

)
p (θj) . (3)

Once the likelihood, prior and evidence are calculated, the posterior p
(
θj |SMSO

i,f

)
for the same time frame ∆t can be computed from Bayes rule:

p
(
θj |SMSO

i,f

)
=
p
(
SMSO
i,f |θj

)
p (θj)

p
(
SMSO
i,f

) = PMSO. (4)

The Bayesian inference described so far is also used for computing the LSO
inhibitory and excitatory connections. Finally, the connection weights are set
according to the following functions:

EMSO
i,j,f =

{
PMSO, if PMSO >

(
ωMSO
E,f . arg maxθj

(
PMSO

))
0 otherwise

, (5)

ELSOi,j,f =

{
PLSO, if PLSO >

(
ωLSOE,f . arg maxθj

(
PLSO

))
∧ f >= fτ

0 otherwise
, (6)

ILSOi,j,f =

{
1− PLSO, if PLSO <

(
ωLSOI,f . arg maxθj

(
PLSO

))
∧ f >= fτ

0 otherwise
. (7)

The maximum posterior probability for every frequency f is thresholded by
ωMSO
E,f , ωLSOE,f and ωLSOI,f . These weights are real-valued numbers from the closed

interval [0 1] and determine which connections will be pruned. The value of fτ
marks the transition between the lower and higher frequency spectrum.

3 Experimental Results

The experimental setup is displayed in Fig. 4. According to specifications, Nao’s
distance between left and right microphones is ∼0.12 m. Therefore, the highest
frequency that does not generate ITD ambiguities is fτ ≈ 1400 Hz. Background
noise was 44.6 dBA at the right microphone and 41.6 dBA at the left microphone.

3.1 Preliminary Study

In a preliminary study, we tested Nao with a SSL system based on the cross
correlation between two microphone pairs (left-front and right-front). A feed-
forward network was trained with 4 speech recordings from 24 directions equally



6 Dávila, Heinrich, Liu and Wermter

Fig. 4. Sounds were played around the Nao in half circle ∅2 m, from 0◦ to 180◦ in 15◦

steps. 13 recordings were made in a room with reverberation damped by curtains.

(a) (b)

Fig. 5. Results of the preliminary study on SSL with Nao robot. (a) Cross correlation
of ITD pairs. (b) Confusion matrix of the network output.

spaced around the robot. The differences in the correlation (see Fig. 5) for every
ITD pair were fed to a network with |II |= 2 input, |IH |= 6 . . . 72 hidden, and
|IO|= 24 output neurons. The network test showed very good performance with
91% accuracy rate. The study showed that SSL can achieve good rates of accu-
racy with Nao’s basic microphones. However, using more than two microphones
was avoided in the following experiments for the sake of biological plausibility.

3.2 Biomimetic Computation Results

In the first of two experiments with the SNN model, the robot was trained
with 1 s of uniform white noise (WN) and in the second one with speech. The
recordings were split in 16 frequency components between 200-4000 Hz. Speech
consisted of 4 instances of the words hello, look, fish, coffee and tea. In both
experiments the testing sounds were different instances of the same words and
0.25 s samples of WN. The system had good performance when trained with
speech and tested with WN even if the system was not able to generalise from
WN to speech. Interestingly, the best performance for both experiments was
when testing with WN (see Fig. 6).
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(a) WN / WN. (b) WN / S. (c) S / WN. (d) S / S.

Fig. 6. IC output confusion matrices when the system was trained / tested with white
noise (WN) and speech (S). The speech output is for the word fish. Lighter areas
indicate higher values.

Figure 7 shows the results of the second experiment. The IC lower boundaries
in Fig. 7(a) indicate perfect localisation performance for WN except for 0◦ and
180◦. Figure 7(b) details further the IC output. The IC performance highly
improved for all angles and all sound classes with respect to the first experiment,
even though the MSO and LSO outputs did not change substantially. The error
dropped to zero between 60◦ and 120◦ for all sounds.

(a) MSO, LSO and IC average errors (b) IC error for WN and speech

Fig. 7. (a) Average errors for all testing sounds when training with speech. Notice that
the IC has higher accuracy than the MSO and LSO. (b) IC error for each testing sound.
It can be seen that WN localisation is always zero for most angles.

4 Conclusion and Future Work

In this paper we confirm the robustness of a biomimetic approach to SSL. Inte-
gration of auditory cues in the IC showed higher performance than the MSO and
LSO, with no error in the 60◦ in front of the robot and near perfect localisation
accuracy for WN. The optimised algorithm proved capable of segregating sound
sources with similar precision to state-of-the-art algorithms [3,10,9].

Estimating the optimal maxILD value for Nao’s head allowed to double the
resolution for localisation in comparison to Liu et al. [2]. The maxILD was found
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through a statistical analysis of the LSO activation across its frequency com-
ponents. Frequency decomposition opens the possibility of localising concurrent
and dynamic sound sources [2]. Such advantage lacks in networks learning ITD
pairs directly extracted from the sound wave cross correlation.

The Bayesian inference process allowed the system to perform correctly under
high levels of ego-noise. When the MSO and LSO are presented only with the
robot’s ego-noise, their output is a fixed direction. However, ego-noise activation
is evenly distributed among IC neurons and their output equals the front angle.

The processes underlying spatial hearing can be used for the segregation of
speech by increasing its SNR [6]. Part of our future work will be directed towards
the enhancement of speech recognition systems with the aid of SSL. Ultimately
we pursue a multimodal approach to the long standing Cocktail Party Problem,
and SSL is an essential ingredient in such enterprise [1].
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