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Abstract. Our objective is spoken language classification for helpdesk call routing
using a scanning understanding and intelligent system techniques. In particular, we ex-
amine simple recurrent networks, support vector machines and finite-state transducers
for their potential in this spoken language classification task and we describe an ap-
proach to classification of recorded operator assistance telephone utterances. The main
contribution of the paper is a comparison of a variety of techniques in the domain of call
routing. Support vector machines and transducers are shown to have some potential for
spoken language classification, but the performance of the neural networks indicates
that a simple recurrent network performs best for helpdesk call routing.
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1. Introduction

Since the late 1980’s and the early 1990’s research in the domain of spoken language
systems (McTear 2002; McTear 2000; Ferguson and Allen 1998; Allen et al 2001; Allen
et al 2001; Gorin et al 1997) and call routing (Gorin et al 1997; Arai et al 1999; Attwa-
ter et al 2000; Carpenter and Chu-Carroll 1998; Chu-Carroll and Carpenter 1999) has
focused on existing speech technology, topic spotting techniques, and machine learn-
ing approaches (Young et al 1989; Pyka 1992; Edgington et al 1999; McDonough et
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al 1994; Chu-Carroll and Carpenter 1998; Carpenter and Chu-Carroll 1998). This is
because the task of call routing can be seen to be similar to that of topic identification
(McDonough et al 1994; Garner 1997) and document routing (Harman 1995) because
the goal is to identify which one of ‘n’ topics, or in this case, destinations, most closely
match the caller’s request. In the context of this article we are focusing on helpdesk
scenarios. Processing spontaneous spoken language in helpdesk scenarios is important
for automatic telephone interactions for telecommunication companies or banks, etc,
to increase efficiency. Consequently there is a need to develop systems that can handle
spoken language processing robustly with respect to irregularities in the input.

Learning techniques, as in neural networks, have the ability to learn a flat analysis
(Wermter and Weber 1997; Wermter 1999; Wermter et al 1999) in a robust manner
and this is our motivation to explore neural networks. In particular, in this paper
we want to explore networks based on simple recurrent networks (SRN) (Elman et
al 1996). These recurrent networks promise to be particularly useful since they can
encode sequences of arbitrary length. In this paper, simple recurrent networks are
developed and compared in order to provide performance indicators in the context of
a larger hybrid system for helpdesk automation. Furthermore, we explore alternative
techniques based on transducers and support vector machines since these techniques
can be seen as two very well known and successful representatives of symbolic and
statistical techniques for classification.

2. The Helpdesk Corpus

2.1. Objective

The objective of this work is to examine alternative techniques for use in helpdesk
automation and call routing using recorded natural telephone requests. In this work
textual transcriptions of recorded spoken language input from callers is used. The task
is to classify the first utterance of the caller into one of a number of pre-defined call
classes or categories. Consider the following example of an actual caller utterance:

“hi, I’m on my own and I’ve just got a phone call and I picked
it up and it was just gone and it happened yesterday as
well at the same time”

After human analysis of this example of spoken language input the caller would be
referred to the customer care service. Although the caller has not stated explicitly which
service is required, the operator determines what he believes is the caller’s intention
from what the caller has said. This allows the speaker to utter sentences appropriate
to an infinite number of situations (BurtonRoberts 1986). As a result the problem of
automatically classifying fluent speech is difficult for a machine.

There have been attempts to handle call routing automatically (Gorin et al 1997;
Arai et al 1999; Attwater et al 2000; Carpenter and Chu-Carroll 1998; Chu-Carroll and
Carpenter 1999). In order to do this it is necessary to design a system that processes
the caller’s utterance to be able to determine the appropriate action. Usual approaches
are to use formal grammars, for example context-free grammars, but this has the dis-
advantage of constraining the system to a very limited robustness (Glass 1999). This
limits the language a caller can use to communicate with the machine but alleviates
the problems of complexity in recognising human language. However, this does limit
the scope of the machine and becomes an obstacle to developing more powerful, user
friendly, and flexible systems.

A more flexible approach is to identify or spot keywords or phrases. The aim is to
develop a system that is able to function in response to what is said by the caller and
not what we would like the caller to say (Gorin et al 1997). A flat learned language
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representation can support the types of problem associated with the processing of
spoken language and is more robust because it has only minimal expectations about
a sequential structure (Wermter and Weber 1997). Neural networks, support vector
machines, and inducted transducers are good candidates for robust classification based
on their learning and generalisation capabilities since the learning capabilities allow
regularities to be induced from the training examples presented.

2.2. Description of the Helpdesk Corpus

For our task of call routing our telecommunications collaborator provided a corpus of
textual transcriptions of the spoken word chain of recorded operator assistance tele-
phone calls (Durston et al 2001). The calls were recorded in different phases at all
times of the day and divided into nine separate call sets. Four call sets were randomly
selected for this task. Each call set contains 1,000 utterances with calls from each of
the phases. The corpus provides a representative selection of call traffic to the operator
assistance service. The utterances range from simple direct requests for services to more
descriptive narrative requests for help as shown by the examples below:

1. “could I um the er international directory enquiries please”

2. “can I have a early morning call please”

3. “could you possibly give me er a ring back please I just moved my phone I want to
know if the bell’s working alright”

4. “well hello I wonder if you could help me er my son is in the Isle of Wight and
he’s coming home tomorrow and before he went he’s asked me if I’d ring him at
seven thirty tomorrow morning to make sure he’s up and I’ve got to ring him on his
mobile phone um do I just ring his mobile number and then sort of the telephone
number or is there a code or something how do I go about it”

These utterances demonstrate quite clearly the problems associated with automat-
ically interpreting spoken language. The utterances are interspersed with filled pauses
such as ‘er ’ and ‘um’ which add little to the semantic content of the utterance. In the
first example the caller does not state directly whether he wants the number for, or
wants to be connected to, the international directory enquiries service. The operator
has to deduce what the intention of the caller is - that he wants to be connected to
this service, before re-directing the call. In the last example, example 4, the request for
help is preceded by a lengthy description of the problem situation. The operator has
to listen to the problem description and then propose some solution to the problem. In
the above examples the length of the utterances ranges from eight words in the short-
est utterance to 82 words in the longest utterance; although exceptional utterances in
excess of 100 words have been recorded. The average length of an utterance is 25.76
words.

2.3. Call Transcription

The corpus only contains transcriptions of the first utterances of callers to the operator
service stored in individual call sets. These transcriptions are a representation, in text,
of the actual spoken word chain of the caller to the operator including any hesitations,
filled pauses, or corrections for example. This assumes 100% correct word recognition
and 100% correct segmentation. The call transcription process is carried out by the
telecommunications collaborator (Durston et al 2001). The calls are transcribed using
turn-based annotation; if the first two conversational turns demonstrate greeting be-
haviour further turns are annotated until the caller has explained his or her problem to
the operator. The focus of our investigation was the first utterance of the caller. The
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Table 1. Example calls from the corpus. Note: @@ indicates primary move boundaries.

Example Call

1. yeah @@ could I book a wake up call please @@
2. hi @@ could you tell me what erm code 6 0 9 6 is please @@
3. yes er I’m wondering if you could help me @@ I wonder if er you can tell

me if er if er er some money was paid into my account yesterday please
@@

Table 2. Example utterance from the corpus and the identified segments.

Call Call Class Primary Move Request Type

yeah could I book a wake up
call please

alarm call action explicit

first utterance is the spoken word chain uttered by the caller in response to the operator
greeting that explains his or her problem. This utterance was transcribed unless it was
a greeting or phrase such as “yes er I’m wondering if you could help me” or “is that
the operator?”. In this case the second utterance of the caller was also transcribed.
Therefore, in the case of example three in Table 1, the second utterance of the caller
would also be transcribed beginning at “I wonder if er you can tell me ....”.

The transcription of each recorded utterance has four attributes: a call, a call class,
a primary move, and a request type as indicated by the example in Table 2.

The call contains the utterance of the caller made in response to the operator
greeting. The call class is related to the service that the caller request is routed to. The
number of call classes in the task is 17 and a breakdown of the spread of each call class
within each call set is provided in Figure 1 (Durston et al 2001).

The segment of the utterance that signifies the primary move was enclosed in
boundary markers ‘@@’ and assigned a primary move type. The primary move type is
associated with the identified intention of the caller. The boundary markers ‘@@’ are
not presented to the classifier. The markers are used during pre-processing to “tag” the

ln rc ac ac−n dq dq−a idq idq−a ioa f lt cs cs−n bill o−ref o−op tm oth
00
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250
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350
Call set 1 Call set 2 Call set 3 Call set 4

Call classes

examples of call classes are: line test, alarm call, international operator, billing

Fig. 1. Number of each call class within each call set.
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Table 3. Example tagged call.

yeah @@

(CALL
could I book a wake up call please
)CALL

(CLASS
@@,
ac
)CLASS

(MOVE
action
)MOVE

(TYPE
exp
)TYPE
)END

transcription with the labels ‘(CALL’, ‘)CALL’, and ‘(CLASS’. As the task is classifying
a caller utterance to a call class the primary move type is not used in the experimental
work reported here.

Further analysis of the corpus revealed that not all call classes are associated with
each primary move type. As a result it is unlikely that certain service requests would
be classified to a particular call class. Consequently if we were to classify based initially
on the primary move type this could reduce the number of call classes available for
selection. This could perhaps provide some good indicators for the future about either
the types of dialogue or speech acts used by the callers or the vocabulary contained
within the utterances to aid the classification process. The call class and the primary
move type differ in their focus. The call class is more concrete and is associated directly
with the service the caller requires. The primary move is more abstract and reflects
what the caller is trying to achieve or what the intention of the caller is believed to be.

“can you er get me British Telecom please on the erm payments”

In the example above the call class is “bill” because the caller requires referral to the
billing service and the “primary move” is “connect” because the caller has indicated a
requirement for a connection to another service. The request type identifies the style of
language used by the caller to talk to the operator. Is the request for service expressed
in explicit terms or is it an implicit request expressed by the use of free language
(Durston et al 2001). The above utterance is an example of the latter.

Before the classification task can be undertaken the transcribed utterances undergo
some pre-processing. The individual segments of each utterance are manually “tagged”,
as shown in the example tagged utterance, Table 3; call class becomes CLASS, primary
move becomes MOVE and request type becomes TYPE.

These labels are used as boundary markers for generating both the lexicon and the
training and test sequences. The tagged utterances in each call set are processed and a
lexicon in the form of a vector representation, that includes the frequency of occurrence
of each word in a particular call class, is generated, as illustrated in Table 4. The labels
are used to identify which words are added to the lexicon, that is only those words
that occur between the (CALL and )CALL labels. The lables are also used to identify
which call class the words are associated with between the (CLASS and )CLASS labels.
All text outside of these labels is ignored. The labels appended to each utterance are
not used in the input to the classifiers. The labels are only used in the processing of
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Table 4. Example of semantic vectors. Note: For illustration purposes not all call classes are
shown. There are 17 classes used in this study.

Word Call Class

ln rc ac ac-non dq dq-area idq class n

CAN 0.03 0.06 0.09 0.07 0.05 0.08 0.04 ...
YOU 0.07 0.01 0.01 0.05 0.09 0.10 0.05 ...
JUST 0.18 0.00 0.00 0.00 0.03 0.03 0.00 ...
CHECK 0.53 0.00 0.00 0.00 0.00 0.00 0.11 ...
TO 0.08 0.06 0.01 0.05 0.02 0.01 0.05 ...
SEE 0.36 0.00 0.00 0.00 0.00 0.00 0.00 ...
IF 0.12 0.08 0.02 0.00 0.06 0.10 0.05 ...
ITS 0.19 0.00 0.00 0.06 0.04 0.06 0.01 ...
OUT 0.10 0.00 0.00 0.00 0.02 0.12 0.00 ...
OF 0.09 0.00 0.00 0.11 0.14 0.01 0.03 ...
ORDER 0.24 0.00 0.54 0.00 0.00 0.00 0.00 ...

the call set for the purpose of generating the lexicon and the training and test vector
representations that are used to create the inputs for each of the classifier components.

2.4. Calls and Semantic Vectors

In our experiments we use a semantic vector representation of the words in a lexicon
(Wermter et al 1999). These vectors represent the frequency of a particular word occur-
ring in a call class and are independent of the number of examples observed in each call
class. The number of calls in a call class can vary substantially. Therefore we normalize
the frequency of a word w in call class ci according to the number of calls in ci (2).

A value v(w, ci) is computed for each element of the semantic vector as the nor-
malized frequency of occurrences of word w in semantic call class ci, divided by the
normalized frequency of occurrences of word w in all call classes. That is:

Normalized frequency of w in ci =
Frequency of w in ci

Number of calls in ci

(1)

where:

v(w, ci) =
Normalized frequency of w in ci

∑

j

Normalized frequency for w in cj

, i, j ∈ {1, · · ·n} (2)

Each call class is represented in the semantic vector. An illustrative example is given
in Table 4. As can be seen in the illustrative example, domain-independent words like
‘can’ and ‘to’ have fairly even distributions which is to be expected as these are func-
tion words, while domain-dependent words like ‘check’ and ‘order’ have more specific
preferences.

2.5. Training and Test Call Sets

Four separate call sets each containing 1,000 utterances were used in this study. The
four call sets were used individually as a baseline to establish how each of the classifiers
performed with a view to scaling-up the investigation using the call sets in a cross-
validated approach and selecting the best classifiers. Testing each classifier on only one
call set may not have provided a true indication of performance whereas testing on four
call sets allows for variation in the call sets.
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Fig. 2. Number of training and test examples per call set.

Table 5. Breakdown of utterances in training and test sets from call set 1. Note: For illustration
purposes not all call classes are shown.

917 utterances
Total of 712 utterances in Training set
Total of 205 utterances in Test set

Categories: ln rc ac ac-non dq dq-area idq class n

in train set: 261 11 41 3 85 32 6 ...
in test set: 59 3 21 1 29 11 2 ...

The call sets are split so that 80% of utterances are used for training and 20% of
utterances used for testing. Only the part of the utterance identified as indicating the
primary move was used for training and testing. As part of the pre-processing stage this
part of the utterance was assigned a classification using the call class associated with
the full transcription of the utterance. At this stage some utterances were excluded from
the training and test sets because they did not contain a primary move utterance, which
effectively means that utterances that contained phrases like “oh sorry wrong number”
were grouped into an other call class. A breakdown of the number of training and test
examples per call set is provided in Figure 2. The average length of an utterance in
the training set is 16.05 words and in the test set the average length of an utterance is
15.52 words. An illustrative example is given in Table 5 however not all call classes are
shown.

Entropy is associated with uncertainty or information in relation to the task of
selecting one or more items from a set of items. Thus entropy is a measure of how
many bits of information we are trying to extract in a task and it gives an indication of
how certain or uncertain we are about the outcome of the selection (Charniak 1993).
In addition, the concept of entropy provides an indication of problem difficulty and
both high and low entropy values can indicate difficult problems. A low entropy value
indicates diversity; an uneven class distribution with the classifiers being unable to learn
the small classses well. A high value indicates more similarity and therefore greater
difficulty in differentiating between items. To normalize the entropy value of a class to
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Table 6. Example SRN input.

(SEQ 32 I’m trying to get a London number
IM 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.16 0.00 0.00 0.00 ...
TRYING 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.34 0.00 0.01 0.00 ...
TO 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.08 0.04 0.01 0.03 ...
GET 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.22 0.00 0.02 0.00 ...
A 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.14 0.11 0.06 0.03 ...
LONDON 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.46 0.00 0.00 0.00 ...
NUMBER 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.01 0.00 0.00 ...
)

category output representation
︸ ︷︷ ︸

word input representation
︸ ︷︷ ︸

Table 7. Example SVM input.

I’m trying to get a London number
+1 1:0.16 2:0.34 3:0.08 4:0.22 5:0.14 6:0.46 7:0.15

the range [0, 1], the base of the logarithm is the number of utterances. In this task the
four call sets under investigation each have an entropy of 0.31.

entropy = −

17∑

i=1

P (ci)logn(P (ci)), where n is the number of utterances (3)

2.6. Input Representations of Each Technique

The focus of this work is the classification of a caller’s first utterance to one of a pre-
defined number of call classes. To make any comparison as fair as is possible the same
corpus and basic underlying representation was used as the basis for the input represen-
tations for each of the techniques. This means that the initial lexicon values generated
from processing the corpus were converted into a feature representation format appli-
cable to each technique. Although the techniques use different feature representations
no changes were made to the lexicon values; therefore each representation was derived
from the same basic representation. Consequently each technique is starting with the
same underlying information from the corpus. An example of the respective represen-
tations used by each technique, for the same example, is provided in Tables 6, 7, and
8.

For the SRN each utterance in the training or test set was allocated a sequence num-
ber, a category output representation, and a word input representation, as illustrated
in Table 6. The category output representation represents the call class associated with
the utterance and the word input representation represents the frequency of occurrence
of each word.

For the SVM the inputs are composed of feature-value pairs separated by a colon
as shown in Table 7. For example, 1:0.16, the ‘feature,’ in this case ‘1’, is the position
of the word in the utterance and the ‘value’, ‘0.16’, is the frequency of occurrence of
that word in any position for the particular call class under investigation.

An FST is constructed using regular expressions. To create the regular expressions
each utterance in the call set is symbolically tagged. These symbolic tags enable iden-
tification of possible patterns or strings and substrings in the utterance. This means
that each word in the utterance is tagged with a symbolic representation of the call
class associated with that word based on the highest frequency of occurrence as shown
in Table 8.
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Table 8. Example FST input.

I’m trying to get a London number
ln ln ioa ln ln ln ln

Call File

Pre

processing

Lexicon

Classification

Component

Input

Output

Tagged

Call Set

Tagged

Call Set

   +

Fig. 3. Architecture of the system.

Thus in the lexicon, the word ‘I’m’ is most frequently associated with the ‘ln’ call
class based on the frequency of occurrence. These symbolic tags represent the sequence
for a specific utterance. This clearly shows the higher frequency of the ‘ln’ call class
would indicate that this utterance is classified as an example of the ‘ln’ call class.
There is no removal of function words such as ‘a’, ‘the’, and ‘and’ etc, since it has been
indicated that they may serve important roles.

3. Architecture

Figure 3 shows the general structure of our architecture, which combines different
components. The pre-processing and generation of the lexicon were described in Section
2.3 and the call sets were described in Section 2.5.

The lexicon together with the tagged call set are then used to generate the input,
that is, the training and test sequences for the classification component of our archi-
tecture. The aim of the experimentation was to identify effective techniques for use in
the classification component of our architecture.

3.1. Experiments Using Neural Networks, Support Vector
Machines and Transducers

We have considered using language models for this task but then focused on identifying
alternative techniques that may have potential for use in the task of classifying a caller
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Call class Retrieved and Retrieved not Relevant not
Relevant (1) Relevant (2) Retrieved (3)

A 55 7 4
B 19 2 10
C 1 1 4
Total 75 10 18

utterance to a call class. A drawback to language models is that they require large
amounts of transcribed and labelled training data from which to calculate the prob-
abilities of the most likely word sequences. Additionally, language models are unable
to model long distance dependencies (Stolcke et al 1998) because they are usually re-
stricted to local regularities like bi-grams and tri-grams (Brill et al 1998; McTear 2002).
In comparison, our approach adopted uses the continuous word sequence of the caller’s
utterance from the corpus as supplied by the telecommunications collaborator rather
than keywords or phrases. Our approach uses a shallow surface rather than a deep
interpretation to produce a classification result, since this may be all that is required
if the next stage were to be the handling of the call by an operator. The caller request
is routed to a service and the operator extracts the details of the caller’s problem or
enquiry. Details of the techniques used are provided in the subsequent sections.

The performance of each technique will be evaluated using the evaluation metrics
recall and precision (Salton and McGill 1983) and the F-score (Van Rijsbergen 1979).
Recall and precision (Salton and McGill 1983) are standard measures of information
retrieval performance. Recall and precision can be calculated using the following equa-
tions:

Recall =
Number of relevant utterances retrieved

Total Number of relevant utterances in collection

Precision =
Number of relevant utterances retrieved

Total Number of utterances retrieved

The F-score (Van Rijsbergen 1979) is a combination of precision and recall and is
a method for calculating a value without bias, in other words, without favouring either
recall or precision and is calculated using the recall and precision values:

F =
2 ∗ (R ∗ P )

(R + P )

For each call set, at the end of both the training and the testing phases three
values were obtained for each call class for the following categories: (1) the number
of utterances retrieved that were relevant, (2) the number of utterances retrieved that
were not relevant, and (3) the number of relevant utterances not retrieved. For a call
set the values for each call class were added together to produce a total value for each
of the three categories. These totals were used to calculate the results for recall and
precision that are used to calculate the F-score. A small illustrative example calculation
for recall is provided below.

Recall =
(1)

(1) + (3)

75

75 + 18
= 80.65%

The section continues with a discussion of neural networks.

3.2. Neural Networks

Several neural network architectures were used for the experiments ranging from a
feedforward network with only one input and one output layer to a simple recurrent
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network with input, output, hidden, and context layers. The feedforward network uses
a system of error correction to adjust the network while it produces the required out-
put. The actual output result is compared with the desired result and the weights are
either strengthened or weakened by an amount proportional to the size of the error.
This involves examining the sum of all the differences between the desired outputs and
the actual outputs and reducing this error by a process of gradient descent (LeCun
et al 1998). A recurrent neural network extends a feedforward network by introducing
previous states and short-term incremental memory and can be either fully or partially
recurrent. A partially recurrent network, such as a simple recurrent network, has recur-
rent connections between the hidden and context layers (Elman 1990) whilst a Jordan
network has connections between the output and context layers (Jordan 1986). A key
aspect of this network is that it allows the processing of sequences in a robust manner.

3.2.1. Training Environment

Supervised learning techniques were used for training (Elman et al 1996; Wermter
1995) which requires presentation of both the required output and the input stimulus.
The weights of an untrained network are initialised to small random numbers. In one
epoch, or cycle, of training through all training samples the network is presented with
all utterances from the training set and the weights are adjusted at the end of each
utterance. The training algorithm used compares the actual output to the desired
output and calculates the difference so that the output produced comes a little closer
to the desired output (LeCun et al 1998).

The input layer has one input unit for each call class. During training and testing,
utterances are presented sequentially to the network one word at a time. Each input
unit receives the value of v(w, ci), where ci denotes the particular call class of a word
w which the input is associated with. Utterances are presented to the network as a
sequence of word input and category output representations, one pair for each word.
At the beginning of each new utterance the context layers are cleared and initialised
with 0 values. Each unit in the output layer corresponds to a particular call class and
the output unit that represents the desired call class is set to 1 and all other output
units are set to 0.

Although several neural network architectures were used only the performance of
the simple recurrent network (SRN) is reported since this architecture was more suc-
cessful than either the feedforward or the Multi-Layer-Perceptron (MLP) due to its
additional memory. The results produced by the feedforward network suggested that
this network did not have sufficient processing capacity. Likewise, even the MLP with
one hidden layer did not have sufficient context processing capacity to handle the se-
quential inputs.

3.2.2. Simple Recurrent Neural Network

The SRN (Elman et al 1996; Wermter 2000; Wermter 1995), depicted in Figure 4, uses
a set of context units which copy their activations (values) from the hidden units. The
hidden units also receive input from the context units. The hidden units are updated
first before the context units copy the hidden units’ values and provide input to the
hidden units. Therefore the context layer enables the output values of the network’s
hidden units to be stored and then re-used in the network by providing the hidden layer
with the pattern of the previous activation state (Wermter et al 1999; Elman 1991).

While Figure 4 shows the most basic SRN other, more complex, recurrent networks
have been examined in (Wermter 1995). An SRN with input, output, hidden, and
context layers was used for our experiments. Training was carried out using supervised
learning techniques (Elman et al 1996; Wermter 1995). In general, the input to a hidden
layer Ln is constrained by the underlying layer Ln−1 as well as the incremental context
layer Cn. The activation of a unit Lni(t) at time t is computed on the basis of the
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Fig. 4. Simple recurrent network.

weighted activation of the units in the previous layer L(n−1)i(t) and the units in the
current context of this layer Cni(t) limited by the logistic function f .

Lni(t) = f(
∑

k

wkiL(n−1)k(t) +
∑

l

wliCnl(t)) (4)

This provides a simple form of recurrence that can be used to train networks to
perform sequential tasks over time which means the output of the network not only de-
pends on the input but also on the state of the network at the previous time step. Events
from the past can be retained and used in current computations, that is, the output at
time t is re-used as the input at time t + 1. This allows the network to produce com-
plex time-varying outputs in response to simple static input which is important when
generating complex behaviour. As a result the addition of recurrent connections can
improve the performance of a network and provide the facility for temporal processing
(Wermter et al 1999).

While the architecture of the neural network component was adjusted in relation
to the number of layers in the network the strategy for training, that is to say, the
learning rate (0.01, 0.006 and 0.001), momentum term (0.8), and number of epochs of
training (1,000) remained constant. The initial learning rate of 0.01 changed at 600
epochs to 0.006 and again at 800 epochs to 0.001. The network was trained on the four
call sets using this training strategy. The addition of a second hidden layer, a context
layer, which was used to add sequential memory to the network produced a significant
improvement in network performance, see Figure 5. The recall rate after testing on the
test set for call set one increased to 79%. This was a difference in improvement of over
51% on the previous best recall rate achieved by the feedforward network.

The difference in improvement in performance on the test set for call set one was
over 45% when compared to that of the MLP network. Overall, when tested, the differ-
ence in improvement in recall rate achieved by the SRN ranged from 49.5% to 57.9%
when compared to the recall rate for the MLP network trained using the same strat-
egy of 1,000 epochs and a changing learning rate. Then the SRN was trained again
on the four call sets using a different learning strategy. In this strategy the learning
rate was fixed at 0.01, the number of epochs of training remained constant at 1,000,
and the momentum term also remained unchanged at 0.8. The recall rate of 76.6%
on the test set for call set one is slightly lower, by 2.4%, than the recall rate of the
network trained with a changing learning rate whilst the precision rate is only lower
by 0.8%. The performance of the network varied slightly across the call sets and the
use of a fixed learning rate did produce some improvement in performance but only
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Fig. 5. Test results of simple recurrent network (SRN).

Table 9. F-Score results for the simple recurrent network.

Training Set Test Set

F-Score F-Score

Call set 1: 89.49 84.37
Call set 2: 88.31 80.93
Call set 3: 90.27 80.42
Call set 4: 89.14 80.63

on two of the call sets compared to the network trained with a changing learning rate.
Overall there was a significant increase in performance when compared to the feedfor-
ward and the MLP networks trained with the same fixed learning rate. The F-score
(Van Rijsbergen 1979) performance of the trained SRN on the four call sets, which is a
combination of the precision and recall rates, is shown in Table 9. The recall and preci-
sion performance is shown in Figure 5. There is a difference of 3.5% and 5.1% between
the highest and the lowest test recall and precision rates respectively. In conclusion,
simple recurrent networks performed substantially better than simple perceptrons or
feedforward networks.

3.3. Support Vector Machines

Since support vector machines have been shown to be good statistical classifiers we
wanted to compare our results with them. Neural networks use the Empirical Risk
Minimisation (ERM) principle which minimises the error on the training data while
the Support Vector Machine (SVM) developed by Vapnik (Vapnik 1995) uses the Struc-
tural Risk Minimisation (SRM) principle which minimises an upper bound on the gen-
eralisation error (Gunn 1998; Burges 1998; Joachims 2000; Scholkopf 1998). An SVM
is a binary classifier and the SVM approach divides the problem space into two regions
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margin

hh

support vectors
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Fig. 6. Optimal separating hyperplane.

via a dividing line or hyperplane with a classifier referred to as the optimal separating
hyperplane, Figure 6.

This hyperplane separates positive examples from negative examples with a maxi-
mum margin (Chapelle and Vapnik 2000; Opper and Urbanczik 2001; Platt 1998; Feng
and Williams 2001) between it and the nearest data point of each class. SVMs can deal
with non-linearly separable cases, ie, where a straight line cannot be found, and can han-
dle noisy data (Platt 1998). SVMs make use of kernels (Moghaddam and Yang 2001; Op-
per and Urbanczik 2001) therefore all computations are performed directly in input
space and depending on the kernel function used, for example, polynomial, radial basis
function (RBF), and sigmoid, different types of classifier can be constructed (Stitson et
al 1996; Moghaddam and Yang 2001; Scholkopf et al 1995). One potentially problematic
area is the optimisation of the kernel parameters and choosing the right combination
of parameters.

3.3.1. Support Vector Machine Experiments

In order to compare the performance of the SRN to other classification approaches
a series of experiments was conducted using an SVM with different kernel functions:
polynomial, RBF, and sigmoid. The value for the tuning or trade-off parameter C, the
error penalty (Joachims 1999; Joachims 2002), was chosen based on empirical experi-
ence. This parameter allows a trade-off between the margin width and classification
error (Joachims 1999; Joachims 2002). Several values for C were investigated in order
to determine a value that reduced the test error to a minimum while at the same time
constructing a classifier that was able to perform successfully on the individual cate-
gories. The value for C used in the experiments was 64. Other parameters that could
be set for each kernel and were the same across the kernels were kept constant which
means the classifiers were constructed using the same values.

A classifier was constructed (Joachims 1999) for each call class and the training
and test sets were generated from the same utterance sequences from the same four
call sets. The training approach adopted was one-versus-all, that is to say, the training
and test sequences used positive examples for the particular call class in question and
negative examples of all the other call classes. The classifier in each case was trained
and then tested on these sequences.

On completion of the training phase a model is generated which is then used in
the testing phase. In their basic form the decision function that determines whether a
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Table 10. F-Score results of SVM.

Training Set Test Set

RBF Sigmoid Polynomial RBF Sigmoid Polynomial

Call set 1: 89.31 75.70 77.00 56.71 57.82 64.36
Call set 2: 89.89 81.06 81.77 58.46 60.51 63.82
Call set 3: 88.92 79.78 78.50 57.88 59.58 66.66
Call set 4: 91.23 84.09 83.92 57.57 60.51 65.26

Recall Precision Recall Precision Recall Precision
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Fig. 7. Test results of support vector machine (SVM).

test example is classified can be described by a linear hyperplane h, attribute vector x,
weight vector w, and a threshold b, and takes the form of:

h(x) = sign(w ∗ x + b) (5)

where the output is:

+1 if w * x + b > 0, and -1 otherwise.

The F-score performance for each of the trained classifiers on the four call sets is
shown in Table 10.

The test recall and precision rates for each of the different classifiers is shown in
Figure 7. These results are for the individual classifiers trained and tested using constant
parameter values.

The classifier constructed with the RBF kernel achieved the best test performance
figures for recall on each of the four call sets when compared to both the sigmoid and
polynomial kernels. The classifier constructed with a polynomial kernel achieved greater
test performance figures for precision on all four call sets than the other two kernels.
Across the four call sets there is a difference of some 5% between the highest and
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Fig. 8. A transducer encoding a relation denoted by a regular expression.

lowest test recall and test precision rates for the RBF kernel classifier. For the sigmoid
kernel classifier the difference is some 6% for test recall and some 3% for test precision.
Therefore, for both of these kernel types the difference is smaller for test precision. In
the case of the polynomial kernel classifier, the difference between the highest and the
lowest rates is smaller for test recall than test precision; this is opposite to the results
for the RBF and sigmoid kernel classifiers.

3.4. Finite-State Automata and Transducers

Finite-state automata and transducers or finite-state machines could prove useful in this
task for several reasons. Firstly, finite-state machines are well understood and clearly
defined and can be small in size. Secondly, their representation and their output is easy
both to understand and interpret: their representation is symbolic in nature and they
use as their basic unit a string. Therefore, it is relatively easy to input data. Finally,
finite-state machines can handle strings of any length. This is of particular significance
in this task because the length of the caller’s utterance is variable.

A finite-state machine is a formal machine that consists of states, arcs that represent
transitions, one start state, any number of final states, and an alphabet (Roche and
Schabes 1997; Jurafsky and Martin 2000). A finite-state machine operates on strings.
A string is a sequence of symbols composed from an alphabet and an alphabet is a
set of symbols or characters. Computation in a finite-state machine begins at the start
state with an input string and the transitions change from one state to other states.
Finite-state machines can either be simple automata that encode regular languages
or transducers that represent a regular relation which is a set of pairs of strings, as
illustrated in Figure 8.

A transducer maps between one set of symbols and another and can recognise or
generate pairs of strings. As a result one view of a transducer is a machine that reads
one string and generates another. For example the transducer in Figure 8 encodes the
relation denoted by the regular expression

(a∗

b
∗

c) → d (6)

that is, the transducer would recognise sequences such as (aaabbbc) and generate a “d”
as output.
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Table 11. F-Score test results of FST.

Test Set

Call set 1: 40.03
Call set 2: 40.56
Call set 3: 44.73
Call set 4: 37.90

3.4.1. Construction of Transducers from Regular Expressions

Finite-state machines can be specified using regular expressions. A regular expression
specifies how patterns or strings and substrings can be created. The strings and sub-
strings are created by combining symbols, in other words, characters or words that
have been extracted from a restricted alphabet or vocabulary. The order in which sym-
bols in the strings and substrings can be joined together is indicated by the regular
expression. The expression also indicates whether for each position there are other pos-
sible alternatives for symbols and whether or not it is possible to repeat these strings
and substrings. In order to create the regular expressions the utterances in the call
set are symbolically tagged to enable identification of possible patterns or strings and
substrings in the utterances, as illustrated in Section 2.6.

3.4.2. Transducer Experiments

To enable a comparison between transducers and the other classification techniques
outlined, a series of experiments was conducted. The same four call sets of utterances
were used as in previous experiments and transducers were constructed for each call
class. Each utterance in the training sets was converted into a symbolic representation
of the call class associated with each word based on the highest frequency of occurrence.
Then transducers were constructed for each call class from regular expressions which
were hand-crafted. The converted training sets were used as reference sets whilst creat-
ing the regular expressions based on sequences of call classes identified in the symbolic
representation of the utterances.

Once the transducers were constructed each was tested against the test sets for
the other call classes. The transducer produces an output class for each sequence. A
successful output is the semantic label of the call class for which the transducer has
been constructed while an unsuccessful output is ‘0’. For the call class for which the
transducer was constructed the number of successful outputs generated were counted
as utterances that were retrieved and relevant and the number of unsuccessful outputs
were counted as relevant utterances not retrieved. Successful outputs on call classes
that were not the call class for which the transducer was constructed were counted as
utterances retrieved that were not relevant. Using these values the recall, precision, and
F-score results were calculated for each call set, see Section 3.1. The test F-score results
for each of the four call sets are provided in Table 11. The test recall and precision
results for each of the four call sets are shown in Figure 9.

For some of the call classes the regular expressions were so prescriptive that the
transducer achieved 100% performance on its own individual sequences and the error
rate on the other sets was low. This performance is useful if the transducers are to be
used as a means of exception handling or identifying those sequences that a recurrent
neural network cannot classify. On the other hand for one or two call classes the regular
expressions identified were more general because the transducers also generated output
for the other call classes. Based on the performance of these transducers it has been
demonstrated that it can be difficult to create a specific regular expression for some
call classes because the semantic content of the utterances in some call classes does
at times closely respesent that of other call classes, as in the examples shown below
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Fig. 9. Test results of finite-state transducers (FST).

Table 12. Example of overlapping classes.

can you check a line for me please ln
can you check my line is working properly flt

in Table 12, and therefore it is problematic to correctly identify the appropriate call
class. Given this, for these call classes the recurrent neural network has proven more
successful as it is better able to handle more difficult semantic sequences due to its
generalisation ability.

3.5. Classifier Processing Time

The processing time for the SRN and the SVM with respect to training varies; FSTs
do not require training but creating regular expressions is a time-consuming process.
The time taken to create the regular expressions varied depending on the call class and
the number of examples in the training sets. This is because the training sets, which
were used as reference sets, had to be examined manually to identify sequences of call
classes and the sequences were used to create the regular expressions. This process may
take less than one hour or several hours for a human depending on the call class. The
shortest computer training time for the SRN was 3 hours 30 minutes and the longest
training time was 5 hours 30 minutes. The training time for the SVM not only varied
depending on the call class but also the kernel being used and the kernel parameter
values selected. The SVM training time was considerably faster than the SRN, at under
one minute, although performance of the SRN was much better. The SVM training
used a one-versus-all method, see Section 3.3.1, that is each SVM was trained on one
call class against all the other call classes whereas the SRN was trained on 17 call
classes at the same time. Optimisation of the SVM is an integral and automatic part of
the training process. The SVM software (Joachims 1999) employs a fast optimisation
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algorithm where the number of members of the working set of examples are selected
according to a steepest feasible descent strategy.

4. Analysis and Discussion

To establish what effect factors such as number of network layers and learning rate
have on network performance these elements were changed and several experiments
conducted to determine the effects of these changes. Overall changes to the learning
rate had little effect on the performance of the feedforward network. The results show
that with or without a constant learning rate the network was only able to correctly
classify on average 21.91% of the utterances. There was however a slight negative effect
on performance of the MLP network by changes to the learning rate. The network
trained using a constant learning rate of 0.01 was able to correctly classify on average
23.83% of all utterances whilst with changes to the learning rate the network was only
able to correctly classify on average 22.53% of all utterances, a drop in performance
of 1.3%. On average the SRN was able to correctly classify over 75% of all utterances
with or without changes to the learning rate. Therefore changes to the learning rate on
the SRN had only a slight effect on performance. This suggests that the biggest factor
in improving the network performance was the addition of the context layer.

Analysis of the performance of the SVM on the classification of some of the ut-
terances identified several factors, one of which is the trade-off parameter C. If the
parameter value is low the SVM produces a simple decision surface and subsequently
lots of misclassification errors, while a high value produces a complex decision surface
and good classification. Another key factor is the type of kernel function used and how
much the individual parameters are tuned. As with the trade-off parameter C, alter-
ing other parameters also has an effect on the recall and precision performance of the
SVM. Changes, for example, to the value of the reciprocal of the Gaussian function in
the RBF kernel in conjunction with the trade-off parameter C cause the classifier to
improve performance in one area, in this case, recall yet decrease it in the other, in this
case, precision. The aim therefore is to find a balance that provides an acceptable level
of recall with an acceptable level of precision. In these experiments the parameter val-
ues were kept constant for each kernel type. However, it is likely that using parameter
values tuned specifically for each kernel will produce better results on some call classes
than others.

The FST, unlike the other two classifiers, relies on regular expressions that are
hand-crafted. This process, as described in Section 3.4.1, is both time consuming and
labour intensive. In most instances the transducer is able to correctly classify utterances
to the appropriate call class and reject those utterances that do not belong to the call
class under investigation. Overall, the FST was able to classify examples belonging to
all call classes but the performance was lower than that of the SRN. This means that
the FST was able to produce a classification result for utterances associated with each
call class, while the SRN and SVM in some cases were unable to produce a classification
result for utterances associated with six of the call classes in total across all four test
sets. For the SVM the inability to classify some of the call classes could be related to
the type of kernel function chosen. All kernel types: RBF, sigmoid, and polynomial had
problems with two or more call classes.

One reason why classifiers such as the SRN and SVM are unable to classify utter-
ances associated with certain call classes could be that these particular call classes have
few examples in both the training and test sets in comparison to other call classes; both
of these techniques learn from examples while the FST relies on hand-crafted regular
expressions. One call class that both the SVM and the SRN were able to classify con-
stitutes 36.66% of the training set and 28.78% of the test set and one call class that
both techniques had problems classifying constitutes only 0.42% of the training set and
only 0.49% of the test set. However, only a small increase in the overall representation
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Table 13. Test Set - Comparison of F-score results for simple recurrent network (SRN),
support vector machine (SVM), and finite-state transducer (FST).

F-score

Call set 1 Call set 2 Call set 3 Call set 4

SRN 84.37 80.93 80.42 80.63
SVM:

RBF 56.71 58.46 57.82 57.57
Sigmoid 57.82 60.51 59.58 60.51
Polynomial 64.36 63.82 66.66 65.26

FST 40.03 40.56 44.73 37.90

of a call class can be sufficient to enable both techniques to classify that call class, eg,
1.54% of the training set and 1.46% of the test set. The improvement in the classifiers’
ability to classify utterances resulting from a small increase in the number of examples
raises the issue of whether to manipulate the number of examples to produce a more
balanced distribution. This issue was not considered for this work because we wanted
to establish how well the classifiers could handle the task using the corpus as supplied
by our telecommunications collaborator where the distribution of examples is represen-
tative of the call traffic to the operator assistance service. Other possible reasons could
be related to the vocabulary used in the utterances associated with these problematic
call classes or the length of the utterances.

Neural networks are inclined to learn first those classes that occur more frequently,
that is, those classes they “see” more of before learning those that are less frequent.
SVMs rely on labelled training data as well as patterns in the data to characterise the
classification function that maximises the margin between the classes and at the same
time minimises the number of support vectors. If there are few samples of the class to
be learned it is likely therefore that it will be difficult for the classifier to identify the
patterns or support vectors needed.

The evaluation metrics chosen to measure performance of the classifiers were se-
lected because the task was approached as a classification task and recall and precision
are standard measures of classification performance. When comparing classifiers using
only one evaluation measure may be preferable because using only one measure makes
comparison simpler. Consequently the F-score is used as the comparison metric. The
F-score performance of the SRN, SVM, and the FST on the test sets for the four call
sets is summarised in Table 13.

From the results on the test sets, shown in Table 13, it is evident the performance
varies across each technique. Generally, the performance of the SRN is better than
that of the SVM and the FST. While the results of the SRN would seem to indicate
that the use of transcripts of the spoken word chain were beneficial to performance
this would not seem to be true based on the results of the SVM and the FST. Their
performance overall is considerably lower than that of the SRN and therefore for these
classifiers does not seem to provide additional benefit. This is a possible indication that
the method of representation of the semantic content of the utterances for the SVM
and the FST is not optimal and does not allow either technique to consistently classify
the utterances. Based on the very low performance of the FST it is evident that the
hand-crafted regular expressions do not capture a fine enough level of granularity in
the semantics of the utterance for the FST to accurately classify the utterances.

Another factor to consider is the number of examples in each of the call classes.
The number of examples in the ‘ln’ call class is over five times greater than that of
the ‘ac’ call class. As a result, if one or two examples are misclassified or not classified
in a small number of examples the impact on the result, in percentage terms is much
greater and produces a greater difference to the result but the same is not true for a
larger set of examples. In general, the F-score results for the SRN are quite high given
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the number of call classes available against which each utterance can be classified. The
SRN achieved an average F-score performance of 81.59. This result is calculated based
on the performance figures for the SRN shown in Figure 5.

In other related work on call routing the evaluation measures used are false rejection
rate: a call is rejected or classified as ‘other’ and the call is routed to the operator when
it could have been automatically routed, and probability of correct classification, that
is how often the classifier is correct. On transcribed calls Gorin et al (1997) achieved
a probability of correct classification rate of 84% with a false rejection rate of 10%,
while in the OASIS project the accuracy rate of the classifier was approximately 75%
on transcribed data (Chou et al 2000). The vector-based approach of Chu-Carroll and
Carpenter (1998) achieved an overall classification performance in the range of 77%-
97% and on transcribed calls a classification performance of approximately 94% with
a rejection rate of 10%. A key factor in the approach of Chu-Carroll and Carpenter is
the use of a disambiguation module; Chu-Carroll and Carpenter acknowledge that the
disambiguation module does govern performance.

While these comparisons give some illustration of the difficulty of classifying spon-
taneous language, the corpus and evaluation metrics used differ. The focus of the eval-
uation measures used by those working on the task of call routing appears to be the
ability of the classifier to either reject a call or label the call as ‘other’ whereas the
focus of our approach is how successfully the classifier can classify all call classes. Our
classification task used an unbalanced real data set and using accuracy as the eval-
uation metric may have produced false or confusing results (Forman 2002) because
accuracy results can be affected if one class is scarce; in this case recall and precision
may provide a better alternative. The F-score can be used to evaluate performance
on unbalanced data sets because this gives the harmonic mean of recall and precision
and is often a preferable measure for this type of data set (Forman 2002). The F-score
results reported show the potential of these techniques and the focus is a comparison
of the performance among these techniques on the task of call classification and is
not intended as a direct comparison with the work of Gorin et al or Chu-Carroll and
Carpenter. It is acknowledged that there are other methods available for comparing
performance. For future work the methods of other researchers investigating spoken
dialogues could be investigated (Yang et al 2002; Gorin et al 2000).

5. Conclusions

The performance of SRNs, SVMs, and FSTs has been discussed and a comparison made
to the work of other researchers in the field of call routing. The main result from this
work is that the performance of the SRN was best, in particular when factors such as
irregularities in the utterance and the number of call classes are taken into considera-
tion. However, a combination of techniques might yield even better performance. The
SVM allows a trade-off between recall and precision and as a result for call classes that
are problematic to the SRN the SVM might be a better alternative. Whilst the FST
does not allow a trade-off between recall and precision again it could be used for those
call classes that are problematic because it can achieve almost perfect performance,
that is 100%, on both recall and precision. The drawback to this approach is that
it requires hand-crafted regular expressions which are time-consuming to construct.
One additional factor that must be considered is the number of examples available for
training and testing as this does influence performance.

This work makes a novel contribution to the field of classification using a large,
unique corpus of spontaneous spoken language. Based on transcribed, segmented ut-
terances it has been demonstrated that an SRN performed best for spoken language
classification. From the perspective of the other techniques identified it has been demon-
strated that there is potential in SVMs and FSTs, for example for exception handling,
for spoken language classification, but overall the SRN achieved a better performance
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on this classification task, and therefore may be a useful main component for a hybrid
architecture.

Future work could focus on using alternative approaches such as Latent Seman-
tic Analysis (LSA) to create a feature representation that provides a deeper meaning
for the words in the utterances based on relationships identified between the words
(Landauer et al 1998). This means that performance is not dependent on the choice
of words and classification may still be achieved even if utterances have no words in
common because LSA considers semantic similarity. Additionally, stochastic finite-state
transducers, which can be learned efficiently from data using pairs of source and target
utterances, could be adopted as they have been used successfully in research on the
call routing task (Arai et al 1999).
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