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Abstract   Improving maintenance scheduling has become an area of crucial 
importance in recent years. Condition-based maintenance (CBM) has started to 
move away from scheduled maintenance by providing an indication of the 
likelihood of failure. Improving the timing of maintenance based on this 
information to maintain high reliability without resorting to over-maintenance 
remains, however, a problem. In this paper we propose Reinforcement Learning 
(RL), to improve long term reward for a multistage decision based on feedback 
given either  during or at the end of a sequence of actions, as a potential solution 
to this problem. Several indicative scenarios are presented and simulated 
experiments illustrate the performance of RL in this application.  

1 Introduction 

Condition-based maintenance (CBM) is an area which has received substantial 
attention in recent years. Prior to the advent of CBM, maintenance was either 
reactive, repairing faults as they occurred which led to downtime and the potential 
for extended damage due to failed or failing parts, or planned preventative 
maintenance which sought to prevent failures by performing maintenance on a 
pre-planned fixed schedule, where the reliability and efficiency of this approach 
depended on the appropriateness of the schedule [1,2].  

CBM involves performing some measurement of the condition of equipment so 
as to infer the maintenance needs. Condition data is generally compiled from 
sensors recording various aspects of the equipment’s condition, including 
vibration measurements, temperature, fluid pressure and lubricant condition. 
Typically a series of thresholds are defined which trigger an intervention when the 
measurements go above these thresholds [3, 4]. Furthermore, several levels of 
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alert are set depending on the level of seriousness of the fault. To fully exploit 
condition measurements, it is, however, necessary to be able to predict the precise 
implications of a given action under a particular set of condition measurements. 
This can be achieved using combinational limits which trigger alerts when several 
thresholds are passed but these must be set up either empirically or through 
detailed analysis if they are to optimise reliability and efficiency [5]. Under-
maintenance due to optimistic threshold setting will lead to failures while over-
maintenance will lead to inefficiency as maintenance is performed too frequently.  

An increasingly important factor in maintenance scheduling is energy 
efficiency [6,7,8,9,10]. Many types of equipment become inefficient if they are 
not correctly maintained. This can lead to a complex set of criteria for the 
optimisation of maintenance. Factors which can influence the optimisation include 
reliability targets, failure penalties, downtime costs, preventative maintenance 
costs and energy consumption/efficiency. A further complication is that the rate at 
which maintenance becomes necessary is often partially determined by usage and 
as such this can vary based on the activities of the organisation in question. 
Therefore, optimising maintenance schedules can be a highly complex activity. 
Since this activity is essentially a long-term optimisation over a series of short 
term decisions, it is our hypothesis that reinforcement learning (RL) is well suited 
to this task.  

Due to the use of a simple, final reward, reinforcement learning has found 
applications in interaction scenarios where an agent receives feedback from a user 
at the end of a sequence of actions such as dialogue management [11], visual 
homing and navigation [12,13,14,15,16], human-computer/robot interaction [17], 
robot navigation [18,19] and for learning skills in the Robocup Soccer 
Competition [20,21,22]. There have already been some initial attempts to explore 
reinforcement learning for restricted tasks in scheduling, routing, and network 
optimisation. [23,24,25,26,27,28,29,30,31,32] Our approach differs from these 
since it offers a practical application for RL in a real-world online environment. In 
this application RL will not only adapt to the broad properties of the problem but 
also to the individual properties of the equipment used. RL is outlined in the 
subsequent section and the remainder of the paper is devoted to demonstrative 
simulations involving the use of RL to schedule maintenance. The paper is 
concluded with discussions of the results and suggestions for future work. 

2 Reinforcement Learning 

Reinforcement learning is a machine learning paradigm based on the 
psychological concept of reinforcement, where the likelihood of a particular 
behaviour is increased by offering some reward when the behaviour occurs. In 
computational terms RL is concerned with maximising long term reward 
following a sequence of actions [33,34,35,36,37]. Many RL algorithms have been 
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proposed [37] including Q-Learning [38]. SARSA [39], Temporal Distance 
Learning [40]  and actor-critic learning [41]. The experiments presented here have 
used the Q-Learning algorithm first proposed by Watkins [38]. Q-Learning was 
selected due to the simplicity of its formulation, the ease with which parameters 
can be adjusted and empirical evidence of faster convergence than some other 
techniques [36]. Q-Learning is based on learning the expected reward, Q, achieved 
when a particular action, a, is undertaken when in a particular state, s, given that a 
policy, �, is followed thereafter: 

 

 � � � �asREasQ ,,, ��  (1) 

The Q-Values are updated with the following equation at each epoch: 
 

 � � � � � � � �� �tttattttt asQasQrasQasQ ,,max,, 11 �		
 		 ��  (2) 

where r is the reward, � is the learning rate and � represents the discount factor 
applied to future rewards. Adjusting the value of � regulates the influence of future 
reward on the current decision, i.e. it controls how forward-looking the system is 
in seeking to maximise future reward. A key component of RL is the balance 
between exploration and known reward. In the maintenance scenario this would 
occur if the agent learned that performing maintenance at every time step produces 
a known reward causing it to never learn that a greater reward may be possible by 
taking a different policy. This scenario is avoided by using the Q-values to bias 
the action selection rather than providing a definitive choice. Another key aspect 
of reinforcement learning systems is ensuring convergence. Convergence can be 
ensured if � takes successively decreasing values subject to certain constraints 
[42]. Based on the above formulation and properties of the Q-Learning algorithm 
a series of experiments can now be performed. 

3 Problem Formulation 

In order to test the suitability of RL to the maintenance scheduling problem, it is 
necessary to define some indicative scenarios which can form the basis of 
simulated experiments. These simulations will involve two interacting 
components, a plant-model and a reinforcement learning model. The plant model 
provides the RL module with an indication of a current condition, the RL module 
then decides whether to execute a particular maintenance task. This is similar to 
the optimal control scenario described by Sutton, Barto and Williams [36] and is  
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illustrated in figure 1 below. If maintenance is not performed then a failure may or 
may not occur. If the plant does not fail then a profit is returned as a reward. If the 
system does fail then a repair cost is deducted from the profit. If the RL module 
decides to perform maintenance then the system will not fail but a maintenance 
cost is deducted from the profit. The maintenance cost is considerably lower than 
the failure cost as is typical in real world scenarios. Thus at each time step the RL 
module must decide between a known, moderate reward by performing 
maintenance or risking no maintenance which could incur either a high reward in 
the event of no failure or a low reward if the plant fails 

 
Fig. 1. Simulation Architecture  

3.1  Plant model 

The objective is to maximise reliability, i.e. the rate at which the equipment in 
question suffers a failure. In mathematical terms, the reliability function R(t) 
represents the likelihood that a system will run for a given time t without failure: 

 

 � � � �tTPtR 
�  (3) 

where T is the failure time. 
 
In the experiments described below, the plant model consists of a reliability 

function which is based on various combinations of variables including: 
 

� Time since last maintenance, t. It is assumed in all cases that the likelihood of a 
failure increases with t. 

STATE: age, condition

DECISION: maintain / do 
not maintain 

REWARD: profit / loss
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� Condition, c, which represents the condition of the plant, independent of the 
time since the  last maintenance. After maintenance the value of condition is set 
to 1, and will decrease by a random amount after each time step. The likelihood 
of failure is inversely proportional to the value of c. 

 
For implementation purposes the reliability function is formulated in terms of 

the failure probability which is a function of the above variables, and represents 
the probability that a failure will occur for a given state (t,c). Several failure 
probability functions are used in the following experiments to illustrate various 
levels of complexity. These functions are given in the following section. Once the 
decision whether to maintain has been taken, the plant model will calculate the 
reward as described above based on the profit, repair cost and maintenance cost. 
In some cases the profit will also reduce at each time step to simulate the effects of 
increasing running costs (i.e. due to increased energy consumption etc) due to 
deteriorating condition. Once again various functions are used to illustrate 
different types of system, the functions are given for each experiment in the 
following section.  

3.2  Reinforcement Learning Model 

In order to develop a maintenance model based on Q-Learning it is necessary to 
define the system state, the available actions and the Q function. The objective is 
to present the system with a stimulus and ask it a question, before providing 
reward based on the answer. In the experiments performed, the stimulus will be a 
set of state variables from the plant model which will consist of time since last 
maintenance, t, and condition, c. The response will be a decision to perform 
maintenance or not based on these state variables alone. This decision will be 
biased by the Q-Values for the two actions. Thus even if there is a larger expected 
reward, represented by a larger Q-value, available for a given action it is still 
possible for the other action to be taken in order to gain an opportunity to explore 
new actions. .Once the maintenance decision has been passed back to the plant 
model, the RL module will receive its reward. Based upon this reward the Q value 
for the selected action in the given state is updated according to equation 4: 

 

 � � � � � � � �� �tttattttt asQasQrasQasQ ,,max,, 11 �		
 		 ��  (4) 

 
It should be emphasised that the RL module only sees the state variables and 

reward which in a real-world application are measurable. The RL module has no 
knowledge of the reliability function or reward functions of the plant model.    
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Actions are selected with the probabilities of maintenance actions being in direct 
proportion to the relative Q-Values. In order to ensure convergence, it is necessary 
for the value of � to decrease through the course of the trials subject to certain 
conditions [42,43]. This is achieved using the typical scheme: 

 

 � � � �asn
as

,
1, ��  (5) 

Where n(s,a) represents the number of times Q(s,a) is visited.  

3.3  Experiments 

In order to examine the performance of the RL algorithm in the maintenance 
scheduling scenario, four simulated experiments were performed using Matlab and 
these are described below. The first scenario presented is the most basic with the 
level of complexity increasing thereafter. In order to quantify the performance of 
the reinforcement learning system two metrics are used. The expected reward is 
calculated by running in validation mode 10000 times between each training 
iteration of the learning algorithm and averaging the reward accrued. Validation 
mode involves using the current policy to operate the plant starting from t = 0. 
Since the purpose of these tests is to measure the performance of a particular 
policy, there is no explorative behaviour in validation mode, i.e. the action with 
the highest Q-Value in a given state will always be selected. There is no learning 
or update of the Q-Value in validation mode. The other metric used is the Mean 
Time Between Failures (MTBF) which is a commonly used reliability metric. 
There are various formulations of MTBF, in this instance it represents the mean 
number of epochs between each occasion the system fails in validation mode. 

4 Results 

4.1 Level 1: Basic Model 

Here a simple system involving a running cost and a failure/repair cost is 
simulated. While this system is simplified it serves as an effective demonstrator of 
the application and as an introduction to the more elaborate, realistic scenarios 
below. The details are as follows. The system is capable of making a profit of 100 
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units at each epoch. The system has a failure probability of 0 which increases 
linearly by 0.05 each epoch as described in equation 6: 

 

 � � ttp fail 05.0�  (6) 

The reward available at each epoch is given by: 
 

 
�
�

�
�

�

�
��

performed emaintenanc100
fails system performed, emaintenanc no100

failureor  emaintenanc no100

m

rt

c
cr  (7) 

where cr = 120 represents the repair cost when the system fails and cm = 30 is 
the maintenance cost. The system is simulated for 1000 epochs. In this instance, 
the decision as to whether or not to perform maintenance is taken randomly for 
training purposes. The system was tested with the reward discount factor � set to 
0.1. This value was determined empirically and found to be successful. The 
resulting Q-Values are shown in figure 2. It can be seen that maintenance becomes 
a more favorable option after 4 epochs. This is significant since the expected 
rewards for the two actions, calculated statistically using equations 6 and 7, are 
equal at 5 epochs with maintenance having a higher value than no maintenance 
before 5 epochs and a lower value after, as shown in table 1. Figure 3 shows the 
expected reward which can be seen to quickly converge, and the MTBF. It can be 
seen that the dominant MTBF is not the optimal value achieved. This is due to the 
agent attempting to achieve optimal long-term reward by delaying maintenance as 
long as it considers prudent.  

 

 
 

Fig. 2. Q-Values for Level 1 
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Table 1. Expected Rewards   
 

T pfail(t) E(rt|maintenance) E(rt|no maintenance) 
1 0.05 70 94 
2 0.1 70 88 
3 0.15 70 82 
4 0.2 70 76 
5 0.25 70 70 
6 0.3 70 64 
7 0.35 70 58 

 
 

 

          
Fig. 3. Average Reward and MTBF for Level 1 

4.2  Level 2: Condition Data 

Here we provide the system with a measure of its current condition. The failure 
probability function is now modified to involve the condition variable c as 
discussed above and is shown in equation 8.  

 

 � �� � � �� �tcttctp fail �	� 1,05.02.0max,  (8) 

The value of condition is updated at each time step as described in equation 9.  
 

 � � � � randtctc 1.01 ���  (9) 
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Where rand represents a uniformly distributed random number in the range 0-
1. The reward function remains as specified in equation 7. The results of the 
simulation can be seen in figure 4. It can be seen that the algorithm successfully 
converges on a policy yielding an average reward in the region of 81 units. Again,  
the final value of MTBF is suboptimal, however the optimal value corresponds 
with a lower level of reward which is the criteria against which the algorithm is 
optimising.  

 

    
Fig. 4. Average Reward for Level 2.  

4.3  Level 3: Energy Consumption Data 

 
This scenario involves the simple reliability function from Level 1 as described by 
equation 6. Here, however, the running costs of the system increase at each time 
step to simulate an increase in energy usage due to a deteriorating condition. This 
is distinct from the above condition scenario where the running costs are not 
directly influenced until the equipment fails. Thus the profit available at each 
epoch reduces by 5 units at each time step after maintenance as described by 
equation 10. 

 

 

�
�

�
�

�

�
��

�
�

performed emaintenanc100
fails system  performed, emaintenanc no5100

failureor  emaintenanc no5100

m

rt

c
ct

t
r

 (10) 

The Q-values are shown in figure 5, average reward and MTBF in figure 6. It 
can be seen that the average reward converges, but on occasion loses its optimality 
temporarily. This appears to occur in the unlikely event of multiple successive 
failures in the learning algorithm but is rapidly corrected. The previously observed 
phenomenon regarding the sub-optimal MTBF is clearly illustrated here as the 
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MTBF rises during periods where the policy becomes sub-optimal in terms of 
reward.  

 

 
Fig. 5. Q-Values for Level 3. 

 

 
Fig. 6. Average Reward for Level 3. 

 
It should be noted that the effect of a deteriorating condition does not 

necessarily need to be formulated in terms of direct running costs. The reward 
offered could be formulated in terms of emissions, cost or other requirements 
scaled with suitable coefficients to give priority as chosen by the user.  

4.4  Level 4: Complex System 

 
In this scenario we combine the above concepts of time since last maintenance, 
condition measurement and energy usage. Thus the reliability function from Level 
2 (equation 8) is used in conjunction with the reward function from level 3 
(equation 10). The average reward and MTBF for level 4 are shown in figure 7. 
As with the previous examples, it can be seen that convergence is achieved.  
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Fig. 7. Average Reward for Level 4. 

5 Discussion and Conclusions 

A number of benefits of RL have been demonstrated in limited yet realistic 
scenarios. The approach described has a number of merits including no 
requirement for any form of internal model and an ability to optimize against a 
number of criteria and could be applied successfully in a larger maintenance 
management application. The state described here comprises of the time since last 
maintenance and simple condition measurements, however the two variables used 
in the state vector cover the most important factors in a system’s reliability and 
potential improvements to the model would only improve the level of detail 
represented. The state-space could, for example, be expanded to include factors 
such as indicators of individual component condition, overall age, more detailed 
service history etc. As the state space becomes larger, maintaining an estimate of 
each and every possible Q-Value becomes problematic for scaling the problem 
size. This can be mitigated by modeling the Q-Function using a function 
approximator such as a neural network. This is an approach which has been 
successfully applied in many applications [12,13,44]. The repertoire of actions 
could be increased to consider different levels of maintenance, each with different 
availabilities.  

Future work in this area will need to probe these questions and address issues 
including the reliability of such a system in terms of the stability of the Q-Values, 
the effect of varying the future discount parameter to regulate how long-term the 
systems decision criteria is and the successful integration of cost based rewards 
with other parameters against which maintenance should be optimised such as 
MTBF. Furthermore the needs of industry in developing this application into a 
useful tool need to be considered to ensure it remains relevant. Issues such as 
formulating and observing the inner state of the system and the implications of the 
actual Q-Values in terms of metrics used by maintenance managers such as Return 
on Investment (ROI) will need to be addressed. 
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