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Abstract 

In the Neuro-robotics Lab of the Centre for Hybrid Intelligent 
Systems we have organised various challenging undergraduate 
student projects using Mindstorm, Khepera and PeopleBot robots. In 
this paper we will describe a particularly interesting undergraduate 
student project involving the introduction of intelligent behaviour 
onto a mini-robot platform.  In the past robots were mainly hard-
coded to perform actions that limited their adaptability to their 
environment. As a response to this problem there has been 
considerable interest in producing robots that can learn. By 
developing a fly-catcher robot scenario using a mini-robot platform it 
was possible to consider the incorporation of learned intelligent 
behaviour for navigation and the use of object recognition.  In doing 
so neural network learning was incorporated into a mini-robot.  This 
work offers an insight for robot uses into issues associated with 
intelligent learning on mini-robots that are also applicable to those 
using more sophisticated robots.  

1. Introduction  
The Neuro-robotics Lab in the Centre for Hybrid Intelligent Systems at the 
University of Sunderland has a wide selection of sophisticated intelligent robots 
within its purpose built laboratory including two large PeopleBot robots, 
mindstorms, Kephera etc. One important component of our work is to organise 
challenging undergraduate student projects using these robots. This has proved 
very successful in the past with projects on the association of language with robot 
actions on the PeopleBot, navigation on an interactive Khepera, neural network 
based object manipulations using the Khepera, vision processing on the PeopleBot 
for landmark navigation and language recognition and creation on a PeopleBot 



tour guide robot (http://www.his.sunderland.ac.uk/Robots_frame.html). In this 
paper we will describe a particularly interesting undergraduate student project by 
Debra Lewis using a mindstorm robot. In nature fly-catching animals may have 
restricted computational resources and this motivated our interest to try to model a 
fly-catcher as a small mini-robot. These insights include real-time processing, 
efficient programming techniques, multi-modal inputs, image processing and 
incorporating learned behaviour.  

This paper considers the introduction of intelligent learned behaviour on a mini-
robot platform to perform the functions of navigation and recognition. This system 
combines readings from the two modalities vision and touch to navigate around an 
environment, performs object recognition and captures an object in real-time. 
Despite the very restrictive nature of a mini-robot such as the mindstorm robot that 
was used in this case intelligent learning behaviour was incorporated into the 
system. This involved the introduction of a neural network to perform navigation 
and the use of object recognition. Although there is considerable research into 
mini-robots, learning has previously had little impact.  

The mindstorm robot platform is very basic. It contains a RCX Microcomputer, 
LEGO elements, motors, light and touch sensors, and an infrared transmitter [1]. 
The RCX is an autonomous microprocessor that is programmable using the 
computer language Not Quite C [2]. Once programmed the RCX takes simple 
inputs from the environment based on sensor readings, processes the data and then 
produces the appropriate output by typically manipulating the motor directions [3, 
4, 5]. Although these robots are restricted in the number of sensors that can be put 
on the robot and the memory space (6k) to download programs, they are suitable 
for modelling simple intelligent learning behaviour to perform actions 
autonomously. The Not Quite C programming language is based on ‘C’, but it is 
very limited in comparison. It is only possible to use 32 global and 16 local integer 
variables. Hence, Not Quite C is not able to provide the complex algorithms and 
real-valued functions that are typically associated with machine learning.  

The add-on accessory set for vision contains a basic digital camera and basic 
software for object recognition. The Vision Command Set offers possibilities to 
have the robot perform actions based on what it sees. However, this set does lack 
sophisticated support algorithms typically required for object recognition. Further, 
although the mindstorm robot software and the Vision Command software are 
designed to work together, they are clearly distinct with the mindstorm software 
working autonomously on the robot and Vision Command through the PC.  

In order to examine the suitability for including learned behaviour on a restricted 
mini-robot platform a fly-catcher scenario was devised. The scenario involved 
putting the robot into an environment and having it look for an object, known as 
the fly. If the robot could not see its prey it moved around until it achieved line-of-
sight. Once the fly was observed the fly-catcher was required to go to it, grab it 
and then relocate the fly.  This paper includes an examination of intelligent robot 
systems, a description of the intelligent navigation and object recognition 
approaches used on the fly-catcher robot and finally a discussion of the fly-catcher 
robot’s overall performance. 



2. Intelligent Robot Systems 
In the past robots such as the Honda robot required hard-coding of all behaviour 
and so could not learn and adapt to changes in their environment [6]. To overcome 
the need for hard-coded robots researchers are examining intelligent learning in 
robots. Robot learning according to Araújo and Barreto (2001) [7] is a challenging 
domain due to its complexity, restrictions on the amount of training data available 
and the real-time decision-making. Below is an examination of a few examples of 
robotic learning systems that have been developed.  

For instance, in our research [8, 9] using the MIRA1 PeopleBot robot as part of the 
MirrorBot project we developed a modular self-organising model that controls 
robot actions using language instruction. The MirrorBot project examines 
perceptual processes using models of cortical assemblies and mirror neurons to 
explore the emergence of semantic representations of actions and concepts in a 
neural robot. In this context we focused on how language instructions for actions 
were modelled in a self-organising memory. In particular it focused on the 
neurocognitive clustering of actions based on the part of the body that performs the 
action and regional modularity for language areas in the brain. This approach used 
actual sensor readings from the robot to represent low level semantic features of the 
actions as the input to the neural network and also as the basis for the robot’s 
behaviour.  

Furthermore, Calabretta et al. (1998) [10] examined an intelligent approach for 
control of a robot to perform litter collection. This approach broke down behaviour 
into sub-elements that match diverse neural modules as an implementation of 
evolutionary adaptive procedures. Three different architectures were considered 
for litter collection: a feedforward network, a hardwired modular architecture 
which allowed the required behaviour to be controlled by different neural modules, 
and finally the duplication-based modular architecture where the modules were not 
hardwired but added during the evolutionary process. It was found that the 
architectures with modules outperformed those with a basic network structure. For 
the hardwired modular architecture the evolved individuals always developed a 
single module to control the left motor, the pick-up process and used two 
competing neural modules for the right motor. For the duplication-based modular 
approach the evolved individuals used both neural modules to control the left 
motor, the right motor, the pick-up procedure and the release process.  

Kazer and Sharkey (2001) [11] developed a model of how the hippocampus 
combines memory and anxiety to produce novelty detection in a robot. In the 
network structure layers CA3 and CA1 depicted the same regions in the 
hippocampus. The network weights linked these layers by performing Hebbian 
learning. Categorising input vectors as novel or familiar identified the amount of 
anxiety. The novelty/familiarity categorisation relied on activation, which was 
dependant on inhibition. The model was found to offer a direct association 

                                                      
1 MIRA is the robot used in the MirrorBot Project and MIRA stands for MIrror 
neuron Robot Agent.  
 



between anxiety and Hebbian-learning models of hippocampal learning.  

A learning robot was devised by Pérez-Uribe (2001) [12] that used a trial-and-error 
learning approach. The computerised systems used the temporal-difference 
approach to learn to predict by using reinforcement learning. Pérez-Uribe (2001) 
[12] used a neural model in the learning robot that decided between three possible 
actions: perceive a pattern while moving left; perceive a pattern while moving 
right; and perceive no pattern. Once the correct selection was made the operator 
pushing a button gave rewards. Such an approach is of interest as it offers an 
opportunity for robot learning through human teaching.  

Recently it was discovered that mirror neurons located in the rostral region of 
primates fired not only due to performing an action but also observing it [13, 14]. 
This finding could have a significant impact on learning robots as it offers an 
approach for robot learning through imitation and multi-modal information fusion. 
Based on this finding Demiris (2002) [15] devised an architecture to achieve robot 
learning through imitation using behaviour and forward models. The behaviour 
model was given information on the current state and the goal and produced the 
required motor commands. The forward model then created the expected next state 
based on the output from the behaviour model. The predicted state was compared 
with the actual state of the demonstrator to produce an error signal. The error 
signal was used to create a confidence value to establish the confidence by which a 
particular behaviour was identified. The approach used two simulated robots, the 
demonstrator and the imitator. The demonstrator robot was observed by the 
imitator robot performing a single action or a series of actions and then required to 
predict what was being performed from a stored set of actions or action orders. As 
the demonstrator performed the action or series of actions the confidence in certain 
actions or series of actions reduced as it became less likely that they were being 
performed and the confidence in the final prediction increased. This therefore gave 
the robot the ability to imitate the demonstrators and understand what was being 
performed.  

3. Reactive Fly-Catcher Mini-robot System 
In order to perform the actions outlined in our scenario the robot received binary 
inputs from two touch sensors on the front of the robot and one at the back. Using 
readings produced by these sensors the conditions of the motors were altered based 
on learned behaviour. Furthermore the fly-catcher used object recognition to locate 
the fly and capture it. A photograph of the fly-catcher robot and the fly prey is 
given in Figure 1.  

3.1 Neural Network for Intelligent Navigation Behaviour 
It was decided to use a neural network for navigation control on the fly-catcher 
robot as this learning technique has proved successful for navigation in more 
sophisticated robots and it gives us a chance to consider the viability of the 
technique for use on a mini-robot.  Given the restrictions imposed by the 
mindstorm robot platform the selection of the most appropriate neural network to 



perform this task in an autonomous manner was critical. Two basic architectures 
were considered the self-organising map (SOM) and the back-propagation multi-
layer perception (MLP).  

The SOM consists of two layers, an input layer and output layer, and is an 
unsupervised training approach [16]. Such a network learns by creating a 
topological representation of the critical characteristics of the input through a 
pattern of active and inactive units. Although having a SOM on an autonomous 
robot would enable it to investigate its environment it is likely that this would 
require a connected PC for a mini-robot to perform the computations required and 
so the mini-robot would no longer be autonomous.  

It was decided to produce the intelligent navigation behaviour using the supervised 
learning approach of the multi-layer perceptron (MLP). A supervised approach 
involves training the network using both the inputs and the required outputs. 
McClelland and Rumelhart (1986) [17] pioneered the MLP, which combines 
processing neurons into at least three layers, the input layer, the middle hidden 
layer and output layer. Figure 2 provides a typical representation of a MLP 
network.  

 

 
 

Figure 1.  The fly-catcher robot and its fly prey. 
 
The learning rule typically used for the multi-layer neural network is the back-
propagation rule that allows the network to learn to classify. This rule creates the 
output of the network compares this with the required output and by propagating 
the error back through the network alters the weights to reduce the error [18].  

The connections between sensors (three inputs) and motors (two outputs) and the 
two neurons in the hidden layer of the navigation MLP are shown in Figure 3. It 
can be seen from Table 1 that the input units received values from the touch 
sensors to indicate if the robot is blocked (1 if blocked, 0 if not blocked). The 



robot learned the direction that the motors need to take to avoid the obstacle, which 
is represented by +1, 0 or –1 (+1 forward, 0 turn off motor and –1 move back). For 
instance, when the left front sensor was pressed, the required action would turn the 
robot to the right by turning off the left motor and have the right motor reverse. 
This would have the output representation of 0, -1. The network was trained using 
the 8 possible input and output combinations in Table 2.  
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Figure 2.  The multi-layer perceptron network architecture. 

 
Input   Output  
Sensor  
Front left 

Sensor  
Back 

Sensor  
Front right 

Motor  
Left 

Motor  
Right 

1 0 0  0 -1 
0 1 0  1  1 
0 0 1 -1  0 

 
Table 1.  Input representation for intelligent navigation. 

 
Input   Output  
Sensor  
Front left 

Sensor  
Back 

Sensor  
Front right 

Motor  
Left 

Motor  
Right 

1 0 0  0 -1 
0 1 0  1  1 
0 0 1 -1  0 
1 0 1 -1 -1 
1 1 0  0  1 
0 1 1  1  0 
1 1 1  0  0 
0 0 0  1  1 

 
Table 2.  The 8 possible inputs and output combinations for intelligent navigation. 
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Figure 3.  The Navigation MLP network structure. 

 

3.2 Object Recognition using a Mini-robot  
Intelligent robot vision and object recognition is an area of active research, which 
has allowed some new and novel approaches for analysing what is seen by the 
robot camera. A vision processing based robot by Nehmzow (1999) [19] used a 
SOM to cluster vision data from a camera in an autonomous manner to 
differentiate between images that included boxes and those that did not. By using 
the SOM to process the robot's sensory signals, distinct sensory perceptions were 
mapped onto clear areas of the network, with close perceptual patterns clustering 
together in an area. Of the camera images that contained boxes, 70% were 
correctly identified as containing boxes and of those without boxes 60% were 
classified correctly.  

Furthermore, Weber and Wermter (2003) [20] in our Neuro-robotics Lab produced 
a vision system based on an associator neural network to localise an object within 
the visual field. The model was used to direct the MIRA robot so it altered the pan 
and tilt of its camera to centralise the object. The neural architecture used “what” 
and ‘where’ pathways. The ‘what’ pathway used two areas: input and a two-layer 
hidden area. The lower layer of the hidden area gained bottom-up connections 
from the input. The upper layer of the hidden layer received the output of the lower 
layer neurons. After it received this initial input, it updated its activations using its 
previous activations. Furthermore, input came from the connected area of the 
"where" pathway. The “where” neurons via recurrent weights were fully connected 
and also received inputs from the highest layer of the ‘what’ network.  

Wilson and Mitchell (2000) [21] developed an artificial retina that detected high 
contrast objects in the line of vision and relayed this information to the host 
processor. The retina broke down the image into smaller subsections to help 
analyse the line of vision. Moreover, Cipolla (1995) [22] developed a robot that 



included ‘stereo’ vision in a robot that learned by experience by attaching two 
independent cameras.  

Roy and Pentland 2002 [23] developed a robotic system called CELL that could 
learn shape and colour words that incorporated object recognition. Object 
recognition was achieved by taking multiple two-dimensional images of the object 
from different positions that collectively form the model of that object. Histograms 
of features were derived from the object models that represented them. Shape was 
determined by locating the boundary pixels of the object in the image. The use of 
multidimensional histograms to represent shape allowed the comparison of 
different objects. This enabled a comparison of the two-dimensional histograms 
that represent the objects from specific viewpoints. Out of the 15 two-dimensional 
histograms from the viewpoints the 4 closest for the two objects were taken and 
the difference summed.  

In order to identify the fly, the fly-catcher mini-robot used the Vision Command set 
to perform colour recognition. By using this software to capture pictures at up to 
30 frames per second on a 352 x 288 resolution camera the fly-catcher robot could 
recognise pre-defined colours. Once received, inputs from the camera are passed 
into the recognition software on the PC, the Vision Command set sends messages 
via the infrared tower to the RCX stating whether the desired colour was 
recognised. Based on this colour recognition the Not Quite C programmed RCX 
produced the appropriate motor commands. The mindstorm colour recognition 
package used a process that compared the RGB values for the predefined colour 
with the RGB value of the main colour of the object it encounters. The Vision 
Command software divided the visual field into various regions and so was able to 
detect where in the visual field the fly was and so used this information to move 
towards it.  

Although the camera and recognition software added new functionality to a 
mindstorm robot, it does have two main limitations. By using RGB values lighting 
played a critical part in what colour the robot was actually looking for and whether 
it recognised the colour under different conditions. Running vision with the 
navigation approach caused the navigation and vision software to ‘fight’ for 
control of the motors and so produced the situation where the motors were being 
turned on and off continuously. To overcome the first limitation efforts were made 
to keep the lighting in the environment constant. Furthermore, it became necessary 
to allow the vision or navigation function currently in control of the motors to 
temporarily suspend the other until that function had finished with the motor 
output, then pass control back to the other by use of a semaphore system.  

The fly-catcher determined whether to close its gripper on the recognised fly and 
relocate to a new position by using a light sensor on its front. If the fly was in the 
correct position the light sensor’s value passed a certain threshold and so the fly-
catcher performed the appropriate behaviour. 

When testing the navigation multi-layer perceptron using artificially created inputs 
off the robot it was found that the network did produce values close enough to the 
required output values that a thresholding approach could be incorporated in the 
robot. This thresholding approach stated that if the output was greater than +0.5 



the motor moves forward, if it was below –0.5 it was reversed and between –0.5 
and +0.5 the motor was turned off.  

Once the trained reactive behaviour was incorporated in the fly-catcher, this robot 
and the fly were repeatedly placed into the environment at different locations. This 
was done to establish how well it would perform the task of navigation and object 
recognition under diverse circumstances. The environment was completely white, 
with a base 180cm by 120 cm and 60 cm high walls around the edge of the base. In 
order to test the navigation behaviour, block shaped obstacles of different colours 
to the fly were positioned in the environment. Despite the white colouring of the 
environment causing the reflection of the fly on the wall and block obstacles, the 
simple navigation behaviour of the robot enabled it to navigate round the 
environment and move into a position to recognise the fly in 80% of the test cases. 
Figure 4 shows the fly-catcher robot looking for its prey.  

Furthermore, when the robot recognised the fly and repositioned itself to the front 
of the fly, it was able to take hold of the fly and move it from the capture site 
100% of time. However, when the robot came at the fly from a different angle in 
only 50% of the cases did the robot grasp the fly and move it from the capture site.  
Table 3 provides a summary of these results.  

 
Flies navigated to 
and recognised 
correctly 

Percentage of recognised 
flies captured if 
approached from front 

Percentage of recognised 
flies capture if approached 
from side 

80% 100% 50% 
 

Table 3.  Performance of the fly-catcher robot. 
 

Despite the many limitations associated with mini-robots like the mindstorm robot 
and its programming language Not Quite C, it was possible to overcome these to 
produce simple intelligent behaviour. We were able to incorporate learned 
behaviour using a multi-layer perceptron neural network and performed object 
recognition. By using this simple reactive behaviour the robot was able to navigate 
round an environment, avoid obstacles, recognise its prey, grasp it and take it to a 
new location.  

It might be argued that it is possible to use much more sophisticated platforms that 
have a large amount of hard disk space and memory, and can be programmed using 
a powerful programming language straight away. However, they have a much 
longer learning curve and may not offer the ease of use of the mini-robot 
considered here. Although the level of intelligent behaviour possible with mini-
robots is limited they do give a valuable insight and introduction into the problems 
of incorporating learning and reactive behaviour on robots especially at the level of 
student projects. As seen in this paper such a robot can draw attention to issues 
such as lighting conditions for object recognition, the conflicts that can occur when 
trying to combine inputs from different modalities, gripper manipulation and 
learning approaches for producing complex reactive behaviour.  



4. Conclusion 
In conclusion, as part of an undergraduate project learning behaviour was 
introduced into a mini-robot based on a fly-catcher scenario to perform navigation 
and object behaviour. By doing so it was possible to consider the introduction of 
learned behaviour on a mini-robot. Although, such a robot does offer many 
limitations it is still possible to achieve good performance by using a multi-layer 
perceptron for navigation and colour recognition to identify the robots prey. 
Furthermore, many of the issues brought out from examination of this type of 
robot are applicable to more sophisticated ones. It is our belief that some of the 
findings on the mindstorm have aided our research into more sophisticated robot 
behaviour on the larger PeopleBot robot.  
 
 

 
 

Figure 4.  The fly-catcher robot looking for its prey. 
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