
Incorporating Reactive Learning Behaviour into
a Mini-robot Platform

Mark Elshaw
and

Debra Lewis
and

Stefan Wermter

School of Computing and Technology, Centre for Hybrid Intelligent
Systems, University of Sunderland, St Peter’s Way, Sunderland

SR6 0DD, United Kingdom
[Mark.Elshaw][Stefan.Wermter]@sunderland.ac.uk

www.his.sunderland.ac.uk

Abstract

In the Neuro-robotics Lab of the Centre for Hybrid Intelligent
Systems we have organised various challenging undergraduate
student projects using Mindstorm, Khepera and PeopleBot robots. In
this paper we will describe a particularly interesting undergraduate
student project involving the introduction of intelligent behaviour
onto a mini-robot platform. In the past robots were mainly hard-
coded to perform actions that limited their adaptability to their
environment. As a response to this problem there has been
considerable interest in producing robots that can learn. By
developing a fly-catcher robot scenario using a mini-robot platform it
was possible to consider the incorporation of learned intelligent
behaviour for navigation and the use of object recognition. In doing
so neural network learning was incorporated into a mini-robot. This
work offers an insight for robot uses into issues associated with
intelligent learning on mini-robots that are also applicable to those
using more sophisticated robots.

1. Introduction
The Neuro-robotics Lab in the Centre for Hybrid Intelligent Systems at the
University of Sunderland has a wide selection of sophisticated intelligent robots
within its purpose built laboratory including two large PeopleBot robots,
mindstorms, Kephera etc. One important component of our work is to organise
challenging undergraduate student projects using these robots. This has proved
very successful in the past with projects on the association of language with robot
actions on the PeopleBot, navigation on an interactive Khepera, neural network
based object manipulations using the Khepera, vision processing on the PeopleBot
for landmark navigation and language recognition and creation on a PeopleBot

tour guide robot (http://www.his.sunderland.ac.uk/Robots_frame.html). In this
paper we will describe a particularly interesting undergraduate student project by
Debra Lewis using a mindstorm robot. In nature fly-catching animals may have
restricted computational resources and this motivated our interest to try to model a
fly-catcher as a small mini-robot. These insights include real-time processing,
efficient programming techniques, multi-modal inputs, image processing and
incorporating learned behaviour.

This paper considers the introduction of intelligent learned behaviour on a mini-
robot platform to perform the functions of navigation and recognition. This system
combines readings from the two modalities vision and touch to navigate around an
environment, performs object recognition and captures an object in real-time.
Despite the very restrictive nature of a mini-robot such as the mindstorm robot that
was used in this case intelligent learning behaviour was incorporated into the
system. This involved the introduction of a neural network to perform navigation
and the use of object recognition. Although there is considerable research into
mini-robots, learning has previously had little impact.

The mindstorm robot platform is very basic. It contains a RCX Microcomputer,
LEGO elements, motors, light and touch sensors, and an infrared transmitter [1].
The RCX is an autonomous microprocessor that is programmable using the
computer language Not Quite C [2]. Once programmed the RCX takes simple
inputs from the environment based on sensor readings, processes the data and then
produces the appropriate output by typically manipulating the motor directions [3,
4, 5]. Although these robots are restricted in the number of sensors that can be put
on the robot and the memory space (6k) to download programs, they are suitable
for modelling simple intelligent learning behaviour to perform actions
autonomously. The Not Quite C programming language is based on ‘C’, but it is
very limited in comparison. It is only possible to use 32 global and 16 local integer
variables. Hence, Not Quite C is not able to provide the complex algorithms and
real-valued functions that are typically associated with machine learning.

The add-on accessory set for vision contains a basic digital camera and basic
software for object recognition. The Vision Command Set offers possibilities to
have the robot perform actions based on what it sees. However, this set does lack
sophisticated support algorithms typically required for object recognition. Further,
although the mindstorm robot software and the Vision Command software are
designed to work together, they are clearly distinct with the mindstorm software
working autonomously on the robot and Vision Command through the PC.

In order to examine the suitability for including learned behaviour on a restricted
mini-robot platform a fly-catcher scenario was devised. The scenario involved
putting the robot into an environment and having it look for an object, known as
the fly. If the robot could not see its prey it moved around until it achieved line-of-
sight. Once the fly was observed the fly-catcher was required to go to it, grab it
and then relocate the fly. This paper includes an examination of intelligent robot
systems, a description of the intelligent navigation and object recognition
approaches used on the fly-catcher robot and finally a discussion of the fly-catcher
robot’s overall performance.

2. Intelligent Robot Systems
In the past robots such as the Honda robot required hard-coding of all behaviour
and so could not learn and adapt to changes in their environment [6]. To overcome
the need for hard-coded robots researchers are examining intelligent learning in
robots. Robot learning according to Araújo and Barreto (2001) [7] is a challenging
domain due to its complexity, restrictions on the amount of training data available
and the real-time decision-making. Below is an examination of a few examples of
robotic learning systems that have been developed.

For instance, in our research [8, 9] using the MIRA1 PeopleBot robot as part of the
MirrorBot project we developed a modular self-organising model that controls
robot actions using language instruction. The MirrorBot project examines
perceptual processes using models of cortical assemblies and mirror neurons to
explore the emergence of semantic representations of actions and concepts in a
neural robot. In this context we focused on how language instructions for actions
were modelled in a self-organising memory. In particular it focused on the
neurocognitive clustering of actions based on the part of the body that performs the
action and regional modularity for language areas in the brain. This approach used
actual sensor readings from the robot to represent low level semantic features of the
actions as the input to the neural network and also as the basis for the robot’s
behaviour.

Furthermore, Calabretta et al. (1998) [10] examined an intelligent approach for
control of a robot to perform litter collection. This approach broke down behaviour
into sub-elements that match diverse neural modules as an implementation of
evolutionary adaptive procedures. Three different architectures were considered
for litter collection: a feedforward network, a hardwired modular architecture
which allowed the required behaviour to be controlled by different neural modules,
and finally the duplication-based modular architecture where the modules were not
hardwired but added during the evolutionary process. It was found that the
architectures with modules outperformed those with a basic network structure. For
the hardwired modular architecture the evolved individuals always developed a
single module to control the left motor, the pick-up process and used two
competing neural modules for the right motor. For the duplication-based modular
approach the evolved individuals used both neural modules to control the left
motor, the right motor, the pick-up procedure and the release process.

Kazer and Sharkey (2001) [11] developed a model of how the hippocampus
combines memory and anxiety to produce novelty detection in a robot. In the
network structure layers CA3 and CA1 depicted the same regions in the
hippocampus. The network weights linked these layers by performing Hebbian
learning. Categorising input vectors as novel or familiar identified the amount of
anxiety. The novelty/familiarity categorisation relied on activation, which was
dependant on inhibition. The model was found to offer a direct association

1 MIRA is the robot used in the MirrorBot Project and MIRA stands for MIrror
neuron Robot Agent.

between anxiety and Hebbian-learning models of hippocampal learning.

A learning robot was devised by Pérez-Uribe (2001) [12] that used a trial-and-error
learning approach. The computerised systems used the temporal-difference
approach to learn to predict by using reinforcement learning. Pérez-Uribe (2001)
[12] used a neural model in the learning robot that decided between three possible
actions: perceive a pattern while moving left; perceive a pattern while moving
right; and perceive no pattern. Once the correct selection was made the operator
pushing a button gave rewards. Such an approach is of interest as it offers an
opportunity for robot learning through human teaching.

Recently it was discovered that mirror neurons located in the rostral region of
primates fired not only due to performing an action but also observing it [13, 14].
This finding could have a significant impact on learning robots as it offers an
approach for robot learning through imitation and multi-modal information fusion.
Based on this finding Demiris (2002) [15] devised an architecture to achieve robot
learning through imitation using behaviour and forward models. The behaviour
model was given information on the current state and the goal and produced the
required motor commands. The forward model then created the expected next state
based on the output from the behaviour model. The predicted state was compared
with the actual state of the demonstrator to produce an error signal. The error
signal was used to create a confidence value to establish the confidence by which a
particular behaviour was identified. The approach used two simulated robots, the
demonstrator and the imitator. The demonstrator robot was observed by the
imitator robot performing a single action or a series of actions and then required to
predict what was being performed from a stored set of actions or action orders. As
the demonstrator performed the action or series of actions the confidence in certain
actions or series of actions reduced as it became less likely that they were being
performed and the confidence in the final prediction increased. This therefore gave
the robot the ability to imitate the demonstrators and understand what was being
performed.

3. Reactive Fly-Catcher Mini-robot System
In order to perform the actions outlined in our scenario the robot received binary
inputs from two touch sensors on the front of the robot and one at the back. Using
readings produced by these sensors the conditions of the motors were altered based
on learned behaviour. Furthermore the fly-catcher used object recognition to locate
the fly and capture it. A photograph of the fly-catcher robot and the fly prey is
given in Figure 1.

3.1 Neural Network for Intelligent Navigation Behaviour
It was decided to use a neural network for navigation control on the fly-catcher
robot as this learning technique has proved successful for navigation in more
sophisticated robots and it gives us a chance to consider the viability of the
technique for use on a mini-robot. Given the restrictions imposed by the
mindstorm robot platform the selection of the most appropriate neural network to

perform this task in an autonomous manner was critical. Two basic architectures
were considered the self-organising map (SOM) and the back-propagation multi-
layer perception (MLP).

The SOM consists of two layers, an input layer and output layer, and is an
unsupervised training approach [16]. Such a network learns by creating a
topological representation of the critical characteristics of the input through a
pattern of active and inactive units. Although having a SOM on an autonomous
robot would enable it to investigate its environment it is likely that this would
require a connected PC for a mini-robot to perform the computations required and
so the mini-robot would no longer be autonomous.

It was decided to produce the intelligent navigation behaviour using the supervised
learning approach of the multi-layer perceptron (MLP). A supervised approach
involves training the network using both the inputs and the required outputs.
McClelland and Rumelhart (1986) [17] pioneered the MLP, which combines
processing neurons into at least three layers, the input layer, the middle hidden
layer and output layer. Figure 2 provides a typical representation of a MLP
network.

Figure 1. The fly-catcher robot and its fly prey.

The learning rule typically used for the multi-layer neural network is the back-
propagation rule that allows the network to learn to classify. This rule creates the
output of the network compares this with the required output and by propagating
the error back through the network alters the weights to reduce the error [18].

The connections between sensors (three inputs) and motors (two outputs) and the
two neurons in the hidden layer of the navigation MLP are shown in Figure 3. It
can be seen from Table 1 that the input units received values from the touch
sensors to indicate if the robot is blocked (1 if blocked, 0 if not blocked). The

robot learned the direction that the motors need to take to avoid the obstacle, which
is represented by +1, 0 or –1 (+1 forward, 0 turn off motor and –1 move back). For
instance, when the left front sensor was pressed, the required action would turn the
robot to the right by turning off the left motor and have the right motor reverse.
This would have the output representation of 0, -1. The network was trained using
the 8 possible input and output combinations in Table 2.

Output Layer

Hidden Layer

Input Layer

Figure 2. The multi-layer perceptron network architecture.

Input Output
Sensor
Front left

Sensor
Back

Sensor
Front right

Motor
Left

Motor
Right

1 0 0 0 -1
0 1 0 1 1
0 0 1 -1 0

Table 1. Input representation for intelligent navigation.

Input Output
Sensor
Front left

Sensor
Back

Sensor
Front right

Motor
Left

Motor
Right

1 0 0 0 -1
0 1 0 1 1
0 0 1 -1 0
1 0 1 -1 -1
1 1 0 0 1
0 1 1 1 0
1 1 1 0 0
0 0 0 1 1

Table 2. The 8 possible inputs and output combinations for intelligent navigation.

Right Motor

Left Motor

N2

N1

Back Touch
Sensor

Right Front
Touch Sensor

Left Front Touch
Sensor

Figure 3. The Navigation MLP network structure.

3.2 Object Recognition using a Mini-robot
Intelligent robot vision and object recognition is an area of active research, which
has allowed some new and novel approaches for analysing what is seen by the
robot camera. A vision processing based robot by Nehmzow (1999) [19] used a
SOM to cluster vision data from a camera in an autonomous manner to
differentiate between images that included boxes and those that did not. By using
the SOM to process the robot's sensory signals, distinct sensory perceptions were
mapped onto clear areas of the network, with close perceptual patterns clustering
together in an area. Of the camera images that contained boxes, 70% were
correctly identified as containing boxes and of those without boxes 60% were
classified correctly.

Furthermore, Weber and Wermter (2003) [20] in our Neuro-robotics Lab produced
a vision system based on an associator neural network to localise an object within
the visual field. The model was used to direct the MIRA robot so it altered the pan
and tilt of its camera to centralise the object. The neural architecture used “what”
and ‘where’ pathways. The ‘what’ pathway used two areas: input and a two-layer
hidden area. The lower layer of the hidden area gained bottom-up connections
from the input. The upper layer of the hidden layer received the output of the lower
layer neurons. After it received this initial input, it updated its activations using its
previous activations. Furthermore, input came from the connected area of the
"where" pathway. The “where” neurons via recurrent weights were fully connected
and also received inputs from the highest layer of the ‘what’ network.

Wilson and Mitchell (2000) [21] developed an artificial retina that detected high
contrast objects in the line of vision and relayed this information to the host
processor. The retina broke down the image into smaller subsections to help
analyse the line of vision. Moreover, Cipolla (1995) [22] developed a robot that

included ‘stereo’ vision in a robot that learned by experience by attaching two
independent cameras.

Roy and Pentland 2002 [23] developed a robotic system called CELL that could
learn shape and colour words that incorporated object recognition. Object
recognition was achieved by taking multiple two-dimensional images of the object
from different positions that collectively form the model of that object. Histograms
of features were derived from the object models that represented them. Shape was
determined by locating the boundary pixels of the object in the image. The use of
multidimensional histograms to represent shape allowed the comparison of
different objects. This enabled a comparison of the two-dimensional histograms
that represent the objects from specific viewpoints. Out of the 15 two-dimensional
histograms from the viewpoints the 4 closest for the two objects were taken and
the difference summed.

In order to identify the fly, the fly-catcher mini-robot used the Vision Command set
to perform colour recognition. By using this software to capture pictures at up to
30 frames per second on a 352 x 288 resolution camera the fly-catcher robot could
recognise pre-defined colours. Once received, inputs from the camera are passed
into the recognition software on the PC, the Vision Command set sends messages
via the infrared tower to the RCX stating whether the desired colour was
recognised. Based on this colour recognition the Not Quite C programmed RCX
produced the appropriate motor commands. The mindstorm colour recognition
package used a process that compared the RGB values for the predefined colour
with the RGB value of the main colour of the object it encounters. The Vision
Command software divided the visual field into various regions and so was able to
detect where in the visual field the fly was and so used this information to move
towards it.

Although the camera and recognition software added new functionality to a
mindstorm robot, it does have two main limitations. By using RGB values lighting
played a critical part in what colour the robot was actually looking for and whether
it recognised the colour under different conditions. Running vision with the
navigation approach caused the navigation and vision software to ‘fight’ for
control of the motors and so produced the situation where the motors were being
turned on and off continuously. To overcome the first limitation efforts were made
to keep the lighting in the environment constant. Furthermore, it became necessary
to allow the vision or navigation function currently in control of the motors to
temporarily suspend the other until that function had finished with the motor
output, then pass control back to the other by use of a semaphore system.

The fly-catcher determined whether to close its gripper on the recognised fly and
relocate to a new position by using a light sensor on its front. If the fly was in the
correct position the light sensor’s value passed a certain threshold and so the fly-
catcher performed the appropriate behaviour.

When testing the navigation multi-layer perceptron using artificially created inputs
off the robot it was found that the network did produce values close enough to the
required output values that a thresholding approach could be incorporated in the
robot. This thresholding approach stated that if the output was greater than +0.5

the motor moves forward, if it was below –0.5 it was reversed and between –0.5
and +0.5 the motor was turned off.

Once the trained reactive behaviour was incorporated in the fly-catcher, this robot
and the fly were repeatedly placed into the environment at different locations. This
was done to establish how well it would perform the task of navigation and object
recognition under diverse circumstances. The environment was completely white,
with a base 180cm by 120 cm and 60 cm high walls around the edge of the base. In
order to test the navigation behaviour, block shaped obstacles of different colours
to the fly were positioned in the environment. Despite the white colouring of the
environment causing the reflection of the fly on the wall and block obstacles, the
simple navigation behaviour of the robot enabled it to navigate round the
environment and move into a position to recognise the fly in 80% of the test cases.
Figure 4 shows the fly-catcher robot looking for its prey.

Furthermore, when the robot recognised the fly and repositioned itself to the front
of the fly, it was able to take hold of the fly and move it from the capture site
100% of time. However, when the robot came at the fly from a different angle in
only 50% of the cases did the robot grasp the fly and move it from the capture site.
Table 3 provides a summary of these results.

Flies navigated to
and recognised
correctly

Percentage of recognised
flies captured if
approached from front

Percentage of recognised
flies capture if approached
from side

80% 100% 50%

Table 3. Performance of the fly-catcher robot.

Despite the many limitations associated with mini-robots like the mindstorm robot
and its programming language Not Quite C, it was possible to overcome these to
produce simple intelligent behaviour. We were able to incorporate learned
behaviour using a multi-layer perceptron neural network and performed object
recognition. By using this simple reactive behaviour the robot was able to navigate
round an environment, avoid obstacles, recognise its prey, grasp it and take it to a
new location.

It might be argued that it is possible to use much more sophisticated platforms that
have a large amount of hard disk space and memory, and can be programmed using
a powerful programming language straight away. However, they have a much
longer learning curve and may not offer the ease of use of the mini-robot
considered here. Although the level of intelligent behaviour possible with mini-
robots is limited they do give a valuable insight and introduction into the problems
of incorporating learning and reactive behaviour on robots especially at the level of
student projects. As seen in this paper such a robot can draw attention to issues
such as lighting conditions for object recognition, the conflicts that can occur when
trying to combine inputs from different modalities, gripper manipulation and
learning approaches for producing complex reactive behaviour.

4. Conclusion
In conclusion, as part of an undergraduate project learning behaviour was
introduced into a mini-robot based on a fly-catcher scenario to perform navigation
and object behaviour. By doing so it was possible to consider the introduction of
learned behaviour on a mini-robot. Although, such a robot does offer many
limitations it is still possible to achieve good performance by using a multi-layer
perceptron for navigation and colour recognition to identify the robots prey.
Furthermore, many of the issues brought out from examination of this type of
robot are applicable to more sophisticated ones. It is our belief that some of the
findings on the mindstorm have aided our research into more sophisticated robot
behaviour on the larger PeopleBot robot.

Figure 4. The fly-catcher robot looking for its prey.

Acknowledgements

We would like to thank the following members of the Centre for Hybrid Intelligent
Systems for their help with this paper Sheila Garfield, John Murray and Cornelius
Weber. In particular I would like to thank Harry Erwin and Christo Panchev for
their assistance with the final year projects in the Neuro-robotics Lab.

References
1. Baum, D. Dave Baum's Definitive Guide to Lego Mindstorms, Apress, 2000.
2. Baum, D., Gasperi, M., Hempel, R. & Villa, L. Extreme mindstorm:

advanced guide to LEGO mindstorm. Apress, 2000.
3. Nagata, J. Lego Mindstorms idea book, Starch Press, 2001.
4. Penfold, R. More Advanced Robotics with Lego Mindstorms. Bernard

Babani (Publishing) Ltd, 2000.
5. Sato, J. Jim Sato's Lego mindstorms: The master's technique. Starch Press,

2001.
6. Schaal, S. Is imitation learning the route to humanoid robots. Trends in

Cognitive Science, 1999; 3(6): 233-242.
7. Araújo, A. & Barrato, G. A self-organizing context-based approach to the

tracking of multiple robot trajectories. International Journal of Computer
Research, 2001; 10(2): 139-179.

8. Elshaw M., Wermter S. & Watt P. Self-organisation of language instruction
for robot action. Proceedings of the International Joint Conference on Neural
Networks. Oregon, USA, July 2003.

9. Wermter S. & Elshaw M. Learning robot actions based on self-organising
language memory. Neural Networks, 2003, 16(5-6): 661-669.

10. Calabretta, R., Nolfi, S., Parisi, D. & Wagner, P. Emergence of functional
modularity in robots. In Proceedings of Artificial Life VI, Los Angeles,
Editors C. Adami, R. Belew, H. Kitano and C. Taylor, MIT Press, 1998.

11. Kazer, J. & Sharkey, A. The role of memory, anxiety and Hebbian learning
in hippocampal function: Novel explorations in computational neuroscience
and robotics. In Emergent Neural Computational Architectures based on
Neuroscience, Editors S. Wermter, J. Austin, and D. Willshaw, Springer-
Verlag, Heidelberg, Germany, 2001, pp. 507-521.

12. Pérez-Uribe, A. using a time-delay actor-critic neural architecture with
dopamine-like reinforcement signal for learning in autonomous robots, In
Emergent Neural Computational Architectures based on Neuroscience,
Editors S. Wermter, J. Austin, and Willshaw, D., Springer-Verlag,
Heidelberg, Germany, 2001, pp. 522-533.

13. Rizzolatti G. & Arbib, M. Language within our grasp. Trends in
Neuroscience, 1998; 21: 188-194.

14. Umilta, M. Kohler, E. Gallese, V., Fogassi, L. Fadiga, L., Keysers, C. &
Rizzolatti, G. I know what you are doing: A neurophysical study. Neuron,
2001; 31:31.

15. Demiris, Y. Biologically inspired robot imitation mechanisms and their
application as models of mirror neurons. Proceedings of the EPSRC/BBSRC
International Workshop on Biological Inspired Robotics Bristol 14-16
August, 2002.

16. Kohonen, T. Self-organizing maps. Springer Verlag, Heidelberg, Germany,
1997.

17. McClelland, J. & Rumelhart, D. Mechanisms of sentence processing:
assigning roles to constituents of sentences. Parallel Distributed Processing:
Explorations in the Microstructure of Cognition Vol.2, MIT Press,
Cambridge MA, 1986, pp. 272-325.

18. Beale, R. & Jackson, T. Neural computing an introduction. IOP Ltd, 1990,
pp. 39-128.

19. Nehmzow, U. Meaning through clustering by self-organisation of spatial and
temporal information. Computation for Metaphors, Analogy and Agents,
Editor C. Nehaniv, Springer-Verlag, Heidelberg, Germany, 1999, pp. 209-
299.

20. Weber C. & Wermter S. Object localisation using laterally connected "What"
and "Where" associator networks. Proceedings of the International
Conference on Artificial Neural Networks, Istanbul, Turkey, pp. 813-820,
2003.

21. Wilson, J. & Mitchell, R. Object detecting artificial retina. Kybernetes: The
International Journal of Systems and Cybernetics, 2002; 29(1): 31-52.

22. Cipolla, R., Hollinghurst, N., Gee, A. & Dowland, R. Computer vision in
interactive robotics. Assembly Automation, 1996, 16(1): 18-24.

23. Roy, D. & Pentland, A. Learning words from sights and sounds: A
computational model. Cognitive Science, 2002; 26(1), 113-146.

