
Neural Hopfield-ensemble for multi-class head pose detection

Nils Meins1, Sven Magg1, Stefan Wermter1

Abstract— Multi-class object detection is perhaps the most
important task for many computer vision systems and mo-
bile robots. In this work we will show that Hopfield Neural
Network (HNN) ensembles can successfully detect and classify
objects from several classes by taking advantage of head-pose
estimation. The single HNNs are using pixel sums of Haar-
like features as input, resulting in HNNs with a small number
of neurons. An advantage of using these in ensembles is their
compact form. Although it was shown that such HNNs can only
memorise few patterns, by utilising a naive-Bayes mechanism
we were able to exploit the multi-class ability of single HNNs
within an ensemble. In this work we report successful head
pose classification, which presents a 4-class problem (3 poses
+ negatives). Results show that successful classification can be
achieved with small training sets and ensembles, making this
approach an interesting choice for online learning and robotics.

I. INTRODUCTION

Since the world surrounding us contains multiple objects
at any given moment, reliable multi-class object detection is
an important feature of any system that has to act in such
environment. To efficiently use computer vision systems for
object detection on robotic systems they need to be fast and
of preferably low computational complexity. Previous work
has already shown that the Adaboost Algorithm combined
with Hopfield Neural Networks (HNNs) as weak classifiers
can be used efficiently for classification tasks [4] and that
the accuracy can be improved by using different image
representations simultaneously[11]. In this work we will
show that an extended approach can be efficiently used for
multi-class object detection by taking advantage of head
pose estimation. HNNs are used as weak classifiers in the
Adaboost ensembles and we now directly exploit the multi-
class ability of those HNNs. Hopfield [1] has shown that the
number of patterns an HNN can memorize is 0.14 N , where
N is the number of neurons. Our HNNs are using dedicated
single rectangle pixel sums of Haar-like feature structures as
input. Therefore our HNNs had a size of between 4 and 16
neurons and should not be able to memorize more than one
pattern on average. We will however show that by using the
HNN combined with a naive-Bayes mechanism as a weak
classifier within an ensemble, we can use them for more
patterns. In the presented experiments, we were able to learn
three different positive classes together with negatives using
HNNs that contain only nine neurons each.

1Knowledge Technology Group, Department of Informatics, Univer-
sity of Hamburg, Vogt-Kölln-Str. 30, D-22527, Hamburg, Germany.
{meins,magg,wermter}@informatik.uni-hamburg.de

This work has been supported by the KSERA project funded by the
European Commission under FP7 for Research and Technological Devel-
opment, grant agreement n 2010- 248085, and project RobotDoC under
235065 ROBOT-DOC from FP7, Marie Curie Action ITN.

This paper is structured as follows: After describing some
related research in section II, we will describe our used
training and test set (section III). In section IV we will
give a short introduction to Hopfield Neural Networks and to
Adaboost in section V. Afterwards we describe how we use
HNNs and Haar-like features together (section VI), how the
learning of the entire HNN is accomplished (section VII) and
how the learning for the multi-class Adaboost is performed in
this work (section VIII). Finally we will show the results of
our experiments (section IX), discuss these (section X) and
finish this work with the conclusion and outlook to future
work (section XI).

II. RELATED WORK

Various methods for multi-class object detection have
been proposed in the literature. Freund and Schapire [3]
used a set of plausible labels instead of returning a single-
class indicator for multi-class object detection. Gehler and
Nowozin [12] vary different visual feature combinations for
multi-class object detection and analyse different methods
for learning and combining these features, by using kernel
methods and boosting.

A different approach was presented by Torralba et al. [5]
who used feature-sharing and JointBoost. Feature-sharing
uses features that are relevant for different objects, e.g.
different characters like D, B and R share some features,
in this case the vertical line of the left side. Torralba et al.
used these common features to collect the plausible types
and to finally classify the correct object. Salakhutdinov et al.
[9] also used feature-sharing combined with a hierarchical
classification model based on a Bayesian framework for
distinguishing a huge amount of different object classes. We
also use the same Haar-like feature structure for different
objects, which has a common aspect with feature-sharing
but is different in its result. The common aspect is that,
because one feature is used for different objects and is using
just parts of the object, sometimes the Haar-feature has the
same values for different objects. Therefore it is similar to
and a natural compact form of feature-sharing. But although
the HNN indeed gets the same feature type and structure as
input, the produced output vector will still differ for different
objects.

Jun and Gosh in their work [13] introduced the multi-class
Adaboost.BHC algorithm. Adaboost.BHC creates a class
hierarchy, which is learned according to the closeness of the
underlying binary classifier, whereby Adaboost is applied to
these binary classifiers. Some training strategies – like OAO,
OAA and PAQ – were introduced for a multi-class ensemble
consisting of binary weak classifiers by Ou et al. [6]. These
strategies propose the partitioning of the classes for training.

© 2013 IEEE.
Reprinted, with permission, from Meins, N., Magg, S., Wermter, S. Neural Hopfield-ensemble for multi-class head pose detection.
Proceedings of International Joint Conference on Neural Networks(IJCNN). pp. 1327–1334, Dallas, 2013.

OAO for example trains three single binary classifiers for a
three-class problem. The first distinguishes between class one
and class two, the second between class two and class three
and the last between class three and class one. Considering
these different training strategies, Ou et al. [6] analysed
combinations of binary neural networks and single multi-
class neural networks.

Also considering the different training strategies for multi-
class combined binary classifiers, Kim et al. [7] emphasized
the reduction of training time by using a weak classifier with
multi-class ability for creating an ensemble. They used a
Self-Organizing Map (SOM) and a Centroid Neural Network
as weak classifier and introduced a multi-class classifier-
based Adaboost Algorithm (Adaboost.MC) [7].

In comparison, Zhu et al. [8] analysed changes to the
Adaboost algorithm itself to handle multi-class problems.
They called this algorithm SAMME (Stagewise Additive
Modeling using a Multi-class Exponential loss function).
Following their analysis and comparing with some own
solutions, we have adapted their changes for calculating
alpha and updating the weights of the training-set samples.

III. TRAINING AND TEST SET

Fig. 1. Samples of the training set. Only three source images were
used (left), afterwards we created additional images with different randomly
changed width, height, rotation and gamma corrections, finally reaching 35
images per pose (middle). On the right are samples of randomly cropped
negatives of landscape, offices and flat images taken from the internet.

For the experiments in this study we have used grey
scale images for training and test set taken from the head
pose database used by Gourier et. al. [10]1. The basis for
the training set was comprised of 3 images from just one
person in three different poses as illustrated in figure 1.
These images were cropped to include only the face area
and random changes to width, height and rotation (3◦) of
the cropped images were introduced. Afterwards we created
some additional images by applying gamma corrections to
the current set to arrive at 35 images per pose, i.e. 105
positive samples. Negatives were taken from an own database
containing 30000 randomly cropped images of landscapes,
offices and flats taken from the internet. We divided these
images into two sets, 9000 images for testing and 21000
images for training. We also added cropped parts from the
positive set to get example backgrounds without the faces.
These images all have different widths and heights and 500
of these were used together with the 105 positive samples

1http://www-prima.inrialpes.fr/perso/Gourier/Faces/HPDatabase.html

(35 per pose) to create the training set as shown in figure 1.
For training and testing, the images were converted to grey
scale images and scaled to a fixed square of 24 pixels for
most experiments.

Fig. 2. Samples of the test set. 208 images from 14 people in three
poses cropped without any changes (left). To simulate noise and different
lightning conditions, we created in addition to these 208 head poses
additional images with different randomly changed width, height, rotation
and gamma corrections (middle). On the right are samples of randomly
cropped negatives of landscape, offices and flat images taken from the
internet.

In the experiments we used two test sets. A basis for both
were 208 images of 14 people including 64 frontal views,
79 left views, and 65 right views (figure 2). The first test
set consisted of exactly those images transformed to a fixed
width and height (Test set 1). To include conditions not
present in the training set, the second set contained additional
images created using random rotation (5◦), changes in width
and height and gamma correction (figure 2) to simulate
different lightning conditions (Test set 2). In the end, the
test set contained 12480 positives (over 3 classes) and 9000
negatives.

IV. HOPFIELD NEURAL NETWORK

The Hopfield Neural Network is a single layer, recurrent
Neural Network where every neuron has a connection to
every other neuron except itself. An HNN has the ability
to reconstruct a learned pattern from noisy input, making
it an ideal tool for reconstructing an image from a learned
image pattern.

The nodes are perceptrons with a binary activation func-
tion (eq. 1). In contrast to the standard HNN, we have used
a logistic activation function (eq. 2).

xj =

{
1 sj > θ
−1 otherwise , sj see eq. 2 (1)

xj =
1

1 + e−sj
, where sj =

N∑
i=1

wij xi, (2)

N in eq. 2 is the number of neurons.
Hopfield has shown in his work [1] that an HNN with a

symmetric weight matrix will converge to a final stable state.

© 2013 IEEE.
Reprinted, with permission, from Meins, N., Magg, S., Wermter, S. Neural Hopfield-ensemble for multi-class head pose detection.
Proceedings of International Joint Conference on Neural Networks(IJCNN). pp. 1327–1334, Dallas, 2013.

The training of the HNN is done by using the Hebb-learning
rule (eq. 3) which has a high computational performance.
This is important in the context of ensemble training because
of the comparably long training times.

wij =
M∑

m=1

xmi · xmj if j 6= i, wij = 0 otherwise, (3)

where M is the number of patterns and xi, xj are the input
pattern (x).

V. ADABOOST

Adaboost is an ensemble algorithm that selects the classi-
fiers for the ensemble (in this context mostly called “weak
classifiers”) and calculates a weight for these classifiers.
Images also have a weight factor, which would be 1 if every
image is considered equally important. The re-weighting of
the images within the training set is an important mechanism
of Adaboost. It focuses the selection of the weak classifiers
during the creation process on different aspects of the con-
sidered objects (here faces).

The ensembles are created by iterating over the following
steps:

1) The weak classifier which has the lowest error on the
training set will be selected, taking into account the
current weights of the training images.

2) The classifier is added to the ensemble and the weight
is calculated according to its current error.

3) The training set will be re-weighted so that the weight
of correctly classified samples will be decreased (this
means, that misclassified samples are more important
in the next iteration).

After a defined number of iterations T , the ensemble
consists of T selected weak classifiers and the classification
is henceforth performed by a vote over all members.

VI. HNN AND HAAR-LIKE FEATURE VECTOR

Fig. 3. Original and more complex Haar-like features. The feature value
of the original features is the pixel sum difference of the grey and white
rectangle. In this work, the input of the Haar-like feature to a HNN is the
vector containing values of all individual rectangle pixel sums.

HNNs combined with Haar-like features (HaarNN) have
already been used in our previous work [4]. There we have
introduced different and more complex Haar-like feature
structures as compared to Viola and Jones [2] and formed
a vector using the pixel sums of the individual rectangles
within the feature structure. In addition to the features used
in [4] we have now also used the SYM Haar-like feature
(see Fig. 3). These features were created by choosing two
rectangles and flipping them first horizontally and then
vertically. This was done without any constraints, i.e. also
overlapping of different rectangles was allowed.

Through an image representation called “integral image”,
the pixel sum of an arbitrary rectangle can be calculated by
accessing just four array references, instead of having to sum
all pixels of the corresponding rectangle within the grey scale
image (see [2]). Therefore, it is very fast to calculate all the
pixel sums of even the described complex Haar-like features.

Every HNN used exactly one Haar-like feature as input
and therefore the HNN has as many nodes as the Haar-
like feature structure has rectangles. We are using the value
of a pixel sum, normalised to the corresponding area and
therefore have values between 0 and 255. The final input to
the HNN is a vector containing the normalised pixel sums of
all rectangle pixel sums of the Haar-like feature as described
in figure 4.

Fig. 4. The pixel sums of all rectangles within the Haar-like feature
structure will be used as an input vector for the HNN.

It is important for the dynamics of an HNN to have a
balance between positive and negative input values. In order
to achieve that, an offset is calculated by which the input
values are shifted before being fed into the HNN (i.e. in
the extreme case, the values are shifted from [0, 255] to
[−122, 123]).

φm =
max(xm) +min(xm)

2
, φa = ave(φm) (4)

In equation 4, xm is the input vector of image sample m.
We adjust our current input vector x by using pi = xi − φa
to get the final vector p, where pi are the values of the final
input vector and xi the input vector and φa the average of
the learned offsets over all image samples.

© 2013 IEEE.
Reprinted, with permission, from Meins, N., Magg, S., Wermter, S. Neural Hopfield-ensemble for multi-class head pose detection.
Proceedings of International Joint Conference on Neural Networks(IJCNN). pp. 1327–1334, Dallas, 2013.

We can then adapt equation 2 for our purpose:

x′j =
2β

1 + e−sj
− β (5)

where β = max(|pi|) of the learned and adjusted vector p.

VII. LEARNING THE HNN

Fig. 5. After execution, the HNN will converge on one of the stable states
and a set of probability values for all classes are calculated for each state
(Si).

As introduced in our previous work [4] we have also used
Hebb-learning for training the HaarNNs. In our current work
we have introduced two novel concepts: While we have used
the Euclidean distance for distinguishing the positive and the
negative classes before, in this work we now used a Bayes-
like probability vector for every stable state as described in
figure 5.

Learning was done in two iterations. Through the first
unsupervised iteration, a HaarNN was trained using Hebb-
learning with all positive samples according to equation 3,
where w is the weight-matrix, xi, xj are input patterns and
M is the number of learned patterns, e.g. in this case the
number of training images.

For every sample, the Haar-like feature pixel sums were
calculated and the corresponding vector was used as input
for the Hebb-learning and thus for calculating the weight
matrix of the HNN. The negative samples were not included
in the Hebb-learning iteration. Through the Hebb-learning,
only positive patterns of the different classes according to
the training images were learned.

Please note that during its recurrent execution, every HNN
with symmetric weights will converge on a stable state, i.e.
the answers/outputs of single neurons will not change any
more. These stable output vectors were used as “labels” for
the different states.

In the second iteration we measured how often images
from a given class were mapped to a specific stable state pro-
ducing a vector of probabilities. These probabilities describe
how likely it is that an image from a selected class will lead
to this specific state. Through this step we account for the
fact that the process is not a unique transformation from one
input class to exactly one state. Inputs from different classes
can result in the same stable state and two images from the
same class can lead to different stable states. Nevertheless,
HNNs combined with Haar-like features usually have a high
preference for one class. In this second iteration, we also
included the negative samples.

After both iterations, the result is a vector for each stable
state of the HNN that comprises probability values for every

class as described in figure 5. Classification can then be
performed by first executing the HNN with the incoming
input until it reached a stable state and then retrieving the
vector for this stable state to get the probability values for
each class. The HaarNN classifiers remember the probability
vectors for the different states to have them readily available
in the classification phase.

VIII. LEARNING THE ENSEMBLE

Fig. 6. The images shows the Haar-like features of type B, C, D and SYM
that are chosen in the first iteration of the particular Adaboost training (see
figure 3).

For learning the ensemble, we use the AdaBoost algorithm
from Viola and Jones [2] with some changes taken from
Zhu et. al. [8]. Adaboost generally chooses the HaarNN with
the lowest error and decreases the weights of the correctly
classified samples.

Two concepts are different from the original algorithm:
The first change is within the classification process. In the
original work the classification result is calculated as follows:

h(x) =

{
1
∑T

t=1 αtht(x) ≥ 1
2

∑T
t=1 αt

0 otherwise
(6)

where αt is the weight of classifier t and ht(x) its output
for input image x. This can only be used for distinguishing
between one class and background but we are now working
with (multi-class) vectors. Therefore, we are calculating the
sum of vectors, containing the probabilities for all classes:

v(x) =
T∑

t=1

αtht(x) (7)

where v(x) is the vector with the sum of all probabilities
for all classes, which is similar to the solution from Freund
and Schapire [3]. The final result is then the class with the
highest value in this vector (winner takes all: Eq. 8).

h(x) = max(v(x)) (8)

The second change is within the training process. In the
original work of Viola and Jones[2], the weight of a single
weak classifier (α) is calculated as follows (eq. 9):

α = log(
1− ε
ε

) (9)

© 2013 IEEE.
Reprinted, with permission, from Meins, N., Magg, S., Wermter, S. Neural Hopfield-ensemble for multi-class head pose detection.
Proceedings of International Joint Conference on Neural Networks(IJCNN). pp. 1327–1334, Dallas, 2013.

We adapted this calculation according to Zhu et. al.[8]:

α = log(
1− ε
ε

) + log(nc − 1) (10)

where the parameter nc is the number of different classes
excluding the negative-class.

Based on Zhu et. al. [8] we re-weight the training set by
increasing the weights of the misclassified samples by using
equation 11.

wi+1 = wi exp(α) (11)

As described, our HaarNN returns a vector of probability
values for each class. For calculating the error of a HaarNN
and selecting the best weak classifier in an iteration, we select
the class with the highest value within the probability vector
(similar to Eq. 8), i.e. we determine the winning class for a
single HNN as we do it for the whole ensemble.

IX. RESULTS

In multi-class classification we consider two types of
false positives. A false positive can either be a negative
sample, classified into one of the positive classes (type-1),
or a positive sample, classified into the wrong positive class
(type-2). We consider both of these types separately in the
following graphs to analyse in how far the ensemble has
the ability to classify different classes correctly and also to
distinguish between trained classes and arbitrary negatives.

We have used four different feature sets for the following
experiments. There is one ensemble trained for every Haar-
like feature type (B, C, D and SYM) as described in figure
3. All ensembles contain 50 HaarNNs in the end. The
cardinality of the feature sets and therefore the number
of available HaarNNs for creating the ensemble differed;
smaller sets naturally reduce the training time which is a
desirable effect in online learning or mobile robotics.

Figures 7 and 8 show the results of the four different
HaarNN-ensembles applied to the training set. Just a few
(about 5) HaarNNs are needed in most ensembles to reach
a detection-rate of 100% (figure 7) while the false-positive
rate lies between 15% and 20% with 500 negative samples.

Figure 9 shows the detection-rate of the different HaarNN
ensembles for “test set 1” containing 208 positives and
9000 negatives (see III). The x-axis shows the number of
HaarNNs (weak classifiers) in the ensemble and the y-
axis the corresponding detection-rate. The initial increase
in performance in terms of detection-rate with increasing
number of classifiers in the ensemble is clearly visible. The
detection-rate stabilises from around 13 classifiers at about
90%, which shows that multi-class HaarNN-ensembles are an
effective method to distinguish different classes. Combined
with figure 10, which shows the reduction of type-1 false-
positives with increasing ensemble size, it shows that already
small ensembles are able to classify four classes (3x positive
and 1x negative).

Similar results were obtained from experiments using “test
set 2” (figure 11) containing 12480 positives and 9000
negatives (see III). The results for false-positives type-1 are
comparable to the results from test-set 1. Combining the

Fig. 7. Detection rate (×103) of HaarNN-ensembles, containing up to 50
HaarNNs, using Haar-like feature type B, C, D and SYM (see figure 3),
when applied to the training set.

results on detection-rate with figure 12, where the error
shows the combined effect of both types of false-positives
(as does the detection-rate), it can be seen that the HaarNN
SYM performs best.

Figure 13 shows the false-positive rate considering only
those misclassified images where a positive class was classi-
fied as a different positive class, instead of the false-positives
where a negative sample was classified as a positive class.
By comparing this rate with the detection-rate for the same
ensembles and test set, it can be seen that it is close to 1−d
where d is the detection-rate. The conclusion is, that there
are just very few positive samples that would be classified as
background. This is an interesting result when considering
a possible extension which uses a cascade structure as in
[2]. There, the positive samples will be classified again by a
subsequent, more complex ensemble, and the fact that very
little positive samples are classified as negatives means that
few errors are made early on in the cascade that can not be
corrected later.

X. DISCUSSION

For this work, we have performed a variety of different ex-
periments, including training of ensembles with more than 50
members. Overall, the different types and parameters, most
of the improvements in accuracy with increasing number of
ensemble-members were achieved within the first 50 selected
HaarNNs. This could be observed repeatedly and in order
to reduce training times we henceforth limited ensembles
to 50 HNNs. With more members, the accuracy can still
be increased, but taking into account real-time constraints,
stands in no relation to the necessary increase in ensemble
size and therefore processing time.

The main advantage of the HaarNNs when used as weak
classifiers is visible in Figures 7 and 9. HaarNN ensembles

© 2013 IEEE.
Reprinted, with permission, from Meins, N., Magg, S., Wermter, S. Neural Hopfield-ensemble for multi-class head pose detection.
Proceedings of International Joint Conference on Neural Networks(IJCNN). pp. 1327–1334, Dallas, 2013.

Fig. 8. False-positive rate (×103) of HaarNN-ensembles, containing up to
50 HaarNNs, using Haar-like feature type B, C, D and SYM (see figure 3),
when applied to the training set. This chart contains only the false-positives
of the negative samples (Type 1).

Classifier DR(%) FP-negatives Test-set Set Cardinality
HNN D 87 163 Test-set 1 43200
HNN D 79 163 Test-set 2 43200

HNN C.1 96 183 Test-set 1 1890
HNN C.1 89 183 Test-set 2 1890
HNN B 93 178 Test-set 1 327600
HNN B 88 178 Test-set 2 327600

HNN SYM 97 218 Test-set 1 207936
HNN SYM 90 218 Test-set 2 207936
HNN C.1-6 94 190 Test-set 1 75625
HNN C.1-6 88 190 Test-set 2 75625
HNN C.1-7 94 201 Test-set 1 7344
HNN C.1-7 91 201 Test-set 2 7344

TABLE I
RESULTS OF THE ENSEMBLES CONTAINING 50 HAARNNS. THE ROW

FP-NEGATIVES SHOWS THE FALSE-POSITIVE COUNT ONLY

CONSIDERING THE NEGATIVE SAMPLES (TYPE-1). SET CARDINALITY

DESCRIBES THE NUMBER OF CREATED WEAK CLASSIFIERS (HAARNNS)
WHICH SPAN THE SEARCH SPACE FOR ADABOOST.

very quickly achieve a high detection rate already for small
ensemble sizes, but at the expense of the false-positive counts
(figure 8) compared to e.g. a threshold classifier which can
also achieve zero false-positives on the training set. But we
would like to emphasize that the amount of training data
used in our work was quite small with just 105 positive and
500 negative samples. A small training set is an important
constraint for online learning and in the area of mobile
robotics. Here a trade-off between acceptable results and
small training set is sought and the question on how much
the training set can be reduced while retaining high detection
rates is of interest to researchers in these fields.

As mentioned in the result section IX, the amount of
features and therefore the HaarNNs available within the
search space of Adaboost were different as described in table

Fig. 9. Detection-rate (×103) of HaarNN-ensembles, containing up to 50
HaarNNs, using Haar-like feature type B, C, D and SYM (see figure 3),
when applied to “Test-set 1” (see III).

I. Since a higher amount of weak classifiers available to
AdaBoost did not consistently improve the results (e.g. HNN
B achieved lower results compared to HNN C.1 despite the
huge difference in available classifiers), it seems that it is
not the strongest factor affecting classification accuracy. The
structure of the Haar-like features used also has a strong
influence on the results. HNN B and HNN SYM are both
ensembles created from the biggest underlying sets, but their
results are strikingly different. While HNN SYM ensembles
achieve the best results starting from small ensembles (see
Fig. 12), HNN B can not achieve comparable results even
with large ensembles in the end.

XI. CONCLUSION AND FUTURE WORK

In previous work, we have shown that ensembles with
HNNs combined with Haar-like features as weak classifiers
are an effective approach for classification. Exploiting the
inherent multi-class capabilities of HNNs, we have extended
our approach in the current work to a multi-class classi-
fication approach. The results for the HaarNN classifiers
clearly show, that using them in an ensemble is an effective
method for solving multi-class classification problems. We
have shown that four classes – 3x positives and 1x negatives –
can be distinguished with a relatively low error, i.e. negatives
can be distinguished from the three positive classes. A
slightly negative result was the type-1 false-positive rate,
considering the large amount of detection windows that were
to classify while searching for an object in a whole image.
Too many background windows that are wrongly classified
as a positive class would reduce the usability of the final
subsequent processes that are using these false-positives. In
a real setting, where objects have to be detected and classified
within a larger image, it is more important to first distinguish

© 2013 IEEE.
Reprinted, with permission, from Meins, N., Magg, S., Wermter, S. Neural Hopfield-ensemble for multi-class head pose detection.
Proceedings of International Joint Conference on Neural Networks(IJCNN). pp. 1327–1334, Dallas, 2013.

Fig. 10. False-positive rate (×103) of HaarNN-ensembles, containing up to
50 HaarNNs, using Haar-like feature type B, C, D and SYM (see figure 3),
when applied to “Test-set 1” (see III) considering only the negative samples
(9000) (see III.

between object and background windows (positive vs. nega-
tive). Therefore reducing type-1 false-positives is often more
important than type-2. So one of our aims is to find ways
to reduce the type-1 false-positives while keeping the good
detection-rate by e.g using a cascade structure.

For the current work we have tested different Haar-like
feature sets of different sizes. The sets were all chosen to
be relatively small (even the large sets are considerably
smaller than the set of available Haar-like features) and
we have used only small input image sizes to decrease
training times. Reducing the feature set sizes available to the
AdaBoost mechanism did not lead to the expected decrease in
accuracy and has proven to be a viable possibility to decrease
training and processing times. The size of input images can
be increased easily and no change in accuracy would be
expected, since Haar-features can be increased accordingly
and would just increase the number of the feature set used.
Training with different image sizes would also increase the
input diversity and therefore increase the accuracy of the
combined ensembles.

There are several possibilities to extend and improve the
presented method. So far we have shown that four classes
can be distinguished and our main focus is on finding the
maximum number of classes that can be separated by using
these simple Haar-like feature structures. The number of
classes could then be extended by using HaarNN ensembles
combined with random forests with ensembles as tree nodes.
This could increase the number of possible classes while
keeping the ensembles compact.

In this work we calculated the winning class by using
the winner-takes-all method with the maximum value of the
probability vector for selecting the best HNN during the
Adaboost iterations. This ignores the fact, that sometimes

Fig. 11. Detectionrate (×103) of HaarNN-ensembles, containing up to 50
HaarNNs, using Haar-like feature type B, C, D and SYM (see figure 3),
when applied to “Test-set 2” (see III).

Fig. 12. Error (×103) of HaarNN-ensembles, containing up to 50
HaarNNs, using Haar-like feature type B, C, D and SYM (see figure 3),
when applied to “Test-set 2” (see III).

probabilities for two classes are quite similar and just a
small difference determines the winner. By considering the
whole vector of probabilities (instead of the max value)
we could select better weak classifiers for generalization in
future work.

This could be aided by the use of neural networks instead
of the Bayes probability vector. Calculating and storing the
probability vectors for all HaarNNs is expensive both in
processing time and storage. Using a neural network which
takes the state of the individual HaarNN as input and learns
to output the correct class could solve these problems. It

© 2013 IEEE.
Reprinted, with permission, from Meins, N., Magg, S., Wermter, S. Neural Hopfield-ensemble for multi-class head pose detection.
Proceedings of International Joint Conference on Neural Networks(IJCNN). pp. 1327–1334, Dallas, 2013.

Fig. 13. False-positive rate (×103) of HaarNN-ensembles, containing up to
50 HaarNNs, using Haar-like feature type B, C, D and SYM (see figure 3),
when applied to “Test-set 2” (see III) considering only the positive classes.

would also reduce the information that needs to be stored
considerably and the HaarNNs would act as intelligent,
adaptive filters for the subsequent neural networks.

Using HNN Cascades as proposed in [2] could also
reduce the processing time by distinguishing positives from
negatives (detection) with simple structures. Later on in the
cascade, more suitable and complex structures can be used
for classification and ultimately recognition. Using cascades
in combination with HaarNNs is especially interesting due
to the low count of false-negatives in the classification and
the possible reduction in false-positives of type-1.

REFERENCES

[1] Hopfield, J.J., “Neural networks and physical systems with emer-
gent collective computational abilities, ” Proceedings of the National
Academy of Sciences, Vol.79, pp.2554-2558 (1982)

[2] Viola, P. and Jones, M., “Robust Real-time Object Detection,” Interna-
tional Journal of Computer Vision (2001)

[3] Freund, Y. and Schapire, R.E., “A desicion-theoretic generalization
of on-line learning and an application to boosting,” Lecture Notes in
Computer Science, Computational Learning Theory, Vol.904, pp.23-37
Springer Berlin Heidelberg, 1995.

[4] Meins, N., Wermter, S., Weber, C., “Hybrid Ensembles Using Hopfield
Neural Networks and Haar-Like Features for Face Detection,” Interna-
tional Conference on Artificial Neural Networks and Machine Learning
(ICANN) Springer Berlin Heidelberg, 2012.

[5] Torralba, A. and Murphy, K.P. and Freeman, W.T., “Sharing Visual
Features for Multiclass and Multiview Object Detection,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, Vol.29, pp.854
-869 (2007)

[6] Ou, G. and Murphey Y.L. , “Multi-class pattern classification using
neural networks,” Pattern Recognition, Vol.40, pp.4-18 (2007)

[7] Kim, T.-., Park, D.-C., Woo, D.-M., Jeong, T., Min, S.-Y., “Multi-
class Classifier-Based Adaboost Algorithm,” Intelligent Science and
Intelligent Data Engineering, Vol.7202, pp.122-127 (2012)

[8] Zhu, J., Rosset, S., Zou, H. Hastie, T., “Multi-class AdaBoost,” Tech.
Rep., Department of Statistics, University of Michigan, Ann Arbor, MI
48109 (2006)

[9] Salakhutdinov, R. and Torralba, A. and Tenenbaum, J., “Learning to
share visual appearance for multiclass object detection,” IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (2011)

[10] Gourier, N., Hall, D., Crowley, J. L., “Estimating Face Orientation
from Robust Detection of Salient Facial Features,” Proceedings of
Pointing 2004, ICPR, International Workshop on Visual Observation
of Deictic Gestures, Cambridge, UK

[11] Meins, N. and Jirak, D. and Weber, C. and Wermter, S., “Adaboost
and Hopfield Neural Networks on different image representations for
robust face detection,” International Conference on Hybrid Intelligent
Systems (HIS) Springer Berlin Heidelberg, 2012.

[12] Gehler, P., Nowozin, S., “On feature combination for multiclass object
classification,” IEEE 12th International Conference on Computer Vision
(2009)

[13] Jun, G. and Ghosh, J., “Multi-class Boosting with Class Hierar-
chies,” Lecture Notes in Computer Science, Multiple Classifier Systems,
Vol.5519, pp.32-41 Springer Berlin Heidelberg, 2009

© 2013 IEEE.
Reprinted, with permission, from Meins, N., Magg, S., Wermter, S. Neural Hopfield-ensemble for multi-class head pose detection.
Proceedings of International Joint Conference on Neural Networks(IJCNN). pp. 1327–1334, Dallas, 2013.

