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Abstract. The recognition of actions that involve the use of objects has
remained a challenging task. In this paper, we present a hierarchical self-
organizing neural architecture for learning to recognize transitive actions
from RGB-D videos. We process separately body poses extracted from
depth map sequences and object features from RGB images. These cues
are subsequently integrated to learn action–object mappings in a self-
organized manner in order to overcome the visual ambiguities introduced
by the processing of body postures alone. Experimental results on a
dataset of daily actions show that the integration of action–object pairs
significantly increases classification performance.
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1 Introduction

The ability to understand others’ actions represents a crucial feature of the
human visual system that fosters learning and social interactions in natural
environments. In particular, the recognition of transitive actions (actions that
involve the interaction with a target object) is an important part of human daily
activities. Therefore, computational approaches for the recognition of transitive
actions are a desirable feature of assistive systems able to interact with people in
real-world scenarios. While humans possess an outstanding capability to easily
extract and reason about abstract concepts such as the goal of actions and
the interaction with objects, this capability has remained an open challenge for
computational models of action recognition.

The study of transitive actions such as grasping and holding has often been
the focus of research in neuroscience and psychology [1–3], especially after the
discovery of the mirror neuron system [3]. It has been shown that a specific set of
neurons in the mammalian brain shows selective tuning during the observation
of actions for which an internal motor representation is present in the nervous
system. Moreover, the response of these neurons differs in case the action is
mimicked, i.e. the target object is absent. Neurophysiological studies suggest
that only when information about the object identity is added to the semantic
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information about the action, then the actions of other individuals can be com-
pletely understood [4]. Together, these results provide an interesting framework
that has motivated research work in the field of artificial vision systems and ma-
chine learning towards the recognition of action–object mappings (e.g., [5–8]).
From the computational perspective, an important question can be posed on
the potential links between representations of body postures and manipulated
objects involved in the learning of transitive actions and, in particular, on the
way these two representations can be integrated.

In this paper, we present a hierarchical, self-organizing neural architecture
that learns to recognize transitive actions from RGB-D videos containing daily
activities. Unlike our previous work [9], we use self-organizing neural networks
motivated by the fact that specific areas of the visual system organize according
to the distribution of the inputs [12]. Furthermore, extended models of hierar-
chical self-organization enable the learning of inherent spatio-temporal depen-
dencies of time-varying input such as body motion sequences [10]. The proposed
architecture consists of two main network streams processing separately feature
representations of body postures and manipulated objects. The last layer, where
the two streams are integrated, combines the information for developing action–
object mappings in a self-organized manner. We evaluate our architecture with
a dataset of RGB-D videos containing daily actions. We present and discuss our
results on this dataset showing that the identity of objects plays a fundamental
role for the effective recognition of actions.

2 Neural architecture

The proposed architecture is based on self-organizing neural networks that are
capable of learning inherent topological relations of the input space in an unsu-
pervised fashion. An overview of the architecture is depicted in Fig. 1.

2.1 Self-Organizing Maps

Self-organizing maps are neural networks inspired by biological input-driven self-
organization [11] and they have been successfully applied to a number of learning
tasks [12]. It consists of a 2-dimensional grid of units (neurons), each associated
with a weight vector of the same dimension of the input space. The learning is
performed by adapting these weights to better encode a submanifold of the input
space. Given an input vector xi, this is done by calculating a best-matching unit
b ∈ A, where A is the set of map nodes:

b = argmin
n∈A
||x−wn||. (1)

Then, the weight vector wb is moved closer to the input by a fraction that
decreases over time, as are nodes that are in the neighborhood of the winner:

wb(t+ 1) = wb(t) + η(t) · hb(t) · [x(t)−wb(t)], (2)
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Fig. 1. Overview of the proposed architecture. (A) Processing for the body postures:
a set of local features that encode the posture of upper body limbs are extracted and
fed to the 2-layered neural architecture with GWR networks. (B) The input for the
object recognition module is the RGB image of the object: the region of interest is
automatically extracted through a point cloud-based table top segmentation. Objects
are represented as compact feature vectors and are fed to a SOM network. (C) The
last layer learns the combinations of body postures and objects involved in an action.

where hb(t) is the neighborhood function that defines the spatial neighbors of the
winning neuron and η(t) is a decreasing learning rate. In this way, the neurons
in the map are organized preserving the topological properties of the input, i.e.
similar inputs are mapped to neurons that are near to each other in the map.

The presence of noise in terms of outliers in the input data can have a negative
influence on the formation of topological representations using SOMs. Such an
issue is better addressed by growing models of self-organizing networks.

2.2 Growing When Required Networks

The Growing When Required network (GWR) [16] is a growing extension of
self-organizing networks with competitive Hebbian learning. The GWR has the
ability to create neurons and connections between them to incrementally map the
topology of the input data distribution. Unlike the well-known Growing Neural
Gas (GNG) [17], where the network grows at a constant rate, the GWR has a
growth rate as a function of the overall network activation w.r.t. the input.

The GWR network starts with a set A of two nodes with random weights w1

and w2 in the input space. At each iteration, the algorithm is given an input x(t)
and the the two closest neurons b and s in A are found (Eq. 1). If the connection
(b,s) does not exist, it is created. The activity of the best-matching neuron is
computed as a = exp(−||x − wb||). If the activity is lower than a pre-defined
threshold aT and the firing counter of the neuron is under the firing threshold
hT , then a new neuron is created with weight wr = (wb + x(t))/2. The firing
rate threshold parameter makes sure that neurons are sufficiently trained before
inserting new ones. The edge between b and s is removed and the edges (r, b)
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and (r, s) are created. If a new neuron is not added, the weights of the winning
neuron and its neighbours are moved towards the input by a fraction of ε · h,
with 0 < ε < 1 and h being the firing counter of the neuron. The firing counters
are reduced and the age of the edges are increased. The algorithm stops when
a given criterion is met, e.g., a maximum network size. The insertion threshold
aT modulates the amount of generalization i.e. how much discrepancy we want
to tolerate between the resulting prototype neurons and the input space. The
connection-age mechanism leads to neurons being removed if rarely used.

2.3 Learning Sequences of Body Postures

Our study focuses on articulated motion of the upper body limbs during daily
activities such as picking up, drinking, eating, and talking on phone. The set
of raw full-body joints positions in real-world coordinates does not supply a
significant representation of such actions. Therefore, we compute the relative
position of upper limbs w.r.t. the head and body center to obtain translation-
invariant coordinates. We use the skeletal quads features that are local features
built upon the concept of geometric hashing and have shown promising results
for the recognition of actions and hand gestures [13]. Given a quadruple of body
joints positions in real-world coordinates X = [x1, x2, x3, x4] with x ∈ R3, a local
coordinate system is built by making x1 the origin and mapping x2 onto the
vector [1, 1, 1]T . The position of the other two points x3 and x4 calculated w.r.t.
the local coordinate system are concatenated in a 6-dimensional vector which is
the quadruple compact descriptor. In this way, we obtain a lower-dimensional
descriptor which is also invariant to translation, scale and body rotation. We
select two quadruple of joints: [center torso, neck, left hand, left elbow ] and
[center torso, neck, right hand, right elbow ], meaning that the positions of the
hands and elbows are encoded with respect to the torso center and neck. The
latter is chosen instead of the head position due to noisy tracking of the head
caused by occlusions during actions such as eating and drinking.

For the recognition of body motion sequences, we train a hierarchical GWR
architecture (Fig. 1.A). This approach has been shown to be more suitable than
SOM for learning a set of actions from features based on noisy tracked skele-
tons [10]. We first train the GWR1 network with the sequences of body postures.
After the training is completed, the GWR2 network is trained with neural activa-
tion trajectories from GWR1. Thus, for each input sample xi, the best-matching
neuron in GWR1 network is computed as in Eq. 1. The weights of the neurons
activated within a temporal sliding window of length q are concatenated and fed
as input to GWR2. The input data for training GWR2 is of the form:

ψ(xi) = {b(xi), b(xi−1), ..., b(xi−q+1), i ∈ [q..m]}, (3)

where m is the number of training samples. While the first network learns a set of
prototype body postures, the second network will learn temporally-ordered pro-
totype sequences from q consecutive samples. Therefore, the positive recognition
of action segments occurs only when neurons along the hierarchy are activated
in the correct order.
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2.4 Object Recognition

For the representation of objects, we use SIFT features [14] that yield invariance
to translation, rotation and scaling transformations and, to some extent, robust-
ness to occlusions. For the problem of object category recognition, experimental
results have shown that better classification performance is achieved by com-
puting dense SIFT descriptors on regular grids across each image. Since objects
will be compared to each other through vectorial metrics such as the Euclidean
distance, we compute a fixed-dimensional vectorial representation of each im-
age by performing quantization followed by an encoding step. For this purpose,
we chose the vector of locally aggregated descriptors (VLAD) [15]. Unlike the
bag of features (BoF) approach, these descriptors do not apply hard-assignment
of SIFT features from an image to the closest code-vectors, i.e. visual words.
Instead, they compute and trace the differences between them, leading to a re-
sulting feature vector with a higher discriminative power.

For learning objects, we train a SOM network on a set of objects extracted
from RGB action sequences (Fig. 1.B). We attach symbolic labels to each neuron
based on the majority of input samples that have matched with each neuron
during the training phase. At recognition time, for each input image the best-
matching neuron from the trained network (Eq. 1) will be computed. In this
way, the knowledge of the category of objects can be transferred to the higher
layer of the architecture in the form of a symbolic label.

2.5 Classification of Transitive Actions

Up to this point, the architecture has learned temporally-ordered prototype body
posture sequences and the identity of objects. The highest network in hierarchy
GWR3 should integrate the information from the converging streams and learn
action–object mappings (Fig. 1.C). For this purpose, we compute a new dataset
by merging the activations trajectories from the preceding GWR2 network and
the object’s symbolic label from the SOM. The resulting training data consists
of pairs φu of the following form:

φu = {b(ψ(xi)), ..., b(ψ(xi−q−1)), lb(y),xi ∈ A,y ∈ O, u ∈ [q..m− q]}, (4)

where lb(y) represents the label attached to the best-matching neuron of the
object recognition module for the object input y. Furthermore, each neuron is
assigned with an action label adopting the same labelling strategy as in SOM,
meaning that neurons take the label of the best-matching input samples. After
the training of GWR3 is completed, each neuron will encode a prototype segment
of the action in terms of action–object pairs.

3 Experimental Results

3.1 Data Collection

The setup of the experiments and the data collection were planned having in
mind the role of the objects’ identity in distinguishing the actions, in particular
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Fig. 2. Examples of sequences of skeleton joints taken from our action dataset.

when the sole body motion information may not be sufficient to unequivocally
classify an action. Therefore, we collected a dataset of the following daily activi-
ties: picking up, drinking (from a mug or can), eating (cookies) and talking on a
phone. The variety of style with which the actions were performed across differ-
ent subjects and their similarities in body posture highlight the importance of
the object’s identity for their effective classification. The actions were performed
by 6 participants that were given no explicit indication on the purpose of the
experiments nor an explanation on how to perform the actions in order to avoid
biased execution.

The dataset was collected with an Asus Xtion depth sensor that provides
a synchronized RGB-D image (color and depth map). The tracking of skele-
ton joints was computed with the OpenNI framework (Fig. 2). Action labels
were manually annotated from ground truth of sequence frames and were cross
checked by two different individuals. We added a mirrored version of all action
samples to obtain invariance to actions performed with either the right or the
left hand. The depth sensor was also used for acquiring the objects dataset. Since
object recognition should be reliable regardless of objects’ perspective, RGB im-
ages were acquired with the camera positioned in two different heights and from
objects in different views with respect to the sensor. Object labels were manu-
ally annotated for the training sequences, and the labels output from the object
recognition module were used for the test sequences.

3.2 Training and Evaluation

In order to evaluate the generalization capabilities of our architecture, we con-
ducted experiments with 10-fold cross-validation, meaning that data was split
into 10 random subdivisions of 60% for training and 40% for testing. The results
reported in this paper have been averaged over the 10 folds.

We determined empirically the following GWR training parameters: learning
step sizes εb = 0.1, εn = 0.01, firing threshold hT = 0.1, insertion thresholds
aT = {0.5, 0.4, 0.3} (for each network respectively), maximum age amax = 100,
initial strength h0 = 1, τb = 0.3 and τn = 0.1 as constants controlling the
behaviour of the curve reducing the winning nodes’ firing counter. Each GWR
network was trained for 50 epochs over the whole actions dataset. The number
of neurons reached in each GWR network given a training set with ≈ 18.600
frames were ≈ 480 for GWR1, ≈ 600 for GWR2, while for GWR3 the number
varied from ≈ 700 to ≈ 1000 depending on the inclusion or exclusion of the
objects (as explained in Fig. 3). For the SOM training we used a 20 x 20 map of
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Fig. 3. Evaluation of the recognition accuracy on the test data set under the conditions
indicated in the legend.

units organized in a hexagonal topology, a Gaussian neighbouring function and
batch training of 50 epochs over the objects dataset.

We evaluated the recognition accuracy of the architecture under three condi-
tions: (1) completely excluding the object identity in both training and testing,
(2) including the objects in training while excluding them in testing phase, and
(3) no exclusion in both phases. In the third case the label given by the SOM-
based object classifier was used during testing. Further experiments were run
using the objects’ ground-truth labels for comparison. The results are reported
in Fig. 3, where it is possible to see a significant improvement of the action clas-
sification performance for the third condition. When the objects can and mug
are interchanged by the objects’ classifier, the final classification accuracy of the
action drinking is not affected – this is a desirable generalization capability of
our architecture. Furthermore, the relatively low recognition rates in the sec-
ond condition suggest that the identity of the object is crucial for distinguishing
between the actions drinking, eating and talking on phone, while for the action
picking up the situation does not vary drastically in either case.

4 Conclusions and future work

We presented a hierarchical self-organizing architecture for the learning of action–
object mappings from RGB-D videos. The architecture consists of two separate
pathways that process body action features and object features in parallel and
subsequently it integrates prototypes of actions and the identity of objects being
used. A GWR-based learning algorithm is used to learn action sequences, since
it can deal better with the presence of noise in the tracked skeleton data. Exper-
imental results have shown that the proposed integration of body actions and
objects significantly increases the classification accuracy of action sequences.

The obtained results motivate the evaluation of our framework on a wider
number of actions and a more complex scenario, e.g. requiring the use of the same
object across different actions. Furthermore, we are working on the extension of
the proposed approach for robot experiments towards the recognition of goal-
oriented actions and intentions based on the interaction with the environment.
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