
In: Proc. of the IEEE International Joint Conference on Neural Networks (IJCNN/WCCI), Vancouver, Canada (July, 2016)

Understanding How Deep Neural Networks Learn
Face Expressions

Nima Mousavi
Department of Computer Science

University of Hamburg
Hamburg, Germany

8mousavi@informatik.uni-hamburg.de

Henrique Siqueira
Polytechnic School

University of Pernambuco
Recife, Brazil

hcs@ecomp.poli.br

Pablo Barros
Department of Computer Science

University of Hamburg
Hamburg, Germany

barros@informatik.uni-hamburg.de

Bruno Fernandes
Polytechnic School

University of Pernambuco
Recife, Brazil

bjtf@ecomp.poli.br

Stefan Wermter
Department of Computer Science

University of Hamburg
Hamburg, Germany

wermter@informatik.uni-hamburg.de

Abstract—Deep neural networks have been used successfully
for several different computer vision-related tasks, including
facial expression recognition. In spite of the good results, it is
still not clear why these networks achieve such good recognition
rates. One way to learn more about deep neural networks is to
visualise and understand what they are learning, and to do so
techniques such as deconvolution could play a significant role.
In this paper, we train a Convolutional Neural Network (CNN)
and Lateral Inhibition Pyramidal Neural Network (LIPNet) to
learn facial expressions. Then, we use the deconvolution process
to visualise the learned features of the CNN and we introduce
a novel mechanism for visualising the internal representation
of the LIPNet. We perform a series of experiments, training
our networks with the Cohn-Kanade data set and show what
kind of facial structures compose the learned emotion expression
representation. Then, we use the trained networks to recognise
images from the Jaffe data set and demonstrate that the learned
representations are present in different face images, emphasizing
the generalization aspects of these networks. We discuss the
different representations that each network learns and how
they differ from each other. We also discuss how each learned
representation contributes to the recognition process and how
they can be compared to the emotional notation Facial Action
Coding System - Facs. Finally, we explain how the principles of
invariance, redundancy and filtering, common for deep networks,
contribute to the learned features and to the facial expression
recognition task in general.

I. INTRODUCTION

The analysis of human emotions through physical expres-
sions is deeply rooted in psychological research [1]. In the
course of studying emotions and their connection to facial
expressions, Ekman [2] developed the Facial Action Coding
System (FACS). FACS is a method, developed from human
observers, to categorize facial expressions in terms of emo-
tions. Expressions are categorized into action units (actions of
individual muscles) and rated in terms of intensity.

Likewise, this means that automated systems that detect
facial expressions could be used to make hypothesis about

the emotions of a subject. Especially long-time monitoring
of subjects in extreme situations (e.g. space exploration [3])
might be examined through the aid of computers [4], due to the
circumstances of not being in direct contact with the subjects.
Valstar et al. [5] propose such an automated system, which is
related to the FACS-model to classify face expressions. They
propose to detect action units, from which facial expressions
can be inferred through FACS.

Problems with the FACS-based approach include a complex
implementation and a possible long runtime, since the archi-
tecture needs multiple stages to detect multiple action units.
Another problem involves the datasets, as it might be difficult
to get an adequate database annotated in terms of action units.
However, the biggest problem is caused by the restriction
of the FACS-model itself, since it affects its generalization
capability. The analysed action units are restricted to the
movement of facial muscles and an automated system based
on FACS has to infer this movement based on visual features.
These features must be compared with a code of action units
which will determine the face expression. This process restricts
the execution of each expression, not allowing the space for
different persons performing the same expression in different
ways, which happens in natural scenarios. For example, the
same person can have different ways of smiling to express its
happiness, or even smile to express sarcasm.

Deep neural networks that work on data representations,
such as Convolutional Neural Networks (CNN) used in [6],
have a conceptual similarity to the one used to build the FACS
model. The input is decomposed into features and each deeper
layer has a more complex representation, which builds upon
the previous layer. The final feature representations are then
used for classification.

But in contrast to architectures built around FACS, these
neural networks are not constrained in any way. They learn
with the data that is presented to the network and adapt to it.



This means that as soon as the network sees different persons
smiling, the network can build a complex feature that will be
able to generalize the smile action, and then categorize it into
an emotional class. It differs from the FACS model by the fact
that, if shown enough samples, the network can actually learn
a general representation of a smile instead of using a fixed
and pre-defined structure representation.

The concept of creating general features was explored by
Razavian et al. [6] where the first layers of their deep neural
network can be reused to achieve good results on similar
recognition tasks. Deep neural networks were applied to face
expression recognition before, and showed good results. In
this area CNNs [7] and Lateral Inhibition Pyramidal Neural
Networks (LIPNet) [8] have both been able to produce good
results.

The results of such networks raise an interesting question:
Is it really possible to achieve good generalizations with the
features learned by deep neural networks? To answer this
question, we did a study on what kind of knowledge these
networks produce. We started implementing a CNN and a
LIPNet architecture and trained them with the Cohn-Kanade
database [9]. We then applied deconvolution-based processes
to see what these networks learned, by visualising which
are the maximum responses of the neurons of each network
when a face expression is presented. These processes were
applied before to CNNs, but we had to implement a novel
methodology to visualise the knowledge of LIPNets in a
way that we can compare them with the CNN visualisations.
Deeper analysis of the visualisations and the comparison of
these images with Facial Action Units of the FACS system
can show that they correlate [10].

We evaluated our learned features using a data set that was
not present during the training step, the Jaffe [11]. This data
set allows us to do deeper analysis on the learned features:
it contains expressions of female Japanese subjects, which
are not present in the Cohn-Kanade database. By doing this
experiment, we show that the features learned by these two
networks are actually general enough to depict facial features
for the unknown images of the Jaffe data set.

In this paper, we discuss the similarity of the learned
features of the LIPNet and the FACS model, and the concepts
of invariance, redundancy and filtering in the CNN. In Section
II, we describe our feature visualisation methods, including our
novel LIPNet visualisation strategy. In Section III, we describe
our experimental methodology. In Section IV, we exhibit our
results and discuss the generalization aspects of the network
based on what they learned. Finally, in Section V, we show
our conclusions and future work.

II. FEATURE VISUALISATION METHODS

CNNs employ the concepts of receptive fields and weight
sharing [12]. Through these concepts, the number of trainable
parameters is being reduced and the propagation of informa-
tion through the layers can be calculated by convolution. A
signal is convolved with a filter map, containing the shared
weights to produce a feature map. As every neuron in the

feature map shares its weights, a feature map detects a single
feature at all possible input locations. Therefore, it is necessary
to have multiple filters and thus multiple feature maps to
extract important features.

The LIPNet, in contrast, is a deep pyramidal artificial neural
network with lateral inhibition based on the Pyramidal Neural
Network (PyraNet) [13], which was motivated by CNNs. The
LIPNet incorporates the concepts of lateral inhibition and
receptive fields [8]. As CNNs and LIPNets share the concept
of receptive fields, they also have similar properties. Conse-
quently, the LIPNet also compresses information throughout
its layers. However, as the concept of weight sharing is applied
in overlapping regions in their receptive fields only, what each
neuron learns is not restricted to simple features such as edges.
The neuron connections between each other are more complex.
Therefore, the overall number of neurons decreases since it is
not necessary to apply multiple filters to capture all features.

Visualising filter maps in CNNs introduced the capability to
see what the network learns after training the filters. Several
methods have been developed to gain insight into the inner
representations of CNNs ([14], [15], [16]). We choose to use
the deconvolutional process [16], which gives us an insight
of which part of the face expression each neural region of
the network activates. Unfortunately, this method is restricted
to the architecture of CNNs. We introduce here the concept
of visualising features of the LIPNet architecture, based on
the deconvolution process. The next sections will describe the
deconvolution process and our LIPNet visualisation method.

A. Deconvolutional Networks

Deconvolutional Neural Networks as described by Zeiler et
al. [16] are used to visualise a single unit in a feature map of
a CNN based on the input. The idea is to visualise maximally
activated neurons, as some pixels in the image are responsible
for their high activation. To visualise a neuron’s activation a
in layer l (al), the convolution is first carried out as usual.
Afterwards, the activation of every neuron in layer l, except
for a, is set to the neutral element (usually zero) to visualise
a particular neuron.

Subsequently, each step of the convolutional process is
reversed. Usually this boils down to unfiltering, unpooling and
an adequate activation function.

Unfiltering is done by reversing the connections. In a
Convolutional Neural Network, the Convolutional process can
be formally described as

vxync =
∑
m

H∑
h=1

W∑
w=1

whw
(c−1)mv

(x+h)(y+w)
(c−1)m , (1)

where n represents the feature maps and c the layers, m in-
dexes over the set of feature maps in the (c-1) layer connected
to the current layer c. whw

(c−1)m is the weight of the connection
between the unit (h,w) within a receptive field connected to
the previous layer c − 1 and to the filter map m. H and W
are the height and width of the receptive field.



To reverse the connections, the filters are flipped horizon-
tally and vertically

yxync =
∑
m

H∑
h=1

W∑
w=1

wfhw
(c−1)mv

(x+h)(y+w)
(c−1)m , (2)

where wfhw
(c−1)m represents the flipped filters and yxync de-

scribes the generated image.
Unpooling is done by reverting the pooling operation. In

our research Max-pooling is used. The Max-pooling can be
described as

aj = maxn×n (vncu(x, y)) , (3)

where vnc is the output of the convolution layer. In this
function, the Max-pooling computes the maximum activation
among the receptive field u(x, y). The maximum operation
down-samples the feature map, maintaining the convolution
output structure.

The work of Zeiler et al. [16] shows that it is necessary
to consider the position of the maximum values, aj , in order
to improve the quality of the visualisations. Therefore, the
positions of the maximum values have to be stored in order
to recreate the image. Zeiler et al. [16] call these stored
position markers switches. The other empty positions of
the unpooled map are filled with the neutral element regarding
the activation function which is usually zero.

The activation functions we use in our convolution layers
are Rectified Linear Units (ReLU). Although we do not
reverse the function, practice has shown that the application
of the same function during the deconvolution process yields
good visualisations.

Propagating the information contained in a neuron back
to input pixel space will produce input neurons with high
activation if the original input contains valuable informa-
tion at that particular location. Due to ReLU being used
as the activation function in our CNNs, the neurons learn
to participate in the classification through positive values.
Zero values on the other hand represent no clues whatsoever,
which means that a higher level neuron that depends on its
knowledge will also lean towards lower values. Therefore, the
final visualisation can be interpreted as follows. Bright pixels
indicate high importance of that particular input unit, while
dark pixels indicate the opposite. Consequently, in [16] the
authors propose to visualise maximally activated neurons and
in this way analyse invariance of filter maps. Another option
is to visualise every neuron of a feature map and subsequently
take the mean of the produced images to analyse the feature
map as a whole.

Instead of just visualising a single neuron, it is also possible
to visualise every neuron of a feature map and afterwards
calculate the mean of these visualisations. Through this pro-
cedure we can observe what information is contained in the
whole feature map. As features captured by a single neuron
might turn out to be very abstract, especially in low layers,
this procedure has proven useful to analyse general tendencies

Fig. 1. This image is an illustrative example of the result of the our algorithm.
Each cell represents the influence that the input unit causes to get a higher
activation value of the selected neuron. The color in these cells is calculated
proportionally applying the linear transformation described.

of the CNN. A natural consequence of deconvolving each
neuron contained in the feature map is that processing times
get multiplied by the number of neurons contained in the
feature map.

B. Visualising Features in LIPNet

Similarly to the deconvolution process for CNNs, we visu-
alise maximally activated neurons to analyse each pyramidal
layer. The reasoning remains the same, as high activation is
equivalent to strong participation in the classification. Propa-
gating the signal back to the input pixel space will indicate
which parts of the image caused activations in a particular
neuron.

As each neuron learns its weights independently, it is
necessary to evaluate more than just one or two maximally
activated neurons. We combine the visualisations to get a
better understanding of what is happening. We do so by
taking the weighted arithmetic mean. However, because of
the hyperbolic tangent, used as the activation function in the
pyramidal layers, values may turn out to be positive, negative
or zero. While positive or negative values are equivalent to
clues for classification, zero remains the neutral element. To
convert input neuron activations into an image, the absolute
value is taken as shown in Figure 1. The resulting image can
again be interpreted in terms of bright versus dark pixels.

Figure 2 illustrates how a neuron’s activation traces back
to the input image and thus how features from the neural
network’s point of view emerge. The idea is based on the
gradient ascent algorithm with the objective to maximize the
activation of the neuron that is being analysed. The backward
propagation of activation is performed through previous layers
until the first layer.

III. METHODOLOGY

Our goal is to extract the knowledge of the networks and
verify if this knowledge contains any generalization capability.
To do so, we train the networks with one facial expression
data set, the Cohn-Kanade data set, and apply the visualisation
techniques to the learned filters. Then, we use the same trained
network to recognise face expressions from the Jaffe data set.
We then compare the visualisation of the Jaffe corpus with the
ones obtained by the Cohn-Kanade corpus.

We do not optimize the architecture of the networks to
yield the best recognition rate; instead we build them by



Fig. 2. Given an input image, some neurons in the last layer respond with
higher activations (indicated by green colours), while other neurons do not
(indicated by grey colours). The cause for higher activations is characterized
by combinations of the receptive fields in previous layers which are ultimately
based on features in the input image.

focusing on the quality of the visualisations. We assume that
the quality of the visualisation improves when it approaches
human facial features. We train our networks several times and
visualise the filters of each individual input through the layers.
We choose regions where high-level abstraction can be found
and correlate the output of these units with the two different
datasets.

A. The Dataset

In our experiments we work with the Cohn-Kanade database
[17]. The database is composed of 7 different classes that con-
tain sequences of facial expressions which start with a neutral
face and end with roughly the apex of the expression. We
extracted several images from each sequence. These images
represent the same facial expression with different intensities
(except for the neutral face). We used the first picture of each
sequence to represent an 8th neutral class. The “contempt”
class was left out, because it contained few examples, which
left us with 7 classes for the Cohn-Kanade database.

We also worked with the Jaffe database for cross-validation.
The Jaffe database [11] is composed of seven different classes
with one image per expression. The seven classes are con-
gruent with the previously prepared Cohn-Kanade database.
Figure 3 exhibits examples of face expressions in these two
datasets.

We arranged the images for both databases into three
supersets (positive, neutral, negative) according to the emotion
annotation and representation language (EARL) [18], which
classifies 48 emotions into negative and positive expressions.
The images have been cropped to produce quadratic images
that approximately centre on the face and have been resized
to (128, 128) for CNN and (100, 100) for LIPNet. Finally, in
CNN, we applied whitening and subtracted the mean activity
over the training set from each pixel, while in LIPNet we
equalized the histogram only.

Fig. 3. Examples of face expressions in the Cohn-Kanade and Jaffe datasets.

Fig. 4. Architecture of the CNN used for the experiments.

B. The CNN-Architecture

Our experiments revealed that filters tend to be very redun-
dant. We try to keep our networks as sparse as possible, as
this facilitates the analysis. Figure 4 shows an illustration of
the architecture. We use a standard CNN with 3 convolutional
layers in total. The convolutional layers are followed up by two
hidden layers. Finally, a logistic regression forms the output.
Each convolutional layer has 10 filters with a window size of
(11, 11) and is followed by max-pooling with a window size
of (2, 2) and a stride of 2. The hidden layers have a size of
500 and 250 neurons, respectively. ReLUs are applied to the
convolutional layers, while the hyperbolic tangent function has
been applied to the hidden layers.

C. The LIPNet-Architecture

Figure 5 represents the evaluated architecture. It has two
pyramidal layers with 30 x 30 neurons and 10 x 10 neurons,
respectively; and only one fully connected layer as output.
The activation functions are the hyperbolic tangent for the
two-dimensional layers and sigmoid for the output layer,
which applies a softmax function. Table I highlights the basic
parameters, such as window size of receptive and inhibitory
fields per layer.

IV. RESULTS

We trained our CNNs as well as LIPNets exclusively on
the Cohn-Kanade database. Subsequently, we used the JAFFE



Fig. 5. Architecture of the LIPNet used for the experiments.

TABLE I
LIPNET PARAMETERS: RECEPTIVE FIELD (R), OVERLAP (O), INHIBITORY

FIELD (I) AND INHIBITORY WEIGHT (W)

Hidden Layer Configuration
l=1 (r=15, o=12, i=2, w=0.05)
l=2 (r=4, o=1, i=1, w=0.02)

database for cross-validation. Table II exhibits the recognition
rate averages taken from 50 training attempts for the CNN and
LIPNet and Cohn-Kanade and JAFFE datasets.

Figure 6 shows visualisations from both architectures. Each
column depicts visualisations for one particular input and each
row depicts visualisations of different layers. It is possible to
see examples of Positive, Neutral and Negative faces for both
datasets and which features each network uses to represent
each image.

For the CNN we provide visualisations of the second (L2)
and the third (L3) layer. We did visualisations of maximally
activated neurons as well as the whole feature map. Visualisa-
tions of the LIPNet include the first and the second pyramidal
2D layers (responsible for feature extraction) and combined
images1 to emphasize the elements in the input.

We especially use visualisations to improve our architecture.
Rather than using a trial-and-error approach, visualisations
may guide us to suboptimal performance we can specifically
target. Since the learning algorithm itself is subject to abstract
parameters, the deficits generally point to architectural issues
such as the input size (and through the input size indirectly to
the filter size) or the composition of the training set. Neural
networks react very sensitive to the composition of the classes.
For example, forming natural supersets from classes in an
arbitrary database and using these to train a network might
worsen the potential results. The reason is that the network

1The original input combined with the image of the visualised neurons.

TABLE II
RECOGNITION RATES. AVERAGES WERE TAKEN FROM 50 TRAINING

ATTEMPTS.

% Cohn-Kanade JAFFE
Accuracy Best Avg. Best Avg.
CNN 87.0 85.1 49.0 47.3

LIPNet 75.0 62.4 61.0 37.4

needs to know about the differences of the subclasses to tell
them apart. Thus, we find our neural networks to produce
better results in this case if they are trained on top of a data
representation that considers these differences (e.g. conv-layers
that have been trained on the subclasses).

Likewise, neural networks react very sensitive to misplaced
training examples (in terms of the class they’ve been put in).
For example, in case of poor cross-validation results, some
might be quick to judge it as a consequence of overfitting.
There is a difference, though, between filters for instance that
do not detect anything and filters that do detect something.
Although the network’s performance is worse on the JAFFE
database, it is aware of the fact that faces are being displayed.
As such, the facial expression of the databases might differ,
causing confusion.

A. Features Learned by CNNs

As mentioned above we used visualisations to improve the
architecture of our neural networks. Flaws in the images,
such as focusing the wrong features or blurred facial features
among others, can be revealed and adequately treated by
understanding how filters cooperate with each other. By doing
this, recognition rates will also improve as our experiments
empirically indicate. The filters in CNNs split the work
between each other, which results in a hierarchical structure.
This structure is subject to three properties in particular:

• Invariance
• Redundancy
• Filtering

The invariance of a filter is clearly visible through visuali-
sations of the respective feature map. Each filter specialises in
a particular feature which it can reliably detect. Figure 7 shows
visualisations of a filter with a focus around the eyes. We
inserted one image that shows that the filters cannot detect the
same features, but in a well trained CNN, the filters will mostly
display the same feature. Note also that examples of particular
classes might pose a problem, but generally we observed that
the feature is being extracted independently of the input class.
Besides, the filters’ inability to extract a particular feature for
all given inputs might be a cause for redundancy.

The redundancy of filters is expressed through visualisa-
tions which focus on the same features. As filters cannot detect
the same feature for every given input, redundancy is necessary
to cover these filters. A strong presence of a feature might
also indirectly influence the classification process. Another
reason for redundancy is the use of too many filters which
will naturally result in similar features being detected as the
neural network has enough trainable parameters at its disposal.
Figure 8 shows visualisations of different filters for the same
input.

The filtering is characterised by the complexity of the
features detected by a filter map. Each filter map combines
the features of the previous layer to produce a more complex
output. Because the captured features get more complex, the
feature map as a whole will carry less information as the



features become more unique, as for example nose, mouth,
etc. on higher layers and edges, arks, etc. on lower layers.

We conclude that convolutional layers do not directly take
part in the classification process. Rather do they provide a
convenient data representation, suited to the task, for the
subsequent multilayer perceptron to operate on. The filters
split the work between each other. Through redundancy the
availability of important features is assured. With each layer
unimportant information and noise is filtered out which leaves
an easily classifiable data representation of the initial input in
terms of the task at hand.

The quality of the visualisations is a good indicator of the
networks performance in terms of accuracy and can be used
as a means to improve the neural network. For CNNs in

particular, we observed that the more the feature resembles
the object displayed in the original input, the smaller the
classification error is. If the features seem to be good, but
the image is classified incorrectly anyway, the images of the
database might be labelled incorrectly. Flaws of the image such
as focusing on the wrong features or blurred facial features
can point to particular architectural problems, such as using
supersets instead of the subclasses for training which will
prevent the CNN from learning the differences between the
subclasses.

B. Features Learned by LIPNets

In general, the features extracted in these images are similar.
One reason for this behavior is that all images are aligned
and do not present interferences of background. Therefore, it

Fig. 6. Visualisations for the Cohn-Kanade and the Jaffe database with both architectures. Row 1 shows the original image. Rows 2 and 3 show visualisations
of the first and second pyramidal layers of the LIPNet. The images have been combined with the original image to emphasize the filtered elements in the
rows 4 and 5. Rows 6 and 7 show visualisations of the second and third convolutional layer of the CNN.



Fig. 7. This figure shows the invariance of a filter. Each visualisation was
taken from the same feature map with a different example. Row one shows
the input while row two shows the respective visualisation.

is important to notice that the first hidden layer in LIPNet
looks for features in all images, disregarding some parts, such
as hair and background where the pixels are closer to black.
To the contrary, the whiter pixels are concentrated in regions
alike the FACS, in Upper Face Action Units and Lower Face
Action Units. The third image in Figure 9 was processed to
remove the areas with a low contribution to a high activation
value of the neurons. We can observe areas that correspond to
the activation of the muscles: Frontalis, Zygomaticus, Levator
Labii Superioris Alaquae Nasi, Mentalis and Depressor Labii
Inferioris. These muscles have a great correlation with emotion
classification.

The features learned by the second hidden layer are consid-
ered as key parts only from the features in the previous layer.
So, we can see in row four of Figure 6 images cleaner than in
row two. Furthermore, the structure of features that correlates
with action units is presented around the eyes, forehead, nose
and mouth [19].

Although the features look similar, it is important to notice
that when a particular pattern of muscle action appears in the
face, the receptive field stays more active showing patterns
like outer brow raiser, lid tightener, nose wrinkler, lip corner
puller, lower lip depressor, etc. We can observe this difference
between column one and three, both in row five. In the
positive, the regions that comprise the cheeks and mouth are
more active than in the negative example, turning these regions
darker when the Zygomaticus muscle is active while raising the
cheeks. This phenomenon is coded by AU 12, typical feature
of positive label, when the person is smiling. Another evident
learned feature is the region around the eye presented in this
subset. It is important to characterize almost all upper face
action units, especially the brow region, which is the most

Fig. 8. This figure shows how redundancy affects filters of a layer. Each
visualisation was taken from a different filter but with the same input.

Fig. 9. On the left, the original image; the image in the middle is the features
learned by the first hidden layer from LIPNet; and the last image is the middle
image processed to show the areas that contribute more for a higher activation.
All pixels less than 80 intensity, or 30% of the contribution, were removed
from the image.

Fig. 10. Illustration of the evolution of a positive expression. The first row is
a start stage that has been classified as negative label, while the others, until
the end expression, have been classified as positive label.

active one. So, the LIPNet analyses the AUs 1, 2, 4, 5 and 7,
which code for raised inner brow, raised outer brow, lowered
v, raised upper lid, and tightened lid, respectively. The same
occur in the Jaffe data set in Figure 6, the LIPNet looks for
similar features.

Finally, Figure 10 shows the evolution of a positive expres-
sion; being the initial stage in the first row, and the apex in the
last. We can observe in column two that the important areas for
classification remain the same, but the difference between the
expressions in each row increases within these areas: the eyes
become more expressive and the mouth becomes increasingly
open, respectively. As the features become more evident, the
probability to be in a positive class increases. In the first row,
the LIPNet classified the image with a negative label, whereas
for the other image, the LIPNet classified the image with
a positive label and the probability becomes greater for the
following rows: 38%, 45%, and 48%.



V. CONCLUSIONS

Both architectures, CNNs as well as LIPNets, are able to
cope with the datasets while concentrating on different aspects
of the inputs as illustrated in Figure 6. The distinct visualisa-
tions stem from the architectural differences. As CNNs employ
weight sharing, a filter map learns to detect a particular feature
in all locations of the input, whereas neurons in pyramidal
layers are restricted to their receptive field. Thus, they have
to learn all possible variations that might appear in their
particular receptive field. As a consequence, individual input
neurons or rather the smaller receptive fields have a stronger
effect on the activation of neurons in subsequent layers, which
is clearly visible in Figure 6. Cropping the images to remove
background disturbances or the absence of positional issues
(all subjects are portrayed in the same way) might have
amplified the effect. Naturally, by using an adequate amount
of layers the receptive field gets larger throughout the layers
and, consequently, the impact of individual neurons weakens.
Our approach to use rather sparse architectures might have
also impeded the results of LIPNets.

When we are trying to understand CNNs through visualisa-
tions, what we are actually doing is trying to understand the
data it operates on. As such, visualisations may not provide
absolute statements about CNN architectures in general but
rather specific clues for the task at hand. However, we can
use these clues to improve our understanding of the task and
consequently improve the architecture.

In our experiments, we showed how the CNNs and LIPNets
learn facial structures and that the learned representations
are reliable and can be extracted from different images with
different faces. To do so, we use the deconvolution process
to visualise CNN features and we introduce a novel algorithm
to visualise LIPNet features. We used the visualisations to
demonstrate concepts such as invariance, redundancy and
filtering, which are common for deep neural networks. We
discussed how each network learned different representations,
and how the structure and processing of each network affected
the learned facial structures. The features learned by the
LIPNet are comparable to the Facial Action Units - FACS
model, and we show how this network could generalize these
features in different images.

We want to use the knowledge obtained by these experi-
ments to improve further the models, and use them as a tool
to help with the modification of the architectures, fine-tune the
parameters and build optimal training strategies. Also, we want
to extend the observation of the emotion expressions by using
sequence information and comparing it to human perception
patterns.

ACKNOWLEDGMENT

This work was partially supported by the CAPES Brazilian
Federal Agency for the Support and Evaluation of Graduate
Education (p.n.5951–13–5), the German Research Foundation
DFG under project CML (TRR 169), and the Hamburg Lan-
desforschungsförderungsprojekt.

REFERENCES

[1] P. Ekman, “Facial expression and emotion.” American psychologist,
vol. 48, no. 4, p. 384, 1993.

[2] P. Ekman and W. Friesen, Facial Action Coding System: A Technique
for the Measurement of Facial Movement. Palo Alto: Consulting
Psychologists Press, 1978.

[3] T. J. Balkin, W. J. Horrey, R. C. Graeber, C. A. Czeisler, and D. F.
Dinges, “The challenges and opportunities of technological approaches
to fatigue management,” Accident Analysis & Prevention, vol. 43, no. 2,
pp. 565 – 572, 2011, advancing Fatigue and Safety Research.

[4] D. F. Dinges, S. Venkataraman, E. L. McGlinchey, and D. N. Metaxas,
“Monitoring of facial stress during space flight: Optical computer
recognition combining discriminative and generative methods,” Acta
Astronautica, vol. 60, no. 4, pp. 341–350, 2007.

[5] M. Valstar and M. Pantic, “Fully automatic facial action unit detection
and temporal analysis,” in Proceedings of the 2006 Conference on
Computer Vision and Pattern Recognition Workshop, ser. CVPRW ’06.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 149–.

[6] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN
features off-the-shelf: an astounding baseline for recognition,” CoRR,
vol. abs/1403.6382, 2014.

[7] D. Hamester, P. Barros, and S. Wermter, “Face expression recognition
with a 2-channel convolutional neural network,” in Proceedings of
International Joint Conference on Neural Networks (IJCNN), Killarney,
Ireland, 2015, pp. 1787–1794.

[8] B. Torres Fernandes, G. Cavalcanti, and T. I. Ren, “Lateral inhibition
pyramidal neural network for image classification,” Cybernetics, IEEE
Transactions on, vol. 43, no. 6, pp. 2082–2092, Dec 2013.

[9] T. Kanade, J. F. Cohn, and Y. Tian, “Comprehensive database for facial
expression analysis,” in Proceedings of the Fourth IEEE International
Conference on Automatic Face and Gesture Recognition, ser. CVPRW
’06. Grenoble, France: IEEE Computer Society, 2000, pp. 46–53.

[10] P. Khorrami, T. L. Paine, and T. S. Huang, “Do deep
neural networks learn facial action units when doing expression
recognition?” CoRR, vol. abs/1510.02969, 2015. [Online]. Available:
http://arxiv.org/abs/1510.02969

[11] M. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba, “Coding facial
expressions with gabor wavelets,” in Automatic Face and Gesture
Recognition, 1998. Proceedings. Third IEEE International Conference
on, Apr 1998, pp. 200–205.

[12] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[13] S. L. Phung and A. Bouzerdoum, “A pyramidal neural network for visual
pattern recognition,” Trans. Neur. Netw., vol. 18, no. 2, pp. 329–343,
Mar. 2007.

[14] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional
networks: Visualising image classification models and saliency maps,”
CoRR, vol. abs/1312.6034, 2013.

[15] D. Erhan, Y. Bengio, A. Courville, and P. Vincent, “Visualizing higher-
layer features of a deep network,” University of Montreal, Tech. Rep.
1341, Jun. 2009.

[16] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” CoRR, vol. abs/1311.2901, 2013.

[17] T. Kanade, J. F. Cohn, and Y. Tian, “Comprehensive database for facial
expression analysis,” in Proceedings of the Fourth IEEE International
Conference on Automatic Face and Gesture Recognition, ser. FG ’00,
Grenoble, France, 2000, pp. 46–53.

[18] M. Schröder, H. Pirker, M. Lamolle, F. Burkhardt, C. Peter, and
E. Zovato, “Representing Emotions and Related States in Technological
Systems,” in Emotion-Oriented Systems, ser. Cognitive Technologies,
R. Cowie, C. Pelachaud, and P. Petta, Eds. Springer Berlin Heidelberg,
2011, pp. 369–387.

[19] Y.-L. Tian, T. Kanade, and J. Cohn, “Facial expression analysis,” in
Handbook of Face Recognition. Springer New York, 2005, pp. 247–
275.


