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Abstract

We describe a hybrid generative and predictive model of the motor cortex. The generative model is related to the hierarchically directed cortico-

cortical (or thalamo-cortical) connections and unsupervised training leads to a topographic and sparse hidden representation of its sensory and

motor input. The predictive model is related to lateral intra-area and inter-area cortical connections, functions as a hetero-associator attractor

network and is trained to predict the future state of the network. Applying partial input, the generative model can map sensory input to motor

actions and can thereby perform learnt action sequences of the agent within the environment. The predictive model can additionally predict a

longer perception- and action sequence (mental simulation). The models’ performance is demonstrated on a visually guided robot docking

manoeuvre. We propose that the motor cortex might take over functions previously learnt by reinforcement in the basal ganglia and relate this to

mirror neurons and imitation.
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1. Introduction

The prominent regions of motor skill learning are the basal

ganglia (the largest part of which is known as striatum), the

frontoparietal cortices and the cerebellum. Doya (1999)

proposed that reinforcement learning appears in the basal

ganglia, supervised learning in the cerebellum and unsuper-

vised learning in the cortex. Hikosaka, Nakamura, Sakai, and

Nakahara (2002) propose an integrated model in which cortical

motor skill learning is optimised by a cortex basal ganglia loop

taking advantage of reinforcement learning and a cortex–

cerebellar loop taking advantage of supervised learning.

Neurons in the sensorimotor striatum have been observed to

be active only during early learning phases of a T-maze

procedural task (Jog, Kubota, Connolly, Hillegaart, &

Graybiel, 1999). Recently Pasupathy & Miller (2005) observed

for monkeys learning an associative task, that striatal

(specifically, caudate nucleus) activation progressively antici-

pates prefrontal cortical activity and that the cortical activity

more closely parallels the monkey’s behaviour improvement.
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The lead of striatal activity by as much as 140 ms indicates that

the cortex may be a candidate structure to receive training by

the basal ganglia (see also Ravel & Richmond, 2005, and the

discussion).

Previously we have solved a robotic task by reinforcement

learning mimicking basal ganglia function (Weber, Wermter,

& Zochios, 2004). In this paper this performance will be copied

by an unsupervised learnt generative model as well as with a

predictive model trained supervised on the data given by the

generative model. The task is that of a robot to approach a

target in a pose suitable to grasp it (‘docking’) based on visual

input and input conveying its heading angle. It corresponds

perhaps to moving the limbs suitable to grasp an object by

humans and monkeys. While we assume here that a module

previously trained using reinforcements already performs the

task, the generative and predictive motor cortex module shall

learn it by observation.

The generative and the predictive models are identified with

the hierarchically and laterally arranged cortical connections,

respectively, an architecture which parallels a combined model

of V1 simple and complex cells (Weber, 2001). The docking

task intensively uses visual input, which makes it well suited to

the function of the cortex. The cerebellum, however, also has,

but rather indirect, access to visual information (Robinson,

Cohen, May, Sestokas, & Glickstein, 1984).

The traditional role assigned to the motor cortex is to control

movement: if e.g. neurons in area F5 of the motor cortex are
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Nomenclature

Wbu bottom-up weight matrix conveying the input to the

motor cortex

DWbu change of Wbu during learning

Wtd top-down weight matrix used to reconstruct input

from hidden code

DWtd change of Wtd during learning

V predictive weight matrix

DV change of V during learning

g($) neuronal transfer function of the neurons in the

motor cortical area

s parameter of g($) which controls the maximum

output

b parameter of g($) which controls the slope

k parameter of g($) which controls sparseness

h weight learning rate

ðp input area activations encoding the perceived

location of the target
ðF input area activations encoding the robot heading

direction

ðm input area activations encoding the motor

activations
ðf Z ðp* ðF state space, used by the reinforcement-trained

module

ðxZ ððp; ðF; ðmÞ concatenation of the input area activations

ðr neuronal activations on the motor cortical area

(hidden code)

ðx 0 reconstruction of the input activations by the

network

r̂ random hidden code, used in the sleep phase

x̂ input activations generated from r̂ in the sleep

phase

r̂ 0 reconstruction of the random hidden code in the

sleep phase

ðzZ ððp; ðF; ðm; ðrÞ concatenation of all network activations

~zZ ð ~p; ~F; ~m; ~rÞ network activations constructed by the

predictive weights

t time; one time step denoting update of all neuronal

activations (relaxation)

* outer product
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stimulated, then a limb movement will be executed. Many area

F5 neurons, however, also fire in the absence of own motor

action: if a monkey observes an action to be executed by

another monkey or a human, then so-called mirror neurons fire

action potentials (Gallese, Fadiga, Fogassi, & Rizzolatti,

1996). Also, action word representations are proposed to

span language as well as motor areas in so-called ‘word webs’

(Pulvermüller, 2002). This leads to a distributed (population-)

coding paradigm across several cortical areas, which are

mostly topographically organised. Multi-modal connections of

the motor areas to higher levels of the somato-sensory and

visual cortex (Felleman & Van Essen, 1991) provide the

necessary architecture.1 With mirror neurons in motor cortical

area F5 having also sensory neuron reponse properties it is

therefore plausible to introduce learning principles of sensory

cortical areas to the motor cortex. These considerations provide

the backbone of our developmental model of one area of the

motor cortex.

1.1. A generative model of the motor cortex

Monkeys in captivity sometimes imitate behaviours, which

they observe from people, e.g. sweeping with a broom (Vittorio

Gallese, personal communication). It is tempting to explain

imitation behaviour with a generative model, as has been

successfully applied to the well investigated lower visual area

V1 of the cortex (Bell & Sejnowski, 1997; Olshausen & Field,

1997; Rao & Ballard, 1997; Weber, 2001). A sensory-motor
1 Given that layer 4 which receives bottom-up connections is poorly

developed in the motor cortex, one might consider the motor cortex to be

laterally connected to other cortical areas.
generative model trained by error back-propagation has been

proposed by Plaut & Kello (1998): it produces actions (speech),

which lead via the environment to a similar sensory input

distribution (sound) as previously experienced. However, since

imitation behaviour is performed only by higher developed

mammals, can we trace back a generative model to a more

basic function of the motor cortex?

We go one step back and claim that the cortex reproduces

experienced actions, which are originally produced by other

parts of the brain rather than by other individuals. An action

may originally be produced via phylogenetically older parts of

the brain, e.g. the basal ganglia, and possibly via learning

mechanisms such as reinforcement learning. Even though it is a

powerful learning paradigm, reinforcement learning might

leave actions stored inefficiently in the basal ganglia; in

computational models a high-dimensional state space limits

applications (see Section 4). When the cortex can take over, the

basal ganglia would be available to learn new tasks.

An unsupervised model of the cortex as proposed by Doya

(1999) is simple due to a similarity with sensory cortex models,

and in that the direction of information flow (what is input and

what is output) is not specified before learning. While a

directed stimulus to response mapping, learnt supervised,

might be more optimal, the motor cortex does not produce

optimal movements, considering that damage to the cerebellum

leads to lasting motor and movement difficulties (e.g. Sanes,

Dimitrov, & Hallett, 1990).

Perception-action pairs might be input data to a generative

model of the motor cortex, just like an image is the input to a

generative model of the visual cortex. The cortical neurons

represent this input as an internal activation pattern. This

‘hidden code’ can represent higher-order correlations within
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Fig. 1. The hybrid generative and predictive model. In (a) they are displayed as

an architectural view and in (b) unfolded in time, over two time steps. The

generative model consists of top-down weights Wtd and it generates the input ðx
from the hidden code ðr at any time step. Bottom-up weights Wbu are used to

obtain the hidden code. The predictive model consists of lateral weights V and it

predicts the hidden code at the next time step ðrðtC1Þ from the current hidden

code ðrðtÞ.
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the input data and can trace back the input to meaningful,

independent components. This constitutes an internal world

model of the environment since the input can be generated

from that hidden code. Fig. 1(a)) shows the model architecture

(together with the predictive model, described next). The input

ðx is the perception-action pair. It can be generated via the top-

down weights Wtd from the hidden representation ðr . Perceptive,

bottom-up weights Wbu are needed to obtain the hidden

representation ðr from the data ðx. Weights are trained via an

unsupervised learning scheme described below.

The generative model (consisting of Wbu and Wtd) can be

used for input–output mappings as we have done recently on a

Kohonen network (Wermter & Elshaw, 2003). For this purpose

its input ðx is logically split into a perceptive input ðy and a motor

output ðm, which can be expressed as ðxZ ððy; ðmÞ. If we now test

the model using ‘incomplete’ input ððy; 0Þ where there is

perception but zero motor action, we can still find a hidden

representation ðr 0 using Wbu. Based on ðr 0 the model can generate

a virtual input ðx 0Z ððy 0; ðm 0Þ using Wtd. This motor represen-

tation ðm 0 is then the most appropriate action, which belongs to

the perception ðy. Having learnt perception-action mappings,

the model can automatically generate action sequences within

an environment, because an action will lead to a new

perception, which will itself trigger an appropriate action.
1.2. A predictive model of the motor cortex

A predictive model generates its future input or its future

state, unlike a generative model, which generates its current

input. An advantage of a predictive model is that it can

compensate for a delay of its input. Furthermore, since the

consequences of an action are known without that the action is

actually performed, a predictive model allows for mental

simulations of action sequences (Oztop, Wolpert, & Kawato,

2003). Prediction allows the observer to determine if the actor

is helpful, unhelpful or threatening (Gallese & Goldman, 1998)

and offers the opportunity to react to an action sequence before

it has ended (Demiris & Hayes, 2002).

The hierarchically directed weights Wbu and Wtd which

constitute the generative model generate the incoming data,

which enters the model at the same time instance. On the other

hand, the weights V of our predictive model are directed
primarily horizontally, or laterally. As can be seen in Fig. 1(a),

these weights are recurrent connections within one neural

sheet. Fig. 1(b) which depicts the model unfolded over two

time steps illustrates that V connect hidden representations at

different time steps—making them hetero-associative weights.

Note that a trained generative model is needed to obtain the

hidden representations, which the predictive model uses for

training and for action.

Our model choice to separate feature extraction (the

generative model) from prediction originates from modelling

constraints in the visual cortex. Simple cell-like localised edge

detectors in W are obtained by a training paradigm where the

same image has to be reconstructed from the hidden

representation, which gave rise to it, but not if, for example,

a shifted version of that image should be reconstructed. The

prediction task was therefore separated out to lateral weights V,

which predict the next hidden representation ðrðtC1Þ rather

than directly the next input data point. At each relaxation time

step, the input images had been moved slightly into a random

direction. As a consequence the lateral weights predicted a

hidden code that was slightly shift invariant, yielding V1

complex cell properties (Weber, 2001).

Lateral weights V have been extended to connect also

different cortical areas, in order to associate ‘what’- and

’where’ representations of an object (Weber & Wermter,

2003). Here we will extend them so that they are allowed to

connect to all areas involved, including the input areas (as

shown later in Fig. 4). They can then directly predict the future

input (consisting of perception and action) and therefore

anticipate a learnt motor action. This corresponds to the

findings that long-range horizontal connections in the cortex

(which originate as well as terminate in layers 2⁄3 ) are also

found between areas of different hierarchical levels, even

though they are strongest within one hierarchical level

(Felleman & Van Essen, 1991).

Such a two-tier architecture of feature extracting cells with a

layer designed to compute invariances on top resembles the

Neocognitron of Fukushima et al. (1983), a biologically

inspired model of visual pattern recognition where several

hierarchical levels are arranged successively. A more complex

architecture is the Helmholtz machine through time by Hinton,

Dayan, To, and Neal (1995a). Its recognition component

(bottom–up connections) and generative component (top-down

connections) are each completed by additional lateral

connections which are trained to predict a future state. While

such lateral connections yielded shift invariance in (Weber,

2001), contrasting models achieve invariances by vertical

connections (e.g. Riesenhuber & Poggio, 2002).

Taking the generative and the predictive model together,

we are proposing such a two-tier architecture for a motor

cortical area. As in the Helmholtz machine through time we

train the lateral connections to predict the future activations

on the hidden layer. Since this is done using recurrent

relaxations of activations, this introduces the competition as

between the attractors of a continuous attractor network. In

contrast to a maximum operator or a convolution with a fixed

kernel, this is a soft competition involving trained, irregular
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weights. Having applied our model to the visual system we

will here demonstrate its ability to perform sensation driven

motor control and mental action simulation in a real world

scenario.
2. Methods

In the following we will briefly describe the task, and then a

reinforcement trained model, which can solve the task. Next,

we will introduce the model of the motor cortex and explain its

components, the generative model and the predictive model,

which are trained to copy the solution to the task from the

reinforcement trained model.
2.1. Task

The scenario is to dock a robot to a table so that it can grasp

a visually perceived object on it (Fig. 2). The camera is fixed to

the robot, so the task is accomplished if the target is perceived

at a certain location in the visual field. In addition, however, for

geometrical reasons the robot has to approach the table at a

perpendicular angle (defined below as 08), so that its short

gripper can reach over the table (see Fig. 2). For simplicity, the

gripper’s height is constant just above table level. The two-

wheeled robot can perform ‘go forward’, ‘go backward’, ‘turn

left’ and ‘turn right’ motor commands.

A simulator for the environment was implemented which

computes the future perceived target position vector ðp and

robot heading direction encoded in ðF based on present values

and on the motor command ðm. In previous work, a network

trained on this simulator with a reinforcement scheme was able

to control a real robot in the corresponding task (Weber et al.,
camera

gripper

target object

table

Fig. 2. The robot performing the ‘docking’ action. Note that it cannot reach the

orange fruit if it approaches the table at an angle, because of its short gripper

and its side columns. This corresponds perhaps to situations where fingers, arm

or hand are in an inappropriate position for grasping.
2004). Here too, we rely on the simulator for training but run

demonstrations also on the robot.

2.2. Reinforcement model structure

The network, which performs the docking action, is

depicted in Fig. 3. Here, we will give a short account of how

it was trained, as we have described in detail in Weber et al.

(2004). Learning consists of three steps.

First, the lower-level vision module’s weights Wbu and Wtd

are trained from natural colour image patches using a sparse

coding Helmholtz machine (the names Wbu and Wtd here are

intended only for this context, however, the model is basically

the same as the generative model of the motor cortex for which

we again use these names). As a result, the input image ðI is

coded as a hidden code ðu by units, which are similar to V1

simple cells (localised edge detectors, some colour selective

cells, retino-topography).

Second, lateral weights V are trained to generate a set of

continuous attractors, which approximate the common rep-

resentation ððu; ðpÞ. For this task, a specific object of interest (an

orange-coloured disk, corresponding to an orange fruit) is

artificially inserted into each image ðI while ðp is constructed to

represent a Gaussian hill of activity at the corresponding

location of the object (ðp is the same size as ðI , both are vectors

of 24!16 elements, arranged two-dimensionally). As a result,

whenever an image is presented with an object of interest and

when ðp is initially unknown, then a best matching continuous

attractor will arise in which ðp reflects the visually perceived

position of the object. This irregular hill of activation is then

replaced by a Gaussian around the maximum value, but for

simplicity we will reuse the symbol ðp for this.

Third, ðp is one of two inputs to the module, which is trained

using reinforcement. The other input is ðF, a vector with 7

elements which represent 158 increments in the robot heading

direction angle from K45 to 458, where 08 is suitable for

grasping. The elements are arranged one-dimensionally to

encode a Gaussian profile around the robot direction angle. The

robot angle is given by its odometry system and ðF might be

encoded in head direction cells in a biological system. Since

different combinations of ðp and ðF make up different states, we

multiply these by their outer product ðf Z ðp � ðF to obtain a

24!16!7-dimensional state vector, depicted in Fig. 3 as a

three-dimensional block. ðf encodes one Gaussian hill of

activity where neighbourhood is defined by the three

dimensions of that block. It is an almost localist code since it

is roughly defined by the most active unit.

During reinforcement learning a critic unit assigns any

given state a value c, which reflects the future expected

rewards (Foster, Morris, & Dayan, 2000). A ‘reward’ is

delivered only at the end of each trial. It is positive when the

target is perceived at the robot’s gripper and if the robot

heading direction angle is approximately zero. The ‘reward’ is

negative when the target is lost out of sight or when the

robot hits the table. The mapping of the state ðf to the critic

value c via the weights Wc constitutes the value function.

After training it increases if the robot gets nearer to its target.
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Fig. 3. The network which performs the docking action based on reinforcement training (after Weber et al., 2004). ðI is the camera image. ðu is the hidden

representation (‘what’) of the image. ðp contains the perceived location (‘where’) of the target within the image. ðF has a Gaussian profile centred on the angle of the

robot. ðf is the perceptual space, made up by multiplying ðp and ðF. c, the critic, holds the value function which is assigned to each perceptual state ðf unit. ðm are the four

motor unit activations. Thick arrows denote trained weights W and V. Only the ones depicted dark are used during performance while those depicted light are

involved in training. The lower level vision module is shaded to highlight its similarity to the generative model of Figs. 1 and 4.
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The critic is needed only to train the motor weights Wm which

are trained such that the motor actions given by ðm maximise

the value c. A motor action at any time step is defined by the

maximum of the four values of ðm which represent the robot

movements ‘go forward’, ‘go backward’, ‘turn left’ and ‘turn

right’.

While this network performs the docking action, the

target representation ðp, the angle vector F and the motor

action ðm are used to train the motor cortical network,

described next.
r

Φ mp

W
VV

V

W

V VV

VW

Fig. 4. The hybrid generative and predictive model of the motor cortex applied

to the docking problem. The generative model consists of weights W (where W

summarises Wbu and Wtd), the predictive model of weights V. ðr is the hidden

representation. The inputs ðp, F and ðm are described in Fig. 3.
2.3. The cortical model

The model has two logical constituents. First, feature

extraction via weights W of the generative model gives a

higher level representation ðr of its input. Second, hetero-

association via predictive weights V predicts the represen-

tation ðrðtC1Þ at the next time step given the current

representation ðrðtÞ. The weights W are trained via

unsupervised learning, because the higher level represen-

tation ðr is initially not given at any time. The weights V are

trained afterwards to predict ðrðtC1Þ from ðrðtÞ. Since, ðr is

then already given at all times, this resembles supervised

learning.

Let us for now assume that a lower level (basal ganglia)

model already exists which produces the desired interactive

action sequences. The model of the motor cortex which shall

learn to generate these sequences is shown in Fig. 4. During

lower-level sequence production it receives bottom-up input

from perceived vision ðp, the heading angle coded in ðF and

the motor action ðm. It produces a hidden representation ðr
from its bottom-up input using weights W. Prediction of

future hidden and input states is done by the weights V.
2.3.1. Training the generative model

The unsupervised learning scheme is that of the wake–sleep

algorithm (Hinton, Dayan, Frey, and Neal, 1995b) used to

approximate training of a Helmholtz machine (Dayan, Hinton,

Neal, & Zemel, 1995). It alternates between the wake phase in

which one data point is presented to the network and the sleep

phase which does not require any data.

The wake phase is used to train the generative, top-down

weights Wtd. First, a data point ðxZ ððp; ðF; ðmÞ which logically

concatenates the three input areas is presented. Then, the

hidden code is computed:

ðr Z g Wbuðx
� �

with gðaÞ :Z s
eba

eba Ck



C. Weber et al. / Neural Networks 19 (2006) 339–353344
where the logistic, positive-only transfer function g is applied

at each hidden unit. It has parameters sZ1 which controls the

maximum output (saturation), bZ2 which controls the slope

and kZ64 which if made larger decreases the output value at

a given small input and thus promotes sparseness in the

representation ðr . The product Wbuðx is between the concate-

nated bottom-up weights from the three input areas to the

hidden area and the concatenated inputs. As the next step, the

reconstructed input ðx 0 is generated from the hidden code:

ðx 0 ZW tdðr (1)

where similar to above, Wtd denotes the concatenated top-down

weight matrices. Then, Hebbian-type delta learning is done

using as post-synaptic term the difference between the original

and the reconstructed data:

DW td Z h ðxKðx 0
� �

*ðr (2)

with learning rate hZ0.001.

The sleep phase is used to train the recognition, bottom-up

weights Wbu. It mirrors the wake phase with ðx and ðr exchanged.

First, a ‘fantasy’ hidden code r̂ is generated. It is binary: most

elements are zero and a few are set to 0.75 (the value 0.75 can

easily be reconstructed by the transfer function g unlike the

value 1 below which g saturates). These are selected randomly

under the envelope of a randomly placed Gaussian to impose a

functional topographical relationship. Then, the imagined input

which belongs to the fantasy hidden code is computed:

x̂ ZW tdr̂:

No additional transfer function is applied on the inputs. As the

next step, the reconstructed fantasy hidden code is obtained

from the imagined input:

r̂ 0 Z g Wbux̂
� �

where g is the same transfer function with its parameters as

in the wake phase. Then, Hebbian-type delta learning is

done using the difference between the fantasy—and the

reconstructed hidden code:

DWbu Z h r̂Kr̂ 0
� �

*x̂ (3)

with the same learning rate h as above.

There are additional constraints on the weights. (i) All

weights Wbu and Wtd are rectified to have only positive

values. This reflects the fact that the data ðx and hidden code

ðr have positive-only values and excludes subtractive

components in the construction of these vectors via the

weights. (ii) A weight regularisation term which should

prevent a few single weights from becoming very large adds

a small weight decay of K0.015 hw on every weight w in

Eqs. (2) and (3).
2.3.2. Training the predictive model

The predictive model functions like an associator neural

network: the current activations of the network units lead via a

(almost) full recurrent connectivity to the next activations, and

so on. The connectivity structure is shown in Fig. 4: there are
predictive weights V within every area as well as between the

hidden area and every input area. We omitted direct weights

between different input areas in order to save computation

time. For convenience of notation, let us define V the full

weight matrix between all areas, with the entries of V where

defined and with zeros where there are no connections.

Furthermore, let us concatenate all areas’ activations to one

large vector ðzðtÞZ ððpðtÞ; ðFðtÞ; ðmðtÞ; ðrðtÞÞ. Then one step of the

dynamics of the predictive model is:

~zðt C1ÞZ gðV ~zðtÞÞ (4)

where the transfer function g is the same as above, where

parameters sZ0.7, bZ2 and kZ8 aid maintain recurrent

activations. We use the ‘tilde’ symbol for the vector ~z which is

obtained by the predictive weights in order to distinguish it

from ðz which is given by the data.

The predictive model is logically trained after the generative

model, because the correct hidden code must be known for

training. However, for convenience of implementation, we

applied a learning step of the predictive model after every

learning step of the generative model (wake- and sleep phase)

throughout training. The values ðz are taken from the wake

phases.

Note that two consecutive data points are not independent:

since goal-directed action sequences are performed during

acquisition of the data, a data point ðzðtÞ will lead to a causally

linked consequence ðzðtC1Þ. The prediction has as parameters

(i) the progress in time, i.e. how much does the physical world

progress between time steps t and tC1 and (ii) the number of

neural updates made in this time. Assuming that data are

continuously available, we can choose a progression in time

that is sufficiently small to be aligned with just one neural

update step, speeding up training and avoiding issues of

unstable attractor dynamics during learning. The repetitive

relaxation of predicted values of Eq. (4) is thus replaced by a

one-step prediction at each time step:

~zðt C1ÞZ gðVðzðtÞÞ:

The learning rule is:

DV Z hððzðtC1ÞK~zðtC1ÞÞ*ðzðtÞ (5)

with learning rate hZ0.01. Thus, in each training step, two

consecutive time steps are involved: the first for the given pre-

synaptic value ðzðtÞ and the second for the post-synaptic

difference between the given target value ðzðtC1Þ and the

predicted value ~zðtC1Þ. Since ~zðtC1Þ saturated at 0.7 due to

its transfer function parameter s, we constrained the target

values ðzðtC1Þ at the visible components ðp; ðF and ðm (but not ðr)

to not exceed 0.8.

Additional constraints on the weights V are: (i) a weight

decay term is applied which adds the term Kh 0.001 v for

every weight v in Eq. (5) and (ii) self-connections are set to

zero.

In contrary to the generative model weights W, we allow

weights V to be negative, so that they can maintain an activity

pattern as a recurrent attractor network. For example, a centre-
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excitatory and surround-inhibitory weight structure (in feature-

or geometrical space) can maintain a localised patch of

activity.
2.4. Implementation

One million training steps, each consisting of a wake

phase and a sleep phase, were done and the learning step

size h was reduced linearly to zero during the last quarter

of training, long after no weight changes were visible any

more. At each step, the module previously trained using

reinforcements (Weber et al., 2004) performed a motor

action dependent on its input. After on average about 20

steps the goal was reached (or a border of the visual field

was hit by the perceived object) and the robot was placed at

a new random continuous position, with initial rotation

angle zero and so that the target object was inside the visual

field. Transitions between sequences were not specifically

treated, thus if ðzðtÞ represents a goal state then ðzðtC1Þ is

unrelated, because it represents a new random initial

position. The speed of the robot was set such that the

perceived object moved along a distance of 0.9 pixels

during one step, or, if it turned, then by 188 to the left or to

the right.

The size of the three input areas matches by the underlying

reinforcement-trained model: the perceived location ðp is

represented on a grid of 24!16 units, the robot heading

angle is represented on seven units and there are four motor

units. For the hidden area we chose a size of 16!16 units. ðp
has the shape of a two-dimensional Gaussian with sZ1.5 and

height 1 on the grid position of the target; ðF has the shape of a

one-dimensional Gaussian with sZ0.5 and height 2 centered

according to the robot rotation angle; ðm is 1 for the active

motor unit and zero else. Because ðm is relatively small, the

input is not very much distorted if all units are set to zero as in

the testing condition. Furthermore, no bias is introduced as all

motor units have the same magnitude. One might, however,

compensate for the missing input by setting all four values

to 0.25. Training took roughly one day on a 2.2 GHz Intel
Fig. 5. A selection of trained weights W of the generative model. Each little rectan

denotes zero- and white strong connection strengths. (a) Shows recognition (bottom

those from the angle area (the 7 angle units within each tiny rectangle displayed verti

tiny rectangle horizontally arranged) to the hidden area, respectively. (d) Shows the g

area, which functionally invert the weights shown in (c). The four motor units are
Pentium 4 Linux machine, but performance is fast enough for

real-time application.

3. Results

3.1. Anatomy of the generative model

As a result of training, Fig. 5(a–c) together show the

recognition weights Wbu. They are made up of the three

components to receive the ðp; ðF and ðm and components of

the input, respectively. Adjacent neurons on the hidden area

have similar receptive fields in any of the three input areas.

This realises topographic mappings. Accordingly, there are

regions on the hidden area which are specialised to receive

input from similar regions in ðp-space, ðF-space and ðm-space.

The central region in ðp-space is represented by more

neurons than peripheral regions, because according to the

turning and movement of the simulated robot toward the

target, the target was more often perceived centrally during

training. While each hidden neuron codes only one angle

and only one action, a few neurons shown at the top right

of Fig. 5(a) with bi-lobed receptive fields code for target

object positions at the lower right and also at the lower left

of the visual field. These neurons have weak angle input, as

the missing weights there in Fig. 5(b) suggest, and code for

backward movement, Fig. 5(c). They obviously represent

the situation where the robot is close to the table, but with

the target object at the left or the right, so it has to move

back before doing further grasping action.

The component of the generative weight matrix Wtd which

projects to the four motor units is shown in Fig. 5(d). Their

receptive fields in the hidden area originate from several sub-

regions, except for the second unit which codes the ‘go

backward’ command and which receives its input from one

single region in the hidden area. Since Wtd and Wbu invert each

other functionally, the transpose of Wbu looks very much like

Wtd, and accordingly, the structure of Fig. 5(c) can be easily

matched with Fig. 5(d). We can see easily in Fig. 5(d) that the

neurons in the upper right of the hidden area are the only cluster

coding for backward movement.
gle shows the receptive field of one neuron in its respective input area. Black

-up) weights from the perceived vision area to the 16!16-unit hidden area, (b)

cally arranged) and (c) those from the motor area (the 4 motor units within each

enerative (top-down) weights from the hidden area to the four units of the motor

labelled for ’forward’, ’backward’, ’left turn’ and ’right turn’.



Fig. 6. A selection of trained weights V of the predictive model. Negative weights are depicted as dark, positive weights as light. In (a) and (c) contrast is enhanced so that

weights larger than 0.5 times the maximum value are white; weights smaller than 0.5 times the minimum are depicted black. (a) Shows inner-area lateral weights of the

16!16-unit hidden area. Their irregular centre-excitatory, surround-inhibitory structure produces shifting activation patterns ~r as shown in Fig. 10. (b) shows inner-area

weights of the motor area. Note that self-connections in (a) and (b) were set to zero. (c) Shows predictive weights from the hidden area to the four motor units. These can

be loosely matched to the feedback, generative connections which area shown in Fig. 5 (d) positive weights originate in similar regions of the hidden area.
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Fig. 7. Errors during the training progress. Each point along the x-axis denotes

1000 sampling points over which the average squared errors, y-axis, over the 4
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3.2. Anatomy of the predictive model

The lateral predictive weights within the hidden area shown

in Fig. 6(a). They have developed an approximate centre-

excitatory surround-inhibitory structure, an organisation

principle found across the entire cortex. The structure is not

regular and symmetric but the inhibitory surround has a

directional bias. This produces activation patterns that have a

slight offset to the existing patterns, which will result in their

movement. Lateral weights within the motor area are shown in

Fig. 6(b). Here, too, the weights are not symmetric, i.e. VijsVji

for weights between units i and j. For example, the ‘go forward’

unit receives only negative connections from the three other

units while the ‘left turn’ and ‘right turn’ units each receive a

positive connection from the ‘go forward’ unit. This reflects

different probabilities between a transition from one state to

another and a transition into the opposite direction.

The sample of predictive weights V from the hidden area to

the motor area shown in Fig. 6(c) matches roughly the

corresponding one from the generative matrix W, shown in

Fig. 5(d). Differences are first, that the predictive weights have

also negative components, which is necessary, because they

need to maintain a line attractor. Secondly, the shapes also of

the positive components of V differ slightly from those of W,

because the predictive weights have to generate a slightly

different activation pattern, which lies one step ahead in the

future. Predictive weights are more blurred, probably because

the network is unable to predict the exact future state but must

average between several possible future states.

motor units’ outputs were averaged. From top to bottom, errors made by:

generative weights W if they have not received motor input, generative weights

after receiving full input including the correct motor values, predictive weights

V which have received only sensory input ðp and ðF at the previous time step and

predictive weights which have received full input at the previous time step.

Note that the predictive model’s output using the transfer function of Eq. (4)

cannot be directly compared to the generative model’s linear reconstruction of

Eq. (1).
3.3. Error curves

Fig. 7 shows the errors of the generative and predictive

weights during training in the case of when the motor output is

fed into the network (as during training) and in the case without
motor input (as during performance). The errors of the

generative weights W are considerably larger when the correct

motor input is missing. In case of the predictive weights, the

values given as input were those of the previous time step only,

including the previous correct motor values. The error of the

predictive weights V is also larger without motor input.
3.4. Actions and mental simulation

As a result of training, the robot undertakes one of the four

possible actions, ’go forward’, ’go backward’, ’turn left’ and

’turn right’ dependent on its relative position to the target ðp and

its heading angle ðF. Fig. 8 shows these actions as flow fields for
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Fig. 8. Mappings from state space to actions. In each field, the x, y-plane denotes the location of the robot; the target location is depicted as a disk at the centre of the

upper edge. Action fields are depicted for three different robot heading angles, K25, 0 and 258. In the grey shaded regions, the robot would not see the target, because

it is outside of the field of vision. These regions have been omitted during training. The arrows at each point denote the robot action: the arrow facing in the robot

heading direction (primarily upward) corresponds to ‘go forward’, the downward arrow to ‘go backward’, the right arrow corresponds to ‘turn right’, and the left

arrow to ‘turn left’. (a) For the reinforcement-trained module, (b), for the generative motor cortex model, W and (c) for the predictive model, V.
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three heading angles. In column (a) they are depicted for the

reinforcement-trained module which served as teacher for the

motor cortex module. Column (b) shows these for the generative

cortical model and column (c) for the predictive model. The

actions depicted are defined by that motor unit among ðm which

was strongest activated by the hidden code via W td (or V in case

of the predictive model), after the hidden code was obtained

from the ‘incomplete’ input ðxZ ððp; ðF; ð ðmZ0ÞÞ via Wbu.

Actions thereby defined are deterministic given the input. The

flow fields of the generative and the predictive models match

those of the reinforcement-trained module in large parts near the

centre but differ in some surrounding areas. Training was done

while the simulated robot performed docking actions; thus

training data occurred more often near the centre where the robot

path would lead than near the edges of the field. No training was

done when the target was not visible (grey shaded regions in

Fig. 8) and the models differ considerably here.

Based on Fig. 8 we counted how often the actions of the

generative and predictive models would match those of the

reinforcement-trained module. Across the three depicted

angles, there are 948 data points which fall inside the white

regions, which received training. There the generative model

performs in 59.92% of all cases similar to the reinforcement-

trained module (at angle 08 the number is 67.45%), the

predictive model performs in 60.23% of cases similarly (at

angle 08: 64.32%). The models perform thus better in regions
which the robot has visited more often during training (e.g. it

was always initially placed at an angle of 08). 204 remaining

data points are in shaded regions where there was no training.

There the generative model would perform correctly only in

14.71% of the cases (random decisions would lead to 25%

correspondency). Note however that the reinforcement-trained

module is itself a neural network which was not trained in these

regions. Since it has a different architecture the models are

expected to generalise differently and it is not defined which

model is ‘correct’. With 47.06% similar performance, the

predictive model generalises into these regions more similarly

to the reinforcement-trained module.

Examples of docking sequences are shown in Fig. 9. The

generative model sequences in (b) were obtained similarly to

the reinforcement-trained sequences depicted in (a): at each

point in ððp; ðFÞ-space, the motor action was obtained from the

maximum active of the four motor units and the simulated

robot was moved accordingly. The resulting movement

sequences of both models are largely similar. The first depicted

example is unusual in that the generative model even

outperforms its teacher: while the reinforcement-trained

module utilises an unsuccessful strategy where the robot will

hit the table with its left side, the generative model decides to

move a little back before turning.

The third example of Fig. 9 shows some limitations in

the model’s capabilities: after initial good performance, the



Fig. 9. Action sequences. In each row, from a given starting point, 20 consecutive time steps are displayed such that the positions of the robot at later times are

displayed in lighter shades. (a) ‘Correct’ sequences performed by the reinforcement-trained module, interacting with the environment. (b) Reconstruction: learnt

sequences performed by Wtd, interacting with the environment. (c) Mental simulation: imagined sequences ‘performed’ by relaxation via V given the starting point,

but without any further feedback from the environment (see also Fig. 10). For display, the strongest activations of ðp and ðF at each time step of the relaxation were

taken to project the mental state into the ‘real world’.
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simulated robot bumps into the table and then continues turning

into it. In that region of the state space, of course, there was no

training data. Note also that the generative model simply copies

an action without knowing about a goal or a reinforcement

signal. Finally, the learning rule Eq. (2) minimises the squared

error between each component of the generative model’s

output vector and the values given by the data, while the action

is defined differently, by the maximum value of ðm.

Projections of the predictive model’s ‘mental simulations’

into the real world are shown in Fig. 9(c). It predicts the

robot to move toward the goal for several time steps even

in total absence of any further input from the real world.

Since the imagined future ð ~p; ~FÞ-states are not corrected by

the environment’s reaction to the predictive motor action ~m,

the imagined movement is not physically constrained: side

shifts of the robot are possible in its imagination.
Fig. 10. Activation sequences during mental simulation. After initialisation

with ðp, ðF, ðmZ0 and ðr (the latter computed using Wbu weights) at time tZ0 the

activation sequences at ‘future’ time steps, produced by the predictive weights

V and counted by the numbers below, are shown. Black denotes zero activation,

white strong activation. The depicted area sizes are at different scales (the ðp-

area is reduced most) for display reasons. This example sequence belongs to the

one shown in the third row of Fig. 9(c).
3.5. Physiology

Neuronal activations during ‘mental simulation’ of the third

sequence of Fig. 9(c) are shown in Fig. 10. All activations

ð ~p; ~F; ~r; ~mÞ together form one non-stationary line attractor in

time, governed by repetitive application of Eq. (4). In the

depicted example, ~p and ~r die out after about 12 iteration steps.

When ~p is small, the maximally active unit remains somewhere

in the centre, as the final imagined robotic positions which

are depicted white in Fig. 9(c) suggest. ~p usually dies out

eventually. This is probably due to the unpredictability of the

perceived location by the model: in the shown example, the

target is perceived near the goal position at time step 12.

During training, a new random starting position which cannot

be predicted was selected whenever the goal was reached.
Furthermore, ~p is mainly kept ‘alive’ by the intra-area lateral

weights V within the area which represents ðp. These do not

consider the robot heading angle ðF and can only predict an

average outcome by which an originally Gaussian hill of

activation will be flattened. Eventually, it cannot maintain

itself any more.

A remedy against ~p dying out in time may be simply not to

implement any lateral weights V within this area, and possibly

not within the other input areas as well. We have tried this

out (results not shown) and decided against it, because the

activations on the ðp-area would not be refined to a narrow

Gaussian, but become broadly distributed over the whole

input area.
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3.6. Application to the robot

The network was run on the PeopleBot robot (Fig. 2) where

input ðF was retrieved from the robot odometry and ðp from its

camera using the localisation algorithm described in Weber &

Wermter (2003). Gripper action was not considered. Example

movies of the robot using the generative weights W can be

downloaded at the following URL: http://www.his.sunderland.

ac.uk/supplements/NN04/.

Variations in the robotic movement arise first from the

cortical visual target localisation network, second, from

the reinforcement-trained teacher network and finally, from

the motor cortex learner network. Shortcomings w.r.t. the

teacher network (Weber et al., 2004) are visible in the

final phase when the robot adjusts itself insufficiently

parallel to the table. It would be conceivable that the

reinforcement network remains active and plastic in such

phases, countervailing the cortex’ deviations until the cortex

can succeed.

4. Discussion

In addition to generative models already explaining sensory

cortical areas very well, we have demonstrated here that a

generative model can account also for motor cortical function.

It relies on a working module trained by reinforcement which

resides outside of the cortex. A generative motor theory forms a

bridge between a generative sensor theory and a reinforcement

based motor theory. It is important to have such a link, since

sensory and motor representations are largely overlapping in

the brain.

4.1. From reptilian dorsal cortex to the mammalian cortex

During evolution, too, it would be an advantage to evolve

sensory and motor systems together, since they must always

remain linked together. The six-layered mammalian cortex

might have evolved from the reptilian dorsal cortex, a more

primitive structure with three layers (for a review see Aboitiz,

Morales, & Montiel, 2003). If the mammalian cortex functions

as a generative model, we may ask, to what degree is the

reptilian dorsal cortex already such a model?

Strictly speaking, a generative model must have feedback

connections from the hidden layer to the input layer. They

allow to reconstruct the input from the hidden code and obtain

the reconstruction error which can be used for optimisation of

the hidden code as well as for training. Models which develop

localised edge detectors as found in V1 from natural image

input have a recurrent connectivity between the simulated V1

and its thalamic input area, the lateral geniculate nucleus

(LGN) (Olshausen & Field, 1997; Weber, 2001). An

alternative are non-local (thus biologically implausible)

learning rules like the standard independent component

analysis (ICA) algorithm (Bell & Sejnowski, 1997) which

effectively incorporate feedback effects. Biologically plausible

models based solely on forward connections remain impaired.

Mammalian cortex allows for such feedback since areas are
generally connected bi-directionally in an organised fashion

(Felleman & Van Essen, 1991): neurons in layer 4 on a higher-

level cortical area receive input from neurons in layers 2/3 on a

lower-level area while feedback involves layers 5/6 on both

areas. Does the reptilian dorsal cortex with its different layer

structure allow for comparable feedback? It has been

considered that layers 2, 3, 4 and possibly 5 of the mammalian

cortex are newly acquired (Aboitiz et al., 2003). This is

evidence for an evolved recurrent connectivity but it is linked

to the hierarchical information processing of the mammalian

cortex.

A statistically optimal model through the use of feedback

may become important, if several processing steps follow in a

series such as in hierarchical information processing. This

implies that the advancement of the mammalian cortex is

linked to its hierarchical arrangement of areas.
4.2. Imitation and mirror neurons

So far, our model is capable of self-imitation by copying

the behaviour of another internal module, the reinforcement

trained module. But it should also be able to explain the

imitation of high level actions of higher developed

mammals, if it receives appropriate inputs which enable

the individual to understand the actions of another. These

inputs would come from higher-level visual and auditory

areas, where other individuals and their actions are

recognised and in the case of humans also from language

areas where actions are represented. In order for imitation to

work, the perceived action of another individual and the

own action need a common representation (see Sauser &

Billard (2005) for a functional model achieving this by

frame of reference transformations). This is found in mirror

neurons in the motor area F5 of primates: they fire when

the primate performs a specific action as well as when it

sees or hears the action performed (Kohler, Keysers, Umilta,

Fogassi, Gallese and Rizzolatti, 2002; Rizzolatti & Arbib,

1998).

The recognition of actions such as holding, hand grasping

and tearing using the mirror system must involve as input to the

system the perception of the goal or object; the motor system

does not solely control movement (Gallese & Goldman, 1998).

The importance of this goal-oriented component of the mirror

neuron system can be understood from that the observer can still

recognise high level actions even when the final section is

hidden or the high level action understanding requires

interaction with the actual object (Gallese & Goldman, 1998;

Umilta, Kohler, Gallese, Fogassi, Fadiga and Keysers, 2001).

The presence of the goal and its understanding allows the

observer to share the internal state and representation of the

performer of the action and so can imitate him (Rizzolatti &

Luppino, 2001). The mirror neuron system was also observed in

humans (Gallese & Goldman, 1998) and the association of some

mirror neurons with Broca’s area indicates a role in the

evolution of language (Rizzolatti & Arbib, 1998).

http://www.his.sunderland.ac.uk/supplements/NN04/
http://www.his.sunderland.ac.uk/supplements/NN04/
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4.3. Biological evidence for a two-stage learning process

In the following, we review evidence that the cortex might

take over functions which have been previously acquired by the

basal ganglia. Jog et al. (1999) demonstrated on rats in a

T-maze task the role of the striatum, a large part of the basal

ganglia, during learning (see Fig. 11). At early learning stages,

neurons fired during the turn at the junction, i.e. while the rat

executed the decision to turn left or right, in response to an

acoustic signal. Later, during ‘over-learning’, responses went

radically down at the turn, suggesting that the learnt decision is

executed in other neural structures than the striatum.

Interestingly, striatal neuronal activities increased at the

beginning and at the end of the task, indicating (i) that the

striatum may code for whole sequences of behaviour or (ii) that

the striatum would at this point be ready to learn a more

complex task, possibly comprising the one learnt by the motor

cortex as a sub-task.

Brashers-Krug, Shadmehr, and Bizzi, (1996) have found

evidence that newly learnt skills and consolidated skills are

stored in separate parts of the brain: people had to acquire two

conflicting motor maps for reaching movements with a robotic

manipulandum, with conflicting (opposite) force fields applied.

If the two situations were learnt with just minutes in between,

then performance of both tasks was decreased wrt when just

one task was learnt. If the two situations were learnt with more

than 4 h in between, then the negative mutual influences were

significantly decreased, suggesting that consolidated memory

does not interfere with newly acquired skills. In a PET study

(Shadmehr & Holcomb, 1997) monitoring regional cerebral

blood flow, they associate memory consolidation with a shift

from prefrontal regions of the cortex to premotor, posterior

parietal and cerebellar structures. The striatum was not

investigated here, but the above-mentioned studies of Jog et

al. (1999) suggest its temporary involvement.

On the other hand, the orbitofrontal cortex (OFC) stores the

value of olfactory/taste related rewards (Rolls, 2000), possibly

learnt using its associative capabilities. OFC can thereby itself

be involved in reinforcement learning while the striatum is

involved in maintaining habits: rats with dorsolateral striatum
Fig. 11. Responses of basal ganglia neurons during early (left) and late (right)

task acquisition phases in a T-maze. Activation levels were measured when the

rat was at corresponding positions in the maze and high activation levels are

depicted dark. Arrows indicate the directions in which the rat may move. At the

beginning of learning, activity is strong if the rat is at the junction while at a late

stage, activity is then strong at the beginning and at the end of the task, but not

at the junction (drawn after Jog et al., 1999).
lesions which learn a conditioned lever-press for food, un-learn

it better than non-lesioned animals if the food is devalued (Yin,

Knowlton, & Balleine, 2004). The sensitivity to post-training

devaluation might here be attributed to associations between

stimulus properties that are learnt outside of the BG (Blundell,

Hall, & Killcross, 2003). Functionalities beyond the simple

motor primitive execution can also be found in the motor

cortex in area F6 which has a modulating influence on F5

(Rizzolatti & Luppino, 2001). In contrary, the striatum may not

be so easily controllable by (prefrontal) cortex (Ravel &

Richmond, 2005), as its quick response in the experiments of

Pasupathy & Miller (2005) suggests. Our model which

addresses the learning of motor primitives as in neurons of

F5, is therefore distinguished from habit formation in the basal

ganglia on the one hand, as well as from task selection and

higher functions in more frontal cortical regions on the other

hand.

In the model of Hikosaka et al. (2002) the cortex basal

ganglia loop and the cortex-cerebellar loop are both duplicated

to represent a sequence of motor movements in two ways—one

using a spatial coordinate system and another using a motor

coordinate system. The former learns fast, accurately and in

high awareness while the latter learns slowly, for speedy and

unconscious performance. This addresses a shift of learning

progress within each of the cortex, the basal ganglia and the

cerebellum, that may coincide with a shift between the basal

ganglia and the cortex, which we address.

4.4. Considerations about optimal reinforcement learning

One motivation for our research was to find a method that

the large state space ðf would not be needed. Our model makes

it obsolete, since the cortex model produces the action

sequence as another mapping from sensory input to motor

response. This would release the basal ganglia so that they can

learn other sequences, however, only after these have been

used during the initial training. The findings of Jog et al. (1999)

which showed that striatal neuronal activities increased at the

beginning and at the end of a learnt task suggest that the basal

ganglia pay attention to more complex sequences which are

composed of learnt sub-parts.

Another advantage could be that the cortex might be able to

store a sequence more efficiently than the basal ganglia. We

would suggest this from our robotic experiments where the

reinforcement training paradigm (which we associate with the

basal ganglia) requires a high-dimensional state space. This is

because of localist coding in the state space by which every

state is assigned one unit.

In order to adjust its strategy, the reinforcement network

would need feedback about the motor cortex’ progress. Then it

may become inactive in situations where the motor cortex’

behaviour parallels its action and the inactive neurons of the

state space would become available to learn another task. Such

a task can become more complex if the reinforcement network

makes use of the motor primitives that the cortex has already

acquired. It would then learn to select among these motor

primitives—a function attributed in the adult to motor area F6
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which has a modulatory influence on F5 neurons (Rizzolatti &

Luppino, 2001).

If the action-selection region has access to the goal value,

then setting the goal value can influence the model’s

behaviours. In a multi-modal model, the value might for

example be set by a language instruction or by new obstacles

which the robot faces during performance. Hence, the robot

would behave in a teleological (Dickinson, 1985) rather than a

mechanistic stimulus-response manner.

There exist other methods of circumventing that state space

a priori. One approach is to approximate the critic’s values as a

learnt function of favourably chosen inputs. In our example the

critic value c would be some function of input vectors ðp and ðF
which could even be reduced without loss of information to one

three-dimensional vector (x,y,f) of the perceived target

location in Cartesian coordinates x, y and the robot heading

angle f. (The mapping to the motor action ðm technically does

not need the state space, because the optimal motor action can

always be inferred if the critic value is available. A critic’s

value function approximation therefore already renders the

state space superfluous.) This approach can be prone to

convergence problems, as pointed out by Boyan & Moore

(1995), caused by small systematic errors in the approximating

function and a resulting false action strategy.

Other methods reduce the state space to a minimum rather

than avoiding it. The U Tree (McCallum, 1995), continuous U

Tree (Uther & Veloso, 1998) and porti-game (Moore &

Atkeson, 1995) algorithms translate a high-dimensional or

continuous sensory state space to a low-dimensional discrete

space. If the agent makes similar experiences in a large region of

the state space (i.e. a constant critic value and similar actions),

then this region is encouraged to be represented by just one state.

Even if these methods are applied to learn the desired

behaviour with reasonable effort, our generative and predictive

models remain applicable to copy and perform the input–

output relation. Whether a lot of resources can be saved is

probably problem dependent and would require an architecture

which is optimised for a particular purpose.

4.5. Modelling constraints and biological plausibility

Our implementation uses connectionist units with continu-

ous outputs which are updated in discrete time steps. The output

of one such unit may correspond to an average spike rate of an

underlying spiking neuron population or to the firing

probability, over a fixed time interval, of one spiking neuron.

For the generative model, discrete time steps are appropriate as

the model associates the location and angle with the motor

control at a specific time and does not rely on previous

decisions. For the predictive model, however, the development

of activations over time is learnt to match the real world

progress that is determined by the clock cycle. The speed of the

attractor activations across the hidden layer is intrinsically

encoded in the asymmetric components of the lateral weights

(Zhang, 1996). The speed could be regulated by scaling this

component, e.g. through an external input which arrives via

Sigma-Pi synapses, as in Stringer, Rolls, Trappenberg, and de
Araujo (2003), which is, however, not in the scope of our

model. We omitted a parameter which controls differential

neuron update and which could be used to adjust to different

time scales. Instead, the activations of our memory-less neurons

at the next time step depend only on their weighted input (which

excludes self-input since self-connections are set to zero).

The model achieves global competition via the predictive

weights using purely local learning rules without adaptive

global variables. More biologically detailed spike timing

dependent learning (STDP) rules cannot be resolved with

connectionist units. One might reason that STDP might be

suitable to calculate the difference between target- and

reconstruction activation values, which is required in the

learning terms, Eqs. (2, 3 and 5). Then, the spikes representing

the target value would have to arrive earlier and might trigger

postsynaptic spiking (positive learning sign), while the spikes

representing the reconstruction would have to arrive after the

postsynaptic spike (negative learning sign). A different

opportunity would be that different cortical layers might

represent different terms. Eq. (2) can be decomposed into a

Hebbian term ðx*ðr involving the original data and an anti-

Hebbian term Kðx 0*ðr involving the reconstructed data. The

related Boltzmann machine model (Ackley, Hinton, &

Sejnowski, 1985) separates Hebbian and anti-Hebbian learning

in time into its wake and sleep phases, respectively.

Our asymmetric model architecture assigns the motor cortex

to a hierarchically higher position than its sensory and motor

input/output areas. Since, layer 4 which receives forward

projections is absent in motor cortical areas (but not in

prefrontal cortex), one might consider them being laterally

related to each other and lateral to (or even hierarchically lower

than) other structures. The related Boltzmann machine would

account for this laterality between input/output and its hidden

units. Its recurrent relaxations furthermore make it better

suitable for pattern completion. However, this would come at a

cost of increased computation time, and its strict weight

symmetry would not allow to implement a forward model.

4.6. Relation to other models

Considering performance, we needed a model which

approximates an input–output relation: given sensory input ðp
from vision and ðF from an internal angle representation, we

need a mapping to the motor output vector ðm. This could be

solved by supervised learning, e.g. using the error back-

propagation algorithm (Rumelhart, Hinton, & Williams, 1986).

We used instead a biologically inspired, generative model

which does not distinguish input and output layers: ðp; ðF and ðm
and are all treated as the input which is to be generated from a

hidden layer code, ðr . This allows for two modes of operation:

(i) reconstruct one input component (e.g. ðm) from the others

(function approximation) or (ii) find a consistent joint

representation ððp; ðF; ðmÞ from a noisy multi-modal input ð ~p; ~F;
~mÞ which is possibly conflicting (cue combination).

A continuous attractor network can in simple cases solve

these without involving a hidden code ðr . The task of function

approximation would be referred to as pattern completion.
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But the application becomes more demanding, if there are no

direct correlations between the inputs. For example, from the

knowledge of the perceived target position ðp alone, one cannot

infer the motor action ðm, because the heading angle encoded in
ðF modulates the mapping. Direct weights between ðp and ðm
therefore, cannot perform the input–output mapping and a

hidden code ðr has to be introduced. An attractor network model

of choice involving hidden units is the Boltzmann machine

(Ackley et al., 1985). However, we chose a related variant

based on the Helmholtz machine, because the Boltzmann

machine does not allow for structured hierarchical information

processing as it happens on the several hierarchical levels of

the cortex.

A network for function approximation and cue combination

has been proposed by Deneve, Latham, and Pouget (2001) for

the simplified case that every input ðp, ðF and ðm is a Gaussian

hill of activation on a one-dimensional neural sheet. The

relaxation procedure within their attractor network solved each

task in an optimal way, since a relaxation procedure using an

attractor network has been shown to retrieve a stored activation

pattern such that its properties encode the data with maximum

likelihood (Deneve, Latham, & Pouget, 1999). An intuitive

reason for the virtues of a relaxation procedure is that if parts

of the network’s activation are in conflict with the overall

activation pattern, then the most optimal, consistent solution

will be found by relaxation of the activations into an attractor.

In the proposed network, however, weights were geometrically

determined. Training is difficult, because the hidden layer

code ðr is not given by the data (only pairs of ðp, ðF and ðm are

accessible).

We have previously proposed a model based on the self-

organising map (Kohonen, 2001) in which a hidden code is

learnt given multi-modal input (Wermter & Elshaw, 2003). It

reconstructs a missing input component based on the input

vector of the hidden unit which has been most activated by the

remaining inputs. This model can in principle generate

interactive motor sequences. However, some restrictions are

(i) the localist code of a winner-take-all network and (ii) a

missing relaxation procedure.

Stringer et al. (2003) avoid the use of hidden units. They use

Sigma-Pi connections of the state cells and the movement

selector cells into the motor cells and a temporal activity trace

learning rule to learn action sequences. Using abstract data,

their model produces motor sequences with arbitrary speed and

force.

Models on high level imitation and mirror neurons have also

already been presented. The ‘FARS’ model (Fagg & Arbib,

1998) details the functional involvement of areas AIP and F5 in

grasping. It highlights visually derived motor affordances by

which the object is represented at the level of the motor system

by features that are relevant for grasping it, such as size and

orientation. It was extended to learn the recognition of action

using the mirror system (Oztop & Arbib, 2002) of which a

forward model was proposed (Oztop et al., 2003). Demiris &

Hayes (2002) used the concept of the mirror neuron system to

develop an architecture for robot imitation. In their model, the

simulated imitating agent is given directly the coordinates of
the demonstrator, bypassing the need for a sophisticated visual

recognition system. A forward model predicts the outcome of

the output of a behaviour model in order to compare this to the

actual state of the demonstrator and to produce an error signal

which can be used to identify a particular behaviour. According

to the authors, robot imitation offers the opportunity for

learning through demonstration and so allows non-robot

programmers the chance to teach a robot.
5. Conclusion

We have set up a biologically realistic model of a motor

cortical area which can take over and predict actions proposed

to be learnt earlier via a reinforcement scheme in the basal

ganglia. All network connections are trained, only local

learning rules are used and the resulting connectivity structure

is topographic where lateral predictive weights are centre-

excitatory, surround-inhibitory. This work bridges the wide

gap between neuroscience and robotics and motivates the

development of the motor cortex per se as a generative and

predictive model, a model class central to the description of

sensory cortices.

Currently we are extending the framework to include

several actions and additional language input. We expect

mirror neuron properties to arise among hidden area neurons

which eventually will enable a robot to perform learnt actions

based on language instruction.
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