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Abstract—In this work, we present a neurocomputational
model for auditory-cue fear acquisition. Computational fear
conditioning has experienced a growing interest over the last
few years, on the one hand, because it is a robust and quick
learning paradigm that can contribute to the development of
more versatile robots, and on the other hand, because it can
help in the understanding of fear conditioning and dysfunctions
in animals. Fear learning involves sensory and motor aspects [1]
and it is essential for adaptive self-protective systems. We argue
that a deeper study of the mechanisms underlying fear circuits
in the brain will contribute not only to the development of safer
robots but eventually also to a better conceptual understanding
of neural fear processing in general. Towards the development
of a robotic adaptive self-protective system, we have designed a
neural model of fear conditioning based on LeDoux’s dual-route
hypothesis of fear [2] and also dopamine modulated Pavlovian
conditioning [3]. Our hybrid approach is capable of learning
the temporal relationship between auditory sensory cues and an
aversive or appetitive stimulus. The model was tested as a neural
network simulation but it was designed to be used with minor
modifications on a robotic platform.

I. INTRODUCTION

Pavlovian fear conditioning is a form of emotional learn-
ing in which a neutral or innocuous stimulus (conditioned
stimulus or CS) such as a sound or light, is paired with
an aversive stimulus (unconditioned stimulus or US) such as
an electric shock. Animals are evolutionarily hard-wired to
rapidly acquire, consolidate, and generalize fear memories.
After only a few trials, animals quickly learn to anticipate the
aversive US using the CS information and elicit behavioral
defense responses and associated autonomic and endocrine
adjustments [4].

The amygdala (AMG) plays a crucial role in affective
and self-protective systems. The AMG represents the affec-
tive/emotional valence of a situation, a “state value” necessary
for coordinating physiological, behavioral and cognitive re-
sponses. Furthermore, recent evidence suggests that the human
amygdala, in addition to its important role in cue fear con-
ditioning, contributes to many reward-based decision-making
tasks [5]. Understanding and modeling these mechanisms is
of great interest not only for the interpretation of neuropsy-
chological findings, but also for computational modeling and

building safer robot assistants [6], [7].
A detailed literature review reveals that the most meaningful

and closely related publications in recent years are based on
mathematical models of the cue-dependent fear condition-
ing dynamics of acquisition and extinction. Many of these
models are based on the dual-route hypothesis (cortical and
subcortical) proposed by LeDoux [2], [8]–[14], which explains
parallel processing of stimuli at different degrees and temporal
response improvements. Often, they use simplified binary
or abstract numerical inputs [3], [10], [12]–[15] neglecting
unforeseen sensory and temporal relationships that may be
relevant for fear learning dynamics.

An anatomically constrained model has been suggested
by Armony et al. [8] to investigate information processing
in the two afferent fear conditioning pathways indicated by
LeDoux [2]: One originating in the auditory cortex (cortical
pathway), the other in the auditory thalamus (subcortical
pathway). The model, however, has been revealed to have
several shortcomings [16] when considered as a standalone
model of fear circuitry. It also fails to deal with the temporal
association of stimuli.

A more comprehensive model for emotional learning in-
cluding acquisition, extinction, habituation and blocking was
presented by Balkenius and Morén [10]. The model focuses
on the interaction between the amygdala and the orbitofrontal
cortex (OFC), where the former serves as the locus for
acquisition and the latter for inhibition of emotional responses
as produced by the amygdala. However, since some modules
only consist of linear units there is a need to extend and refine
the proposed model for reasons of biological plausibility and
computational flexibility.

Most recent research [12], [13] has included models of
context fear conditioning. Vlachos et al. [12] presented a bio-
logically plausible spiking neural model of the basal amygdala
(BA) for fear memory encoding. Despite the detailed model of
the basal nucleus, sensory input pathways for cue and context
information as well as interaction with downstream structures
were neglected in this work. Krasne et al. [13] presented
a firing rate-coded model of three amygdala sub-nuclei. In
contrast to Vlachos’ work, Krasne’s research addresses fear
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conditioning in a more integrative manner, modeling not only
one amygdala’s input nucleus but also nuclei involved in the
expression of fear responses. Despite the completeness of this
model in terms of the broad dynamics captured such as fear
acquisition, consolidation, extinction, etc., they used an ab-
straction of sensory and contextual information. Furthermore,
no model of other areas involved in fear conditioning, such as
the thalamus, was included.

In general, there is a lack of research on amygdala modeling
with realistic sensory input taken from a realistic physical
environment. In one rare example, however, Mannella et al.
[15] addressed cue conditioning in a simulated robot ex-
periment. The model is able to reproduce and demonstrate,
with a simulated rat, experiments of first and second order
conditioning and devaluation. Alexander and Sporns [17] and
Zhou and Coggins [18] conducted research on prediction
learning and conditioning with real Khepera robots, but only
from a normative, rather than a neurocomputationally realistic,
viewpoint. These models consist of feed-forward networks
with a very abstract timing model, only coarsely mapped
to neurobiological circuits and do not capture as rich a
variety of dynamics as other works [12], [13], [15], but the
embodied approach makes them attractive and their relative
success encourages the development of more sophisticated and
biologically plausible embodied models.

Our paper presents a biologically motivated model of
auditory-cue fear conditioning. The model neurocomputation-
ally describes the known thalamic and auditory cortex routes
plus reward learning based on phasic dynamics of dopamine,
previously described by Lowe et al. [3]. We propose to
study fear conditioning taking into consideration bio-plausible
sensory pathways and interpretable real-world sensory input.
As a midterm goal we are aiming to develop a computational
robotic model able to process real sensory input to endow
robots with an adaptive method for self-protective action
selection. This could represent an important step towards more
biologically plausible computational models of fear process-
ing and allow testing on a humanoid robot demonstrator.
Applications of this learning mechanism may be used in
artificial self-protective systems to predict both appetitive and
aversive behavioral outcomes, or in the modulation of complex
behaviors such as autonomous battery recharging [19].

II. MODEL ARCHITECTURE AND LEARNING

The amygdala is a brain region in the medial temporal lobe
composed of diverse nuclei. Since the amygdala is not a single
brain structure or region it has historically been defined on the
basis of connection density, chemical signature and configura-
tion. An initial coarse division may consist of the basolateral
complex (BLA) and the central nucleus (CE) [4]. The BLA is
the main input structure in the amygdala and receives sensory
information from many cortical and subcortical regions. The
BLA consists of three nuclei: the lateral (LA), basolateral (BL)
and basomedial (BM) also known as accessory basal (AB).
Almost 80% of BLA neurons are glutamatergic cells (GLU)
having multiple projections to neighboring cells, amygdala
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Fig. 1. Main inputs to the amygdala and intranuclear pathways of the amyg-
dala involved in cue fear conditioning. MGv, ventral division or lemniscal
component of the medial geniculate body; MGm, medial division of the
medial geniculate body; LA, lateral nucleus; BL, basolateral nucleus; AB,
accessory basal nucleus; CeL, lateral division of the central nucleus; CeM,
medial division of the central nucleus; US, unconditioned stimulus. Adapted
from [1], [4], [20].

nuclei, and other brain structures. The remaining 20% are
GABAergic cells (GABA) of short axons regarded as local-
circuit neurons [1]. In contrast, the CE is recognized as the
main output component from the amygdala, modulating both
cortical and subcortical structures and controlling the selection
of passive and active fear reactions [20]. The CE mainly
GABAergic in nature can be divided into a lateral (CeL) and
a medial (CeM) part [1]. Many comprehensive reviews on the
structure, connectivity and influences of amygdaloid and fear
conditioning dynamics can be found, e.g. [1], [4], [21].

Although fear conditioning is ubiquitous to all sensory
modalities, most progress has been made on auditory-cue
fear conditioning, which is why we based our model on this
paradigm. The standard dual-route hypothesis suggested by
LeDoux [2] identifies the medial geniculate body (MGB) of
the thalamus as the subcortical auditory pathway to the amyg-
dala. Specifically, the medial division of the MGB (MGm)
and the posterior intralaminar nucleus (PIN) project to the
primary and association areas of the auditory cortex, and
also to the lateral nucleus of the amygdala. The MGm/PIN
complex is considered as an auditory and somatosensory relay
to the LA [22]. The MGm is highly multimodal responding
to auditory, tactile, thermal and nociceptive stimulation. With
respect to auditory input, MGm lacks tonotopic organization.
PIN is also multimodal. In contrast, the ventral division of the
MGB (MGv) specializes in auditory stimuli, it has a tonotopic
organization and it is identified as the main subcortical route
to the primary auditory cortex [22]. More precise information
about the auditory CS seems to indirectly reach the LA via
the primary auditory and the associative cortex [23]. It is
likely that this information includes fine frequency tuning,
abstraction of pitch and pattern discrimination, among other
possible functions [24]. The medial prefrontal cortex (mPFC)
has also important projections to the amygdala. Although the
mPFC projects to all amygdaloid nuclei, the connections to LA
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Fig. 2. Schematic illustration of stress-responsive projections between
NAc, mPFC and BLA that are involved in fear conditioning. NAc, nucleus
accumbens; mPFC, medial prefrontal cortex; VTA, ventral tegmental area;
BLA, basolateral complex of the amygdala; GLU, glutamatergic cells; GABA,
GABAergic cells; DA, dopaminergic cells. Adapted from [25].

seem to be the more important [1]. In turn the BA projects
back to the mPFC. Moreover, the mPFC plays a key role in
extinction of fear conditioning affecting ITCm cells blocking
the excitation of CeM neurons through the BA [1].

Dopamine dynamics (DA) are thought to be involved in
the coordination of different stress responses. Stress-induced
dopamine release allows animals to relocate attention, pri-
oritize perceptual processing and is involved in appropriate
action selection [25]. A broad body of research links stress-
responsive dopamine projections from the ventral tegmental
area (VTA) to the basolateral complex of the amygdala (BLA)
with fear conditioning [25], [26]. In turn glutamatergic pro-
jections from the amygdala to the nucleus accumbens (NAc)
and medial prefrontal cortex (mPFC) regulates dopamine stress
responses in Nac, mPFC and VTA. The amygdala also medi-
ates further autonomic, endocrine and behavioral responses to
emotionally significant stimuli [21]. Fig. 2 shows the interplay
between mPFC, NAc, VTA and BLA during stress-responsive
dopamine release.

We are aiming at developing a computational architecture
to endow humanoid robots with an adaptable self-protective
mechanism. At this stage, the overall architecture, shown
in Fig. 3, is intended to capture both phasic dynamics of
dopamine and input and output pathways underlying fear con-
ditioning learning. This hybrid architecture combines Hebbian
components (blue modules) for association, and a recurrent
component (green modules) for reward prediction. It was
designed to be portable to a real NAO robot [27] working
in a home-like environment, see Fig. 4.

In order to emulate auditory-cue fear conditioning exper-
iments, the model is fed with synthetic audio signals which
consist of single tones plus a very low amplitude (about 2.5%)
noise floor from measurements in our home lab, which are
sampled at 48 KHz by the NAO robot. We process the incom-
ing signal in frames of approx. 21 ms (1024 samples), which
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Fig. 3. System’s architecture overview, based on Armony et al. [8]
auditory fear conditioning model and Lowe et al. [3] dopamine modulated
Pavlovian conditioning. Black arrows represent fixed weight values. Blue
arrows represent weights updated using the Stent-Hebb rule [28]. Weights
values represented by green arrows are updated using the Hebbian learning
rule and an eligibility trace.

Fig. 4. Conceptual scenario for further testing and development.

corresponds to the physiological construction of receptive
fields [8]. In this way, the system response to a given input may
be interpreted as the time-averaged response of a cell to a tone
presented in this 21 ms window or time step. For each window,
we compute the spectral amplitude of the signal using a short-
time Fourier transform (STFT). The entire available frequency
range of 20 Hz to 20 KHz, which corresponds to the NAO’s
microphones’ characteristic, is divided into 24 intervals. Each
interval is represented by one neuron in an auditory input layer.
The neural activation corresponds to the sum of all spectral
amplitudes in the corresponding frequencies’ interval, and is
then normalized to [0, 1]. We implemented a simple signal
detector module that detects signal onset and ending based
on the root mean square (RMS) value of the incoming signal
and RMS value of the noise floor. This information is used to
generate the unconditioned stimulus (US) just for the desired
neutral conditioned stimulus (CS).

The auditory thalamus is modeled based on Armony et al.’s
model of the medial geniculate body (MGB), which is also
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Fig. 5. Neural network architecture overview. Based on an echo state network
(PFC), online learning algorithm for echo state network readout layer and
amygdala internal connections indicated with Epfc and Eamg , and single-
layer feed-forward neural networks. For simplicity only one connection per
layer in shown. Black lines represent fixed weight values.

supported by Weinberger [22]. The ventral division (MGv)
of the MGB with a tonotopic organization feeds the auditory
cortex module. The medial division (MGm) and the posterior
intralaminar nucleus (PIN) are merged in a single module,
which makes an initial association between CS and US and
then forwards its output to the amygdala’s basolateral complex
(BLA) and the auditory cortex modules.

The “auditory thalamus” (MGv and MGm/PIN), “auditory
cortex” (AC) and “basolateral complex” (BLA) modules are
based on the model described by Armony et al. [8]. Each
structure is modeled by a single-layer neural network and the
modules’ connectivity is done in a feed-forward manner, see
Fig. 5. The output of each of these modules is proportional
to the output of the sending layer and normalized through
both a squashing function and a winner-take-all algorithm that
serves to laterally inhibit the activation of less active or “loser”
neurons. From this point on we use f and g to denote a
linear squashing function that trims neural activation to the
interval [0, 1] and [−1, 1] respectively. For all equations, time
dependence (t) is omitted and it is just indicated when it is
different from the current time step. The activation of the
winning unit awin in the receiving module is computed as
follows:

awin = f

∑
j∈S

aj · wji

 , (1)

where S are all units in the sending layer(s) and wij is the
weight between the sending unit j and the current unit i.

TABLE I
SUMMARY OF PARAMETERS USED IN MGv, MGm/PIN, AC, BLA AND US

SIGNAL.

Variable name Value Description
ε 0.2 common learning rate value
wus 0.4 fixed weight value for US connections

µ for MGv 0.1 lateral inhibition in MGv module
µ for MGm/PIN 0.3 lateral inhibition in MGm/PIN module

µ for AC 0.6 lateral inhibition in AC module
µ for BLA 0.1 lateral inhibition BLA module
MGv size 10 number of units in module

MGm/PIN size 10 number of units in module
AC size 10 number of units in module

BLA size 10 number of units in module

Connection weights between modules are randomly initialized.
The activation for each unit i in the receiving module r is
calculated as follows:

ai = f

∑
j∈S

aj · wji − µr · awin

 , (2)

where µr is the strength of the lateral inhibition in module
r. Connection weights are updated after each cycle or epoch
using the Stent-Hebb rule [28], which prevents weights satu-
ration:

w
′

ji =

{
wji(t− 1) + ε · ai · aj , if aj > a

wji(t− 1), otherwise,
(3)

and

wji =
w

′

ji∑
j∈S

w
′

ji

, (4)

where a is the mean activation of the sending layer and ε is
the learning rate. Table I summarizes the parameters used for
the auditory thalamus, the auditory cortex and the basolateral
complex modules [29], which were determined with empirical
trials and based on Armony et al.’s [8] results.

The modules representing the “prefrontal cortex” (PFC),
“ventral tegmental area” (VTA) and amygdala’s “central nu-
cleus” (CE) are based on the model described by Lowe et
al. [3]. The interactions of these three modules capture the
basic functionality of biological reward prediction learning.
This part of the model is based on an echo state network
(ESN) approach [30], [31]. ESNs are three-layered recurrent
neural architectures that have demonstrated to be particularly
effective at processing temporal stimuli. Their main particu-
larity is that only the readout weights are updated, which in
this case are the weights connecting PFC units with a V TApfc

unit. PFC is the reservoir of our ESN. This reservoir is sparsely
connected with randomly generated weights. The reservoir has
to satisfy the so-called echo state property that guarantees
damping reverberations of the input signals, for details see
Jaeger’s report [31]. The input layer of our ESN corresponds
to the auditory cortex units, which are connected to the PFC



TABLE II
SUMMARY OF PARAMETERS USED IN PFC, VTA AND CE MODULES.

Variable name Value Description
Reservoir size 40 number of units in module

Reservoir connectivity 25% random weights wdr in [−1, 1]
Spectral radius 0.95 reservoir spectral radius

Input connectivity 25% random weights win in [0, 1]
κ 0.1 learning rate
η 0.075 learning rate

using fixed weights, randomly and sparsely generated. Table
II summarizes ESN parameters.

The V TApfc neuron corresponds to the readout layer of
the ESN. To improve biological plausibility Lowe et al. [3]
introduced two features in the use of ESN. First, they only
allow non-negative activation within the reservoir. Second,
they use a “phasic dynamics of dopamine” (DA) based online
learning rule to update the readout weights, see Lowe et al. [3]
for details. Weights of the ESN readout layer and amygdala’s
CE neuron are updated using the Hebbian learning rule and an
eligibility trace Epfc and Eamg respectively. Epfc and Eamg

are computed as follows:

Ek = max [incoming signal,Ω · Ek(t− 1)] , (5)

where k substitutes for pfc and amg, Ω (= 0.9) is a decay
constant. The PFC readout weights wpfci connecting the
reservoir unit i to the V TApfc unit and the weights wblai

connecting BLA units to the CE unit are updated as follows:

wpfci =



f (wpfci(t− 1)+

κ · V TAphas · Epfc(t− 1) · PFCi) ,

if V TAphas ≥ 0

f (wpfci(t− 1) + κ · V TAphas · PFCi) ,

if V TAphas < 0

(6)

wblai
=



f (wblai
(t− 1) + η · V TAphas · Eamg · CE) ,

if V TAphas ≥ 0

f (wblai
(t− 1) + η · V TAphas · Eamg) ,

if V TAphas < 0 and US = 0

(7)

PFCi is the current activation of reservoir unit i. V TAphas

is the output value of V TA module. CE is the output value of
the amygdala module. The current activation value of PFCi,
V TAphas and CE are computed as follows:

V TAphas = g (CE − V TApfc) , (8)

PFCi = tanh

∑
i,j

wdrij · PFCj(t− 1)

+
∑
ik

winik·ACoutk

)
, (9)

CE = f

(
US · wus +

∑
i

BLAi · wblai

)
. (10)

Eq. 9 shows the recursive nature of ESN. This property
provides a short-term memory that is used for updating es-
timates of the value of the stimulus. This spatial-temporal
relationship between input signals differs from the classical
temporal difference learning rule but the system as a whole
allows for temporal dynamics between stimuli to be captured.

III. EXPERIMENTAL RESULTS

For the experimental part the weights of Armony-based
modules (MGv, MGm/PIN, BLA and AC) are randomly gener-
ated with values ranging in [0, 1]. The weights connecting the
BLA units and the CE unit are set to 1 divided by the number
of BLA units. PFC (ESN) readout weights are randomly
initialized with values from [0, 1]. Although we try to process
sensory input within bio-plausible time windows, we do not
consider latencies in signal processing nor transmission. In-
stead, we only consider coincident convergence of subcortical
and cortical information to the BLA, which seems to be around
15 ms as reported by Johnson et al. [23]. This is translated
to the following dataflow in our current implementation: the
auditory input is first preprocessed by the filter bank, then
by the auditory thalamus followed by the auditory cortex.
Both modules (AC and MGm/PIN) feed simultaneously the
BLA module and an affective state is generated at the CE.
The amygdala output in conjunction with the auditory cortex
activation is then used to trigger a dopamine modulation in
the amygdala via the PFC and VTA modules.

The experimental part was divided into two phases. The first
phase, called “development”, allows the modules to define
initial receptive fields for the frequencies (system’s activation
to a determined frequency), facilitates conditioning and re-
duces transient effects - that may emerge due to initial random
initialization - during conditioning [8]. A number of randomly
generated tones not paired with the US was presented to
the Armony-based modules [8]. We added white noise to
the generated signals to emulate a real robot’s recordings.
The dopamine circuit modules (PFC and VTA) were switched
off. We repeated this procedure varying the frequency ranges,
number of frequencies and signal lengths not detecting major
changes. Based on Lowe et al.’s [16] findings we decided to
use 300 randomly generated tones ranging from 100 Hz to 12
KHz for 5 time steps (approx. 100 ms per tone). Fig. 6 shows
an example of a receptive field obtained after development. In
this phase the CE output is characterized by a weak activation
(< 3 · e−4) with similar activation profiles at all frequencies.
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Fig. 6. Amygdala’s (CE) receptive fields after development phase, i.e. no
frequency has yet been paired with any US signal. The figure shows the CE
activation after presenting single tones in the range [20, 12,000] Hz in a 20
Hz interval.

In the second phase, termed “conditioning”, we selected
an auditory input (CS) of 6 KHz (one eighth of the sam-
pling rate), which was then paired with a binary US signal.
Conditioning lasted 300 trials of 4 time steps each. CS and
US were presented respectively at trial 75, 150, 225, and
300 and the US was delayed in two time steps. For the
remaining trials a randomly generated tone without US signal
was used. An example of receptive fields is presented in Fig.
7, where an enhancement of the system’s response to the
conditioned and neighboring frequencies can be seen. Similar
results were observed in animal experiments, what is known
as stimulus generalization [32], [33]. Stimulus generalization
has been interpreted as crucial for survival since it can elicit
fast defensive responses under ambiguous sensory stimulation
[34]. We observed that the system’s response is higher for
frequencies in the range [5100, 5500] Hz than for the CS
frequency. This phenomenon is due to resolution lost when
converting spectral intensity to neural activation. Since 6 KHz
divides two intervals the spectral magnitude contributes to the
activation of two neurons, i.e. intervals [5000, 6000] Hz and
[6000, 7000] Hz respectively. This sort of ambiguous activation
is encountered only for frequencies that divide two intervals.
We believe that using a different discretization procedure, such
as a gammatone filter along with a greater number of intervals,
may help to address this issue in future implementations.

Fig. 8 shows the system’s receptive fields when both the
CS and US signals are presented. The CE activation is a
combination of both the direct influence of the US signal
(40%) and the dynamic magnification of the BLA response.

Fig. 9 shows the temporal changes of the system activation
after conditioning. The maximal system activation is reached
when both the CS and the US are presented at the same time.
When only the CS is presented, the system’s response is the
result of the combination of the receptive field and the VTA
modulation and a weak but consistent anticipatory system
response is obtained, which is around 10% of the maximal
possible activation. This output could easily be used to trigger
a conditioned behavior.
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Fig. 7. Amygdala’s (CE) receptive fields after conditioning phase, without
US signal (6 KHz). Consistently with animal experiments [32], [33], amygdala
activation decreases inversely with the distance to the CS (signal paired with
the US). The figure shows the CE activation after presenting single tones in
the range [20, 12,000] Hz in a 20 Hz interval.
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Fig. 8. Amygdala’s (CE) receptive fields after conditioning phase, with US
signal. The figure shows the CE activation after presenting single tones in the
range [20, 12,000] Hz in a 20 Hz interval.
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Fig. 9. Amygdala (CE) activation profile after conditioning when presenting
no signal (first and last 2 time steps), CS (6 time steps) and US (2 time steps).
40% of total activation corresponds to a direct contribution of US signal. The
activation related to reward prediction before and after US signal is about 0.1.



The feed-forward nature of the amygdala module allows
the system to trigger a conditioned response independent of
the US delay. We also observed that the number of trials
does not have a major impact on the system activation. As
few as one CS paired with the US and 200 trials suffice
for conditioning, but a greater number of positive examples
improve the overall response. The quick acquisition of fear
memories is consistent with animal and human studies, where
few trials account for a wider stimulus generalization [34].
Animal studies also support the fact that a greater number
of trials increase stimulus discrimination, which improves
inversely with the distance to the CS [32], [33].

IV. CONCLUSION

A reservoir system approach for auditory-cue fear con-
ditioning was presented. The hybrid architecture is able to
quickly associate a CS with a US and to perform frequency
discrimination and long-lasting fear memories. The current
implementation can support acquisition reliably and it is
consistent with animal and human studies in terms of stimulus
generalization and discrimination [32]–[34]. Other related dy-
namics are still under development. The weak but consistent
anticipatory response after conditioning can be used after
amplification for triggering conditioned behaviors.

A difference between our implementation and Lowe et al.’s
implementation [3] is the origin of the CS signal. Lowe et
al.’s models use abstract CS signals that are connected directly
to both the PFC and to the CE modules. Instead, we fed
the PFC module with the output generated by the auditory
cortex module and the CE with the output generated by the
BLA module. The US signal is connected to the MGm/PIN,
BLA and CE modules [1], [4]. Another difference to most
models on fear conditioning, as explained in the introduction,
is the auditory input dimensionality. Since we considered noisy
input signals and a preprocessing layer, the number of active
units and the amplitude of the activation vary between trials,
which represent an important step towards more bio-plausible
computational models on fear conditioning. Our model does
not model detailed temporal contingencies and only convergent
cortical and subcortical signals are considered.

One of the limitations of the system is the simple mod-
ulation made by the PFC module through the VTA. This
pathway can be used to support not only acquisition, but also
inhibition of ambiguous responses like that observed in Fig. 7,
which originates when converting spectral amplitude to neural
activation. The single output of the system limits the possible
conditioned behavior that the model may trigger in a real-
world scenario.

As future work, a biologically constrained preprocessing
of the auditory signal is planned, i.e. incorporating different
degree of processing and latencies for subcortical and cortical
areas. An appropriate filter bank such as a gammatone filter
may contribute positively to improve frequency discrimination
and to develop a more biologically plausible thalamus and
auditory cortex module. We believe that keeping a coarse
division of the amygdala into two sub-modules may facilitate

the use of a modulating signal coming from the PFC module.
In addition, an improved amygdala model is required. The
recurrent nature of the main input nuclei in the amygdala [23]
encourages us to explore a reservoir approach for the future
implementation of the BLA module. As we are aiming to
develop an embodied model of auditory-cue fear conditioning
a CE module with more output units may be necessary to
encode a variety of different conditioned behaviors.

The successful implementation of auditory-cue fear condi-
tioning motivates us to continue improving the model to have a
fully embodied fear conditioning model on a humanoid robot,
which may serve not only to improve robot assistance but also
to contribute to a better understanding of fear circuits.
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