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1. Abstract

Classical fear conditioning has experienced a
growing interest over the last decade. Fear
learning mechanisms are a simple and robust
learning paradigm that involves sensory and
motor areas. We believe that a deeper study of
these mechanisms will contribute not only to a
better understanding of fear conditioning but
also to the development of future robot genera-
tions.

2. System Overview
Here, we present a biologically motivated
model of auditory cue conditioning. The model
includes the known thalamic and auditory cor-
tex routes plus reward learning based on phasic
dynamics of dopamine.
We aim to develop a biologically plausible ar-
chitecture able to run on a real humanoid robot.
Our architecture is based on a reward predic-
tion error model presented by Lowe, et al. 2009
[3]. We included three bio-plausible pathways
to the amygdala, including the auditory tha-
lamus, auditory cortex and prefrontal cortex
(PFC).
Applications of this learning mechanism may
be used in artificial self-protective systems, to
predict both appetitive and aversive behavioral
outcomes.
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3. Methods

We developed a neural architecture for reward
prediction learning. This architecture processes
analog auditory input (single tones) in a time-
averaged manner. A tone is selected (CS) and
paired with an US signal. Light blue mod-
ules are layers of a feedforward neural network
based on Armony’s model [1]. The PFC mod-
ule is modeled as the dynamical reservoir of an
“echo state network” (ESN). VTApfc is the readout
layer of the ESN. Epfc and Eamg are connection
weights that are modified in real time using a
Hebbian learning rule and an eligibility trace,
based on Lowe’s model [3].
Light blue modules activation use both a
squashing function (ramp [0, 1]) and a winner-
take-all algorithm. The winner unit inhibits lat-
erally “loser” units.
Weights are updated using the Hebb-Stent rule
[1]. Weight updates are computed as follows
and then normalized:

W
′

ji =

{
Wji + εaiaj , aj > a
Wji , otherwise

Light green modules use a squashing function
(ramp [0, 1], denoted as f ), except VTAphas that
uses a ramp [−1, 1] denoted as g. Internal units in
the PFC are updated as described in [2], but only
allowing activation values between [0, 1].

V TAphas = g(CE − V TApfc)

Epfc and Eamg are computed as follows:

Ek = max(incoming signal,ΩEk(t− 1))

The ESN readout weight updates Wpfc and Wamg

is done as follows. In both cases the upper equa-
tion applies when V TAphas <= 0

Wpfci =

{
f(Wpfci (t− 1) + κV TAphasPFCi)
f(Wpfci (t− 1) + κV TAphasPFCiEpfc)

Wamg =

{
f(Wamg(t− 1) + ηV TAphasEamg(US == 0))
f(Wamg(t− 1) + ηV TAphasEamgCE)

Decay constant Ω = 0.9, learning rate η = 0.075
and κ = 0.1 For all equations time dependence
“(t)” was omitted and it is just indicated when is
different from the current time step.

4. Experimental Results

The figure shows the avg. output of different
modules in 20 ms time windows [1]. From the
top: the blue curve represents the analog input
signal modulated in amplitude (for clarity a sig-
nal of lower frequency is shown). 2nd row shows
the neuron activation sensitive to the given fre-
quency. 3rd row shows the US signal. 4th avg.
output of the BLA. 5th OFC output. 6th VTAphas
output. Last in yellow the response of the CE
module.

After the conditioning phase the system was able
to trigger (CE output) a reserved anticipatory re-
sponse. The response strengthens when the US
is presented. The architecture is able to discrim-
inate between different frequencies. However,
we observed an undesired low activation for fre-
quencies close to the CS frequency, which van-
ishes for distal frequencies (approx. 1 octave
away).

5. Conclusion
One of the limitation of the system is the limited anticipatory response of the system. We believe
that a larger readout (VTA module) may play a key role improving the model in that respect. Im-
provements in the amygdaloid complex module are also required.

As part of future work, we would like to improve the implementation of all different modules,
moving towards a more biological plausible implementation of them. Besides we would like to
improve the architecture to process more complex auditory signals such as spoken words. We are
thinking of including coarse visual input to finally test the architecture on a real humanoid robot.
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