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Abstract. In this paper we investigate and develop a real-world rein-
forcement learning approach to autonomously recharge a humanoid Nao
robot [1]. Using a supervised reinforcement learning approach, combined
with a Gaussian distributed states activation, we are able to teach the
robot to navigate towards a docking station, and thus extend the dura-
tion of autonomy of the Nao by recharging. The control concept is based
on visual information provided by naomarks and six basic actions. It
was developed and tested using a real Nao robot within a home environ-
ment scenario. No simulation was involved. This approach promises to
be a robust way of implementing real-world reinforcement learning, has
only few model assumptions and offers faster learning than conventional
Q-learning or SARSA.
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1 Introduction

Reinforcement learning (RL) is a biologically supported learning paradigm [13,
14, 3], which allows an agent to learn through experience acquired by interaction
with its environment. Reinforcement learning neural network architectures have
an input layer, which represents the agent’s current state, and an output layer,
which represents the chosen action given a certain input.

Reinforcement learning algorithms usually begin with the agent’s random
initialization followed by many randomly executed actions until the agent even-
tually reaches the goal. Following a few successful trials the agent starts to learn
action-state pairs based on its acquired knowledge. The learning is carried out
using positive and negative feedback during the interaction with the environ-
ment in a trial and error fashion. In contrast with supervised and unsupervised
learning, reinforcement learning does not use feedback for intermediate steps,
but rather a reward (or punishment) is given only after a learning trial has been
finished. The reward is a scalar and indicates whether the result was right or
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wrong (binary) or how right or wrong it was (real value). The limited feed-
back characteristics of this learning approach make it a relatively slow learning
mechanism, but attractive due to its potential to learn action sequences.

In the literature, reinforcement learning is usually used within simulated
environments or abstract problems [15, 5, 11]. Those kinds of problems require
a model of the agent-environment dynamics, which it is not always available or
easy to infer. Moreover, a number of assumptions, which are not always realistic,
have to be made, e.g. action-state transition model, design of reward criterion,
magnitude and kind of noise if any, etc.

On the other hand, real-world reinforcement learning approaches are scarce
[2, 6, 7], mostly, because RL is expensive in data or learning steps and the
state space tends to be large. Moreover, real-world problems present additional
challenges, such as safety considerations, real time action execution, changing
sensors, actuators and environmental conditions, among many others.

Several techniques to improve real-world learning capabilities of RL algo-
rithms exist. Dense reward functions [2] provide performance information in in-
termediate steps to the agent. Another frequently used technique is manual state
space reduction [2, 7], which is a very time consuming task. Other approaches
propose modification and exploitation of the agent’s properties [6], which is
not always possible. Batch reinforcement learning algorithms [7] use informa-
tion from past state transitions, instead of only the last transition, to calculate
the prediction error function; this is a powerful approach but a computationally
demanding technique. A final example of these techniques is supervised reinforce-
ment learning algorithms [2]. The supervision consists of human-guided action
sequences during initial learning stages.

The proven value of RL techniques for navigation and localization tasks [10,
2] motivates us to develop a RL approach to navigate autonomously into a
docking station used for recharging. This approach makes use of a supervised
RL algorithm and a Gaussian distributed state activation that allows real-world
RL. Our approach proves to work with a reduced number of training examples,
and is robust and easy to incorporate into conventional RL techniques such as
SARSA.

2 Problem Overview

There are a number of research approaches studying domestic applications of
humanoid robots, in particular using the Nao robot [9, 8]. One of the Nao’s
limitations for this kind of environment is due to its energetic autonomy, which
typically does not surpass 45 min. This motivates the development of strategies
to increase the robot’s operational time minimizing human intervention. In this
work we develop a real-world reinforcement learning based on SARSA learn-
ing, see section 3, applied to an autonomous recharging behavior. This work is
validated using a real Nao robot inside a home-like environment.

Several docking station designs and/or recharging poses are possible. The
proposed solution is intended to increase the energetic capabilities of the Nao
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without major interventions on the robot’s hardware or affecting its mobility or
sensory capabilities. Despite the challenge to maneuver the robot backwards, we
chose a partial backward docking. This offers advantages such as easy mounting
on the Nao, it does not limit the robot mobility, nor obstructs any sensor, nor
requires long cables going to the robot extremities and allows a quick deployment
after the recharging has finished or if the robot is asked to do some urgent task.

The prototype built to develop the proposed autonomous recharging is shown
in figure 1(a). White arrows indicate two metallic contacts for the recharging,
and gray arrows indicate three landmarks (naomarks)1 used for navigation. The
big landmark is used when the robot is more than 40 cm away from the charg-
ing station, while the two smaller landmarks are used for an accurate docking
behavior.

(a) Charging station (b) Nao robot with electrical
contacts

Fig. 1. (a) White big arrows indicate the electrical contacts placed on the docking
station and gray arrows indicate the landmarks position. (b) Robot’s electrical connec-
tions.

The autonomous recharging was split into four phases. During the first phase
a search and approach hard-coded algorithm searches for the charging station
via a head scan followed by a robot rotation. The robot estimates the charg-
ing station’s relative position based on geometrical properties of landmarks and

1 2-dimensional landmark provided by Aldebaran-Robotics
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moves towards the charging station. This approach places the robot approxi-
mately 40 cm away from the landmarks, see figure 2(a). In the second phase
the robot re-estimates its position and places itself approximately parallel to the
wall as shown in figure 2(b).

The third phase uses the reinforcement learning (SARSA) algorithm to nav-
igate the robot backwards very close to the electric contacts as presented in
figure 2(c).2 After reaching the final rewarded position, the fourth and final
phase starts. A hard-coded algorithm moves the robot to a crouch pose, see
figure 2(d), in which the motors are deactivated and the recharging starts.

(a) approach (b) alignment (c) docking (d) crouch pose

Fig. 2. Top view of the autonomous robot behavior in its four different phases (ap-
proaching, alignment, docking and recharging).

3 Network Architecture and Learning

We use a fully connected two layer neural network, see figure 3. The input layer
(1815 neurons) represents the robot’s relative distance and orientation to the
landmarks. The output layer (6 neurons) represents the actions that can be
performed: move forward and move backward 2.5 cm, turn left or right 9◦ and
move sideward to the left or right 2.5 cm. These values were adjusted empirically
as a trade-off between speed and accuracy.

As mentioned in section 2, the robot starts to execute the SARSA algorithm
approx. parallel to the wall and 40 cm away from the landmark.3 During docking
the minimal measured distance of the robot’s camera to the landmark is approx.
13 cm, which corresponds to the robot’s shoulder size plus a small safety distance.
The state space is formed by the combination of three variables. These are the
angular sizes of the two small naomarks and the yaw (pan) head angle. They
represent the robot’s relative distance and orientation, respectively.

2 In this docking phase, Nao’s gaze direction is oriented towards the landmarks
3 Distance measured from the landmark to the robot’s camera
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Those three values are discretized as follows: The angular size of each land-
mark within the visual field is discretized into 10 values for each landmark.
These values represent distances from [13, 40] cm in intervals of 2.7 cm. We add
2 values to indicate the absence of the corresponding landmark. This leads to
a total of 11 values per landmark. The third variable is the head’s pan angle.
An internal routine permanently turns the robot’s head to keep the interesting
landmark centered in the visual field. The head movements are limited to [70◦,
120◦[ and the values are discretized with intervals of 3.3◦ yielding 15 new values.
Hence, the total number of used states is obtained by the combination of all the
values, i.e. 11 ∗ 11 ∗ 15 = 1815.

  

states s
input layer (1815 neurons)

action a
output layer
(6 neurons)

action
weightsW kl

Fig. 3. Neural network schematic overview. An example of connections in the used
neural network.

The learning algorithm is based on SARSA [13, 14] and summarized as fol-
lows.

For each trial the robot is placed at an initial random position within the
detection area. It permanently turns its head towards the landmarks. The land-
marks sizes and the head pan angle are used to compute the robot internal state.
Here, instead of using a single state activation of SARSA, where only a single
input neuron has maximal activation (Si = 1) at the time, we use a Gaussian
distributed activation of states [4], which is centered in the current robot internal
state (“SARSA active state”). The Gaussian is normalized, i.e. the sum over the
state space activations is 1.

Sj =
1

σ3(2π)2/3
· e

−
(xj − µx)2 + (yj − µy)2 + (zj − µz)

2

2σ2
(1)

We use σ = 0.85, which effectively “blurs” the activation around the “SARSA
active state”. In this way generalization to states that have not been visited
directly is possible.

µx represents the current size value for “landmark 1”, µy represents the
current size value for “landmark 2” and µz represents the current value for
the head yaw angle. The variables xj , yj and zj take all the possible values of
the respective dimension, i.e. size “landmark 1 ”, size “landmark 2 ” and head’s
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pan angle, respectively. In this way a normalized state activation is computed
centered around (µx, µy, µz) and extend to the entire state space.

One of the motivations of having a Gaussian state activation is that states
closer to the current internal state are more likely to generate the same action
than farther states. Using this idea, we can extend and spread what we know
about a state over larger regions of the state space.

Poor sampling from the state space during training will lead to poor gener-
alization. This can be compensated using a representative training example set
generated by tele-operation, what is termed supervised reinforcement learning
[2]. A representative training example set should consist not only of the most
frequent trajectories but it should cover also less frequently visited regions of the
state space. A practical way to build a representative training example set is in
an incremental fashion, i.e. generate a training set, train the network and test
the output placing the robot in a random position (ideally not contained in the
training examples). If the result is unsatisfactory then generate a few additional
training examples containing this troubled case and re-train the network. These
steps should be repeated until the results are satisfactory.

With the input from equation (1), the net activation of action unit i is com-
puted as:

hi =
∑
l

WilSl (2)

Wij is the connection weight between action i and state l. Connection weights
are initially set to zero. Next, we used a softmax-based stochastic action selection:

Pai=1 =
eβhi∑
k e

βhk
(3)

β controls how deterministic the action selection is, in other words the degree
of exploration of new solutions. Large β implies a more deterministic action
selection or a greedy policy. Small β encourages the exploration of new solutions.
We use β = 70 to prefer new routes. Based on the activation state vector (Sl)
and on the current selected action (ak), the value Q(s,a) is computed:

Q(s,a) =
∑
k,l

Wklaksl (4)

A binary reward value r is used. If the robot reaches the desired position it
is given r = 1, zero if it does not. The prediction error based on the current and
previous Q(s,a) value is given by:

δ = (1 − r)γQ(s′,a′) + r −Q(s,a) (5)

The time-discount factor γ controls the importance of proximal rewards
against distal rewards. Small values are used to prioritize proximal rewards.
On the contrary, values close to one are used to consider equally all rewards. We
use γ = 0.65. The weights are updated using a δ-modulated Hebbian rule with
learning rate ε = 0.5:

∆Wij = εδaiSj (6)
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4 Supervised Reinforcement Learning and Experimental
Results

In real-world scenarios, the random exploration of the state space, common in
reinforcement learning, is prohibitive for several reasons such as real time ac-
tion execution, safety conditions, changing sensors, actuators and environmental
conditions, among many others.

In order to make the docking task feasible in a real-world RL approach, we
skip the initial trial and error learning as presented in [2]. We tele-operate the
robot from several random positions to the goal position saving the action state
vectors and reward value. This training set with non-optimal routes is used for
offline learning. Specifically 50 training examples with an average of 20 action
steps were recorded. Then, using this training set, 300 trials were computed.
Within each trial, the SARSA learning algorithm was performed as described
in equations (1)-(6), however in equation (3) the selected action was given by
the tele-operation data. We refer to this procedure as supervised RL. The state
activation was tested for three cases: using conventional single state activation,
using Gaussian distributed state activation and using a truncated Gaussian state
activation. The truncated Gaussian state activation is obtained by limiting the
non-zero values of x, y and z to a neighborhood of 1 state radius around µx,
µy, and µz respectively and then normalized, in other words apply the Gaussian
distribution to a neighborhood of one state radius around the “SARSA active
state” instead of applying the activation over the entire state space.

We compare results obtained with the weight for each case after 300 trials.
After the training phase using single states activation, the robot is able to reach
the goal imitating the tele-operated routes. However, the robot’s actions turn
random in the states that have not yet being visited. In contrast, after training
with a Gaussian distributed state activation the robot is able to dock successfully
from almost every starting point, even in those cases where the landmarks are
not detected in one step. This provides the Gaussian state activation with a
clear advantage in terms of generalization. Thus faster learning than in case
of SARSA or Q-learning is obtained. For the truncated Gaussian activation
we observe slightly better results than using single state activation. A partial
Gaussian activation may be useful for instance when the states are very different
to each other and thus different actions are required.

In table 1, we compare the performance of the three methods starting from
ten different positions. We present the number the steps executed in each trial
and the corresponding stopping condition. Single stands for SARSA state acti-
vation. Truncated stands for Gaussian state activation limited to a neighborhood
of one state radius around SARSA active state. Gaussian stands for Gaussian
distributed state activation. We consider as Success, when the robot reaches
successfully the desired goal position; as False Pos. (false positive) when the
robot’s measurement indicates that it is in the goal position but is not touching
the metallic contacts. Blind indicates when the robot hadn’t seen the landmarks
for three or more consecutive actions. Collision indicates that the robot was



8 Reinforcement Learning for Autonomous Humanoid Robot Docking

crashing against the docking station. Under a detected Blind or collision event
the respective trial was aborted.

Table 1. Results of the three tested methods for ten different trajectories.

Single Truncated Gaussian

Starting
position

Stop
condition

Step Nr. Stop
condition

Step Nr. Stop
condition

Step Nr.

1 Success 15 False Pos. 7 Success 9

2 False Pos. 5 Success 9 Success 17

3 Success 28 Success 29 Success 10

4 Success 20 Success 33 Success 13

5 Blind 17 Blind 7 Success 22

6 Blind 17 Blind 17 Success 32

7 Success 32 Success 48 Collision 49

8 Success 33 Success 23 False Pos. 37

9 Collision 154 Success 9 Success 24

10 Success 15 Success 14 Success 27

Table 2 summarizes the obtained results. We present the average number
of steps needed to reach the goal after training. The learned action-state pairs
indicate the percentage of network weights that differ from their initialization
values.

Table 2. Summary of ten trials for the three tested methods.

State
activation

Action-state
pairs learned (%)

Nr. of
success

Nr. false
positive

Nr.
aborted

Avg. nr. steps
on success

Std.
deviation

Single 4 6 1 3 23.8 8.23

Truncated 34 5 3 2 23.6 14.3

Gaussian 100 8 1 1 19.3 8.35

Examples of the obtained receptive fields (RFs) after 300 trials are presented
in figure 4. The goal position is shown in the upper left corner of each pic-
ture. White pixels represent unlearned action-state pairs. Darker gray represent
a stronger action-state binding and thus the action is more likely to be selected
when the robot is in this state. The eight different pictures for each case corre-
spond to the different action-state pairs for particular head angles.
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(a) Sample of receptive fields of “Move to the Left” after 300 trials with single state
activation

(b) Sample of receptive fields of “Move to the Left” after 300 trials with Gaussian
states activation restricted to one states radius

(c) Sample of receptive fields of “Move to the Left” after 300 trials with Gaussian
states activation, σ = 0.85 without cutoff

Fig. 4. Receptive fields (RFs) of one action unit (Move to the Left) after 300 trials.
Dark color represents the weight strength. From left to right the RFs for 8 of the 15
possible head rotations are presented.

5 Conclusions

Motivated by the limited energetic capabilities of the Nao robot and our need
for studying humanoid robots within home environments, we developed an au-
tonomous navigation procedure for recharging the Nao, which does not require
human assistance. Autonomous docking for a Nao robot was achieved for a real
home like environment. Initial training examples, together with a Gaussian dis-
tributed states activation made real-world learning successful.

The use of appropriate training examples proved to be a key factor for real-
world learning scenarios, reducing considerably the required learning steps from
several thousand to a few hundred. Additionally, Gaussian distributed states ac-
tivation demonstrated to be useful for generalization and eliciting a state space
reduction effect. The use of these techniques is straightforward to SARSA learn-
ing. Promising results were presented, which suggest further opportunities in
real-world or simulated scenarios.

We see at least two possible extensions of Gaussian distributed states acti-
vation. We believe that a conservative version, extending only to a small neigh-
borhood called truncated in section 4, could help to increase learning speed even
without tele-operated examples. Alternatively, the use of a memory of success-
ful action sequences may be of great utility in other applications. This memory
could be generated independently by tele-operation or fully automatic. Then
these examples can be used for automatic offline training, while the robot is
executing less demanding tasks.
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During the experimental phase, we noticed that 2-dimensional landmarks
can be detected only from within a small angle range, i.e. when the robot sees
them without much distortion, and detection is very noise susceptible. For future
work a docking procedure using a 3-dimensional landmark is under development.
Additionally, forward, backward and turn movements will be preferred, because
of the limited performance of sideward movements due to slippage of the Nao.

To obtain a more robust solution using this approach, we suggest adding a
final module after the reinforcement learning module. The objective of this mod-
ule will be to check sensor values, including sensors not considered in the current
implemented, to determine whether the robot is in a false positive position. In
this case, corrective actions could be learnt.
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