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Abstract. We propose a novel biologically inspired framework for the
recognition of human full-body actions. First, we extract body pose and
motion features from depth map sequences. We then cluster pose-motion
cues with a two-stream hierarchical architecture based on growing neu-
ral gas (GNG). Multi-cue trajectories are finally combined to provide
prototypical action dynamics in the joint feature space. We extend the
unsupervised GNG with two labelling functions for classifying clustered
trajectories. Noisy samples are automatically detected and removed from
the training and the testing set. Experiments on a set of 10 human actions
show that the use of multi-cue learning leads to substantially increased
recognition accuracy over the single-cue approach and the learning of
joint pose-motion vectors.
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1 Introduction

Recently, there has been a significant increase of research on ambient intelligence
for the recognition of human activity in indoor environments [1]. In this context,
the classification of human actions has proven to be a challenging task to accom-
plish with an artificial system, where the prompt recognition of potentially risky
situations can represent a key issue. In the last four years, the prominent use of
low-cost depth sensing devices such as the Kinect sensor led to a great number
of vision-based applications using depth information instead of, or in combina-
tion with, color [2]. These methods generally extract and process motion from
depth map sequences in terms of spatiotemporal patterns. Despite the reduced
computational cost of processing depth maps instead of RGB pixel matrices, the
robust recognition of articulated human actions remains an enticing milestone,
also for machine learning and neural network-based approaches [3,4, 11].

A promising scheme to tackle such a demanding task is the application of bi-
ological principles derived from the human visual system and its outperforming
ability to process visual information. Studies in neurophysiology suggest a highly
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flexible and adaptive biological system for processing visual cues at multiple lev-
els for motion and action perception [5]. In fact, computational implementations
of simplified biological models have shown motivating results on the recognition
of dynamic pose-motion patterns [6]. In the biological visual system, dynamic
scenes are analyzed in parallel by two separate channels [5]. The ventral channel
processes shape features while the dorsal channel recognizes location and mo-
tion properties in terms of optic-flow patterns. Both channels are composed by
hierarchies that extrapolate visual features with increasing complexity of repre-
sentation. Specific areas of the visual system are composed of topographically
arranged structures that organize according to the distribution of the inputs [13].
Input-driven self-organization allows to learn representations with an unsuper-
vised scheme by adaptively obtaining the feature subspace. Under this assump-
tion, the use of self-organizing maps (SOM) [7] has shown to be a plausible
and efficient model for clustering visual patterns in terms of multi-dimensional
flow vectors. With the use of extended models of hierarchical self-organization it
is possible to obtain progressively generalized representations of sensory inputs
and learn inherent spatiotemporal dependencies. While depth data-driven tech-
niques currently represent a well-established approach for action recognition, the
combination of the above-mentioned bio-inspired approach with this emerging
sensory trend has not yet extensively developed.

In this work, we propose a novel learning framework for recognizing human
full-body actor-independent actions. We first extract pose and motion features
from depth map video sequences and then cluster actions in terms of prototypical
pose-motion trajectories. Multi-cue samples from matching frames are processed
separately by a two-stream hierarchical architecture based on growing neural gas
(GNG) [8]. The GNG is an unsupervised incremental clustering algorithm ex-
tended from the SOM and the neural gas (NG) [9], able to dynamically change
its topological structure to better represent the input space. Clustered trajec-
tories from the parallel streams are combined to provide joint action dynamics.
We process the samples under the assumption that action recognition is selective
for temporal order [5]. Therefore, positive recognition of an action occurs only
when trajectory samples are activated in the correct temporal order. In order
to assign labels to clustered trajectories, we extend the GNG with two offline
labelling functions. Noisy samples are automatically detected and removed from
the training and the testing set to increase recognition accuracy. We present and
discuss experimental results on a data set of 10 articulated actions.

2 Pose-Motion Estimation

The first step in the proposed framework constitutes the extraction of human
body features from the visual scene. The use of skeleton model-based techniques
for tracking action features in terms of a set of joints and limbs has shown good
results, especially for approaches using depth maps [4]. On the other hand, joints
are often subject to occlusion during the execution of actions. This may lead to
significantly decreased reliability of estimated joints and subsequent tracking
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Fig. 1. Full-body representation for pose-motion extraction. We estimate three cen-
troids C (green), C; (yellow) and C; (blue) for upper, middle and lower body respec-
tively. We compute the segment slopes (0* and Hl) to describe the posture with the
overall orientations of the upper and lower body.

inaccuracies. In our approach, we estimate spatiotemporal properties for rep-
resenting actor-independent actions based on the estimation of body centroids
that describe pose-motion features. This technique extrapolates significant action
characteristics while maintaining a low-dimensional feature space and increas-
ing tracking robustness for situations of partial occlusions. In [11], we proposed
a simpler model to track a spatially extended body with two centroids and a
global body orientation. The centroids were estimated as the centers of mass
that follow the distribution of the main body masses on each posture.

We now extend our previous model to describe more accurately articulated
actions by considering three body centroids (Fig. 1): Cy for upper body with
respect to the shoulders and the torso; Cs for middle body with respect to the
torso and the hips; and C3 for lower body with respect to the hips and the
knees. Each centroid is represented as a point sequence of real-world coordinates
C = (z,y, 2). We then estimate upper and lower orientations §* and ' given by
the slope angles of the segments C;C5 and C5C'3 respectively. As seen in Fig. 1,
6" and @' describe the overall body pose as the orientation of the torso and the
legs, which allows to capture significant pose configurations in actions such as
walking, sitting, picking up and lying down. We calculate the body velocity S;
as the difference in pixels of the centroid C7 between two consecutive frames i
and ¢ — 1. The upper centroid was selected based on the consideration that the
orientation of the torso is the most characteristic reference during the execution
of a full-body action [4]. We then estimate horizontal speed h; and vertical speed
v; as in [11]. For each action frame ¢ we obtain a pose-motion vector:

Fi = (9?,95,]12,1)1) (1)
Each action A; will be composed of a set of sequentially ordered pose-motion
vectors A; := {(F;,l;) : i € [1.n],l; € L}, where [; is the action label, L is the
set of class labels, and n is the number of training vectors for the action j. This
representation describes spatiotemporal properties of actions in terms of length-
invariant patterns, particularly suitable for feeding into a neural network.
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3 Neural Architecture

Our GNG-based architecture consists of three main stages: 1) detection and re-
moval of noisy samples from the data set; 2) hierarchical processing of samples
from matching frames by two separate processing streams in terms of prototypi-
cal trajectories; and 3) classification of action segments as multi-cue trajectories.
An overall overview of the framework is depicted in Fig. 2. Before describing each
stage, we will provide a theoretical background on the GNG.

3.1 The Growing Neural Gas

Neural network approaches inspired by biological self-organization such as self-
organizing maps (SOM) [7] and neural gas (NG) [9] have been successfully ap-
plied to a great number of learning tasks. Their advantage lies in their ability
to learn the important topological relations of the input space without supervi-
sion. Both methods use the vector quantization technique in which the neurons
(nodes) represent codebook vectors that encode a submanifold of the input space.
The number of nodes in the SOM and the NG is fixed beforehand and cannot
be changed over time. The growing neural gas (GNG) proposed by Fritzke [8]
represents an incremental extension of these two networks. The GNG algorithm
has the ability to create connections between existing nodes and to add new
nodes in order to effectively map the topology of the input data distribution.

A growing network starts with a set IV of two nodes at random positions w,
and wp in the input space. At each iteration, the algorithm is given an input
signal £ according to the input distribution P(£). The closest unit s; and the
second closest unit s of £ in N are found and if the connection (si,s2) does
not exist, it is created. The local error of s; is updated by AE,, = ||& — ws, ||
and ws, is moved towards £ by a fraction €. The weight of all the topological
neighbors of s; are also moved towards & by a fraction €,. If the number of
given inputs is a multiple of a parameter A, a new node is inserted halfway
between those two nodes that have maximum accumulated error. A connection-
age-based mechanism leads to nodes being removed if rarely used. The algorithm
stops when a criterion is met, i.e. some performance measure or network size.
For the complete training algorithm see [8].

3.2 GNG-based Noise Detection

Pose-motion vectors F' (Eq. 1) are susceptible to tracking errors due to occlusion
or systematic sensor errors, which may introduce noise in terms of values highly
detached from the dominating point clouds. We consider inconsistent changes in
body velocity to be caused by tracking errors rather than actual motion. There-
fore, we remove noisy motion samples to create smoother inter-frame transitions.
First, the network GV is trained using only the motion samples from F. Second,
the training motion samples are processed again to obtain the set of errors F
from the trained network, which contains the distance from the closest unit d(s1)
for each motion sample. We then calculate the empirically defined threshold that
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Fig. 2. Three-stage framework for the GNG-based processing of pose-motion samples:
1) detection and removal of sample noise; 2) hierarchical processing of pose-motion
trajectories in two parallel streams; 3) classification of multi-cue trajectories.

considers the distribution of the samples as th = 20(E)\/u(E), where o(E) is
the standard deviation of E and p(FE) is its mean. For each motion sample, if
d(s1) > th, then the sample is considered to be noisy and its associated vector
F; is removed from the training set. We then obtain a new denoised training set

from which we create two distinct sets with sequentially ordered pose and motion
features, formally defined as P = {(6%,6')} and M = {(h,v)} respectively.

3.3 Hierarchical Learning

The second stage is composed of a two-stream hierarchy for processing pose-
motion cues separately. Each stream consists of two GNG networks that pro-
cess prototypical samples under the assumption that recognition is selective for
temporal order [5]. Therefore, sequence selectivity results from the use of node
trajectories to describe spatiotemporal action segments.

We first train the networks G and G with the denoised training sets P and
M respectively. After this training phase, chains of codebook nodes for training
samples produce time varying trajectories on each network. For a given trained
network G and a training set X, we define the set of labelled trajectories as:

T(G, X) :={(s(xi=1), s(x;), l(x;)) : Uz;) = U(wi—1),i € [2.n(X)]}, (2)

where the function s(z) returns the closest node s; of sample z in G, I(z) € L
returns the label of z, and n(X) is the number of samples in X. We compute the
sets T(GY, P) and T(GM, M), for convenience denoted as T and T, and use
them as input for the networks G and G respectively. This step produces a
mapping with temporally ordered prototypes from consecutive samples. We now
couple the outputs from both networks to create a set of multi-cue trajectories:

Q= {(T(G7, 1), T(G3", i), 1) - k € [2..g]}, 3)

where ¢ is the number of elements in TF and T™ and l; € L is the label
associated with the multi-cue trajectory. We finally feed the set of pairs into
G and process {2 again to obtain the set with the mapping of codebook nodes
corresponding to multi-cue pairs from consecutive trajectories.
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3.4 Action Classification

For assigning labels to clustered trajectories with G¢, we extend the GNG al-
gorithm with two offline labelling functions: one for the training phase and one
for predicting the label of unseen samples at recognition time. These labelling
techniques are considered to be offline since we assume that the labelled training
pairs (w,l;) with w € £2 and I; € L are stored in F' (Eq. 1). First, we define a
labelling function ! : N — L where N is the set of nodes and L is the set of
class labels. According to the minimal-distance strategy [14], the sample wy € 2
adopts the label [; of the closest w € £2:

Hwr) =1 :l(arggleigllwi*ﬂlz)- (4)

At recognition time, our goal is to classify unseen samples as pose-motion tra-
jectory prototypes (Eq. 4). Therefore, we define a prediction function ¢ : 2 — L
inspired by a single-linkage strategy [14] in which a new sample wye,, is labelled
with [; associated to the node n that minimizes the distance to this new sample:

. . 2
Wnew) = argmin(arg min ||[n — Wpew||”)- 5
P(ne) = argmin(arg min | ) 5)

The adopted labelling techniques have shown to achieve best classification accu-
racy among other offline labelling strategies [14].

4 Results and Discussion

We collected a data set of 10 actions performed by 13 different actors with a
normal physical condition. To avoid biased execution, the actors had not been
explained how to perform the actions. The data set contained the following
periodic actions (PA) and goal-oriented actions (GA):

— PA: Standing, walking, jogging, sitting, lying down, crawling (10 minutes each);
— GA: Pick up object, jump, fall down, stand up (60 repetitions each).

For the data collection we monitored people in a home-like environment with a
Kinect sensor installed 1,30 meters above the ground. Depth maps were sampled
with a VGA resolution of 640x480, an operation range from 0.8 to 3.5 meters
and a constant frame rate of 30Hz. To reduce sensor noise, we sampled the
median value of the last 3 estimated points. Body centroids were estimated from
depth map sequences based on the tracking skeleton model provided by OpenNI.
Action labels were manually annotated from ground truth of sequence frames.
We divided the data equally into training set and testing set: 30 sequences of 10
seconds for each periodic action and 30 repetitions for each goal-oriented action.
We used the following GNG training parameters: learning step sizes €, = 0.05,
€, = 0.005, node insertion interval A = 350, error reduction constant o = 0.5,
and error reduction factor d = 0.995 (see [8] for details). Maximum network
size and the number of iterations varied for each GNG and were experimentally
adjusted based on the network performance for different input distributions.
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Fig. 3. Evaluation on recognition accuracy under 5 different processing conditions: De-
noised multi-cue (DMC), denoised pose-motion vector (DPM), raw multi-cue (RMC),
denoised pose-only (DP), and denoised motion-only (DM).

We evaluated the recognition accuracy of the framework under 5 different
processing conditions: denoised multi-cue (DMC) and raw multi-cue (RMC)
samples, denoised “pose only” (DP) and denoised “motion only” (DM) samples,
and joint pose-motion vectors (DPM) as defined in Eq. 1 processed by a single
stream. As seen in Fig. 3, the use of denoised multi-cue trajectory prototypes
obtains the best average recognition result (89%). The removal of noise from the
data sets increases average recognition accuracy by 13%. The DMC approach
exhibits average improvements over DP and DM of 28% and 26% respectively.

Our results also show that DMC exhibits increased accuracy over the learning
of joint pose-motion vectors (DPM) by 10%. This is partly due to the fact that
the DPM approach forces the early convergence of the networks in the joint pose-
motion space, while DMC and RMC learn a sparse representation of disjoint
pose-motion prototypes that are subsequently combined to provide joint action
dynamics. The reported results for actor-independent action recognition were
obtained with low latency providing real-time characteristics.

5 Conclusion and Future Work

We presented a novel learning framework for the robust recognition of human
full-body actions from pose-motion cues. Multi-cue trajectories from matching
frames were processed separately by a hierarchical GNG-based architecture. This
approach captures correlations between pose and motion prototypes to provide
joint action dynamics. Experiments on a data set of 10 actions have shown that
the proposed multi-cue strategy increases recognition accuracy over a single-cue
approach and joint pose-motion vectors.

While the use of multi-cue learning has previously shown compelling results
for robust action recognition [3, 10, 12], this approach is also supported by neural
evidence. Therefore, the obtained results motivate further work in two directions.
First, the evaluation of our framework on a wider number of actions and more
complex pose-motion characteristics, e.g. including arm movements and hand
gestures. Second, an extended neural architecture based on a more biologically
plausible model of the visual system.
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