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Abstract—The correct execution of well-defined movements in
sport disciplines may increase the body’s mechanical efficiency
and reduce the risk of injury. While there exists an extensive
number of learning-based approaches for the recognition of
human actions, the task of computing and providing feedback
for correcting inaccurate movements has received significantly
less attention in the literature. We present a learning system for
automatically providing feedback on a set of learned movements
captured with a depth sensor. The proposed system provides vi-
sual assistance to the person performing an exercise by displaying
real-time feedback to correct possible inaccurate postures and
motion. The learning architecture uses recursive neural network
self-organization extended for predicting the correct continuation
of the training movements. We introduce three mechanisms for
computing feedback on the correctness of overall movement and
individual body joints. For evaluation purposes, we collected a
data set with 17 athletes performing 3 powerlifting exercises. Our
results show promising system performance for the detection of
mistakes in movements on this data set.

I. INTRODUCTION

Many physical activities such as dancing, yoga, and
strength training are composed of a collection of well-defined
movements. In this context, the correctness of postural transi-
tions is paramount for the execution of a specific exercise since
inaccuracies in posture or motion may significantly reduce
the overall efficiency of the movement and increase the risk
of injury [1]. For instance, in the case of strength training,
correct postures improve the mechanical efficiency, thereby
allowing for more weight to be lifted and therefore yielding
higher effectiveness during training sessions [2]. The correct
execution of a movement is crucial also for competitions,
where there is a set of strict rules deciding whether a weight
lifting routine is successfully executed by the athlete.

During the execution of complex movements, human pro-
prioception may not be sufficient to be aware of postural
mistakes for a timely correction. On the other hand, these
mistakes may be well noticeable by an expert trainer observing
the movement, thus enabling the trainee to use external feed-
back for correcting mistakes and avoiding deterioration [3].
However, it is not always the case that a personal trainer can
be available for taking care of the execution of movements
during training. Therefore, there is the motivation to provide
automatic motion feedback systems able to detect mistakes
during the performance of the movements and enabling the
person to correct them autonomously.

In the last half decade, the use of low-cost depth sensing
devices such as Microsoft Kinect has fostered the development

of visual-based applications for human gait analysis and action
recognition. In contrast to traditional 2D cameras, the Kinect
sensor provides depth measurements used to segment human
3D motion in cluttered environments, including a set of body
joints that enable us to estimate spatio-temporal properties of
actions in real time [17]. The combination of Kinect-based 3D
skeleton information with learning paradigms such as machine
learning and neural networks has led to an extensive number of
approaches for the robust detection and classification of actions
(e.g. [5], [6]). In particular, these methods allow to learn a
set of posture-motion properties from articulated actions to
distinguish distinct action classes. However, the additional task
of providing a measure on how these actions are performed and
how to correct mistakes has not yet been explored likewise
in the literature. Different from the classification of distinct
actions, the latter task involves finding subtle differences in
the execution of correctly learned actions and then triggering
a mechanism to enable the person for timely correcting move-
ment mistakes.

In this work, we describe a learning system for providing
feedback on a set of learned movements captured with a Kinect
device. Our system visually assists the person by showing pre-
dictions of correct postural transitions and, if mistakes are de-
tected, it provides visual feedback with the needed corrections
for an accurate execution. The learning architecture is built
upon a recursive variant of neural network self-organization
that is trained with a set of correct executions. During the
training phase, each network adapts its topological structure to
generate a spatio-temporal map of prototype movements. From
this representation, we compute the overall error and individual
joint errors that do not conform to the learned movement model
during a subsequent execution of the movement.

This paper is structured as follows. After giving an
overview of related work on the estimation of automatic
feedback in Section II, we introduce our model of body
motion built upon 3D posture representations in Section III.
In Section IV, we describe our learning architecture based on
recursive self-organization and introduce a prediction mech-
anism for the correct continuation of learned movements. In
Section V, we define three methods for computing feedback
on overall movement correctness and individual body joints.
In Section VI, we report a number of experiments along with
an evaluation of our learning algorithm. For this purpose,
we collected a data set with 17 athletes each performing
3 powerlifting exercises. We conclude with a discussion in
Section VII.
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II. RELATED WORK

Several different approaches have been proposed by pre-
vious work to automatically provide movement feedback. For
instance, Alexiadis et al. [4] and Anderson et al. [7] provided
feedback on dancing and ballet movements respectively. For
a specific frame, they computed a feedback score using the
Euclidean distance between raw-measured joint locations of
an expert and a trainee. However, since trainee postures were
compared only directly with expert postures at specific points
in time, it severely punished slight timing variations. This made
the approach only applicable to movements that require strict
timing, such as dancing to rhythm of music. Furthermore, this
direct comparison of joints was only feasible for body types
with similar properties to that of the expert. Rector et al. [8]
provided feedback on yoga poses by comparing measured
angles of body parts to valid ranges from domain-specific rules.
The system required users to stand in a predefined position
on a custom mat with markers. Similarly, Velloso et al. [9]
provided feedback for dumbbell strength training exercises.
However, approaches of this kind with hard-coded rules are
unable to cope with complex movements and different body
configurations.

Su [10] generated feedback for home-based rehabilitation
exercises by comparing performed motion with a pre-recorded
execution by the same person. The comparison was carried out
through dynamic time warping (DTW) and fuzzy logic. The
sequence of captured joint data was used to compare against
the sequence stored in a repository. The evaluation of the
exercises result was derived based on the degree of similarity
between the two sequences. The system provided qualitative
feedback on the similarity of joint trajectories and execution
speed, while it did not suggest the patient how to correct
the movement. Velloso et al. [11] presented a system which
inferred a motion model from correct demonstrations captured
with a depth sensor. Feedback was given in two forms:
directions for limbs that were supposed to remain stationary
and conformance to allowed movement ranges for moving
joints. However, the presented system used an independence
assumption between individual body joints, so that whole-body
motion correctness may not be adequately modelled.

III. BODY MOTION REPRESENTATION

A human body can be modelled as a spatially extended
object with a set of body joints connected by limbs. We track
the position of a person based on a simplified 3D model of the
human skeleton. In this setting, the body is modelled as a set
of N joint coordinates qi = (xi, yi, zi) ∈ R

3, 1 ≤ i ≤ N , so
that at each time step t a particular body posture is represented
as the collection of N joints:

p(t) = (qi(t), ..., qN (t)). (1)

For our experiments, we capture body motion with a Kinect
v2 sensor1 and estimate body joints using Kinect SDK 2.0 that
provides a set of 25 joint coordinates at 30 frames per second.
The set of joints includes the position for head, neck, wrists,
elbows, shoulders, spine, hips, knees, and ankles. As shown
in Fig. 1, the Kinect’s skeleton model, although not strictly

1Microsoft Kinect 2.0 – http://www.microsoft.com/en-us/kinectforwindows/
develop/

Fig. 1. Example of skeleton model with body joints and limbs for a correct
squat movement.

faithful to human anatomy, provides reliable estimations of the
joints’ position and orientation over time, thereby allowing to
extrapolate significant properties of postural dynamics. With
this setting, two human postures are perceived as similar
when the set of all joint coordinates roughly coincides. This
makes distance measures over the set of all joints a suitable
measurement for estimating the similarity between two pos-
tures [4], [7]. In our implementation, we use the Euclidean
distance. In order to yield translation-invariance, we subtract
from all absolute joint coordinates the spine base joint, which
represents the center of the hips.

On top of this model, we must define a measurement on the
quality of the performed movements and the required feedback
to correct mistakes. For this purpose, we compute at each
time step t an overall error e(t) that estimates the deviation
from correct postures, and individual joint errors ei(t) for
providing feedback on specific joint corrections during the
execution. Since we are considering postures in the spatio-
temporal domain, we must take into account the fact that
subtle variations in speed may not affect the correctness of
the movement. For instance, a barbell squat in powerlifting
might be carried out at different speeds and duration while
still being considered a correct squat [2]. Similarly, people
vary in shape and size, leading to different body compositions
and thereby postural variations during the execution of similar
movements [3]. Therefore, for both timing and posture, the
system should be tolerant to variances during the execution of
specific movements and under those circumstances for which
this tolerance is desirable. In this regard, we take into account
a learning mechanism that enables the generalization of correct
movements for yielding tolerance to variations when detecting
relevant deviations from a learned postural pattern.

IV. LEARNING ARCHITECTURE

As a learning technique we use a recursive extension of the
Self-Organizing Map (SOM) [16], which is composed of a set
of neurons arranged on a 2-dimensional network lattice. The
SOM performs a non-linear approximation of the distribution
of the input through a statistical learning algorithm, so that
the input space of activation patterns is mapped onto the
space of prototype neurons by a process of competition among
the weight vectors associated to the neurons. Each prototype
neuron is defined by two coordinate vectors: a lattice position
and a value in the input data space, which is adjusted through
training. During this learning process, the topology of the input
space is preserved. While the traditional SOM is particularly
suitable for processing data in the spatial domain, it is possible
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to extend such a method to allow the processing of sequential
patterns.

A. Recursive Self-Organization

Recursive alternatives of the SOM have been proposed
that extend the feed-forward learning mechanism with context
neurons that refer to past activations (e.g. [12], [13]), so that
sequences are encoded by a recursive self-superposition of the
trained neurons and the current input. The MergeSOM [14]
has shown to reach a stable fixpoint during the learning phase
and exhibits greater computational efficiency with respect to
similar variants [15]. MergeSOM learning is carried out in two
steps iterated over each training sample x. In the first step, an
inner activation for each neuron i is computed based on the
difference of its weight vector wi to the input x and of its
context vector ci to the recursive activation y. Its recursive
activation function is defined as:

di = (1− α) · ‖x − wi‖2 + α · ‖y − ci‖2, (2)

where α is a fixed coefficient that balances the contribution
of the descriptors, and y is the context descriptor defined as a
linear combination of the previous time step’s activated neuron
u defined as:

y = (1− β) · wu + β · cu, (3)

where β is the merging coefficient and u is the neuron with
the smallest Euclidean distance u = argminidi, henceforth
referred to as the best-matching unit (BMU).

In the second step, the training is carried out by moving
the weight and context vector towards the current input x and
the context y according to:

∆wi = ǫ · h(u, i) · (x − wi), (4)

∆ci = ǫ · h(u, i) · (y − ci), (5)

with ǫ being a decreasing learning rate and h(u, i) being
a Gaussian neighbourhood function over the distance of two
neurons u and i:

h(u, i) = exp

(

−‖ru − ri‖2
2σ2

)

, (6)

where ru and ri are the respective positions of the neurons
in the network lattice and σ is a decaying function governing
the neighbourhood radius.

B. Prediction

The MergeSOM has been shown to learn a model with
the representation capacity of a finite automaton [14]. We can
exploit this mechanism for predicting the ideal sequence of a
movement by the means of backtracking prototype neurons
over a trained network. The best-matching predecessor of
a neuron u can be computed by comparing its expected
context descriptor to other neurons’ merge vectors, i.e. vectors
obtained as the linear combination of weight and context

Fig. 2. Movement prediction – Visual hints for future steps of a network
trained for ”Finger to nose” routine. Progressively fading violet lines represent
correct execution order.

descriptors of previously activated neurons merge(u) = y
(Eq. 3). The predecessor distance is then given by comparing
a node’s expected context to the merge vector:

dp(u, v) = ‖merge(v)− cu‖, (7)

so that the best-matching predecessor of u is given by:

p(u) = argminv∈V (d
p(u, v)). (8)

For prediction purposes, however, we are not interested
in computing the predecessor of a neuron, but rather in the
computation of successor chains of neurons referring to future
time steps. The best-matching successor of a neuron u can
then be defined similarly to the predecessor (Eq. 11):

s(u) = argminv∈V (d
s(u, v)), (9)

with

ds(u, v) = ‖merge(u)− cv‖. (10)

With this setting, prediction for multiple time steps can then
be accomplished by the recursive application of the successor
function, such that a successor chain with n successors of u
can be defined as:

Cn(u) = (u, s(u), s(s(u)), ..., sn(u)). (11)

We show the result of this prediction mechanism in Fig. 2.
For this example, we trained a network with the correct execu-
tion of the ”Finger to nose” routine, which consists of keeping
your arm bent at the elbow and then touching your nose with
the tip of your finger. When the person starts performing the
routine after this training phase, we can see progressively
fading violet lines representing the next 30 time steps, thereby
providing visual assistance on how to successfully carry out
the movement through spatio-temporal hints. The value 30 was
empirically determined to provide a substantial reference to
future steps while limiting visual clutter.

V. EXTRACTING FEEDBACK FROM LEARNED MODELS

We now define three feedback mechanisms built upon the
trained networks.
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Fig. 3. Example on visual feedback for a standing posture – (a) overall error
(green indicates correct posture) (b) overall error with hint (in yellow); (c)
individual joint error (in red).

A. Feedback from Quantization Errors

As pointed out by Kohonen [16], a straightforward way of
generating an error measure from a trained SOM-like network
is to estimate the quantization error given by the difference
between the input x and its best-matching neuron defined as:

b(x) = argminj‖x − wj‖. (12)

With this mechanism in mind, we define two methods:
one for computing an overall error e(t) for the whole-body
posture, and the other for computing individual errors ei(t)
associated to specific body joints (Fig. 3). For this purpose,
we exploit a distinctive characteristic of the MergeSOM with
respect to other recursive alternatives that both the weight and
context descriptors lie within the same data space. Thus, we
can compute the overall error from the current input x as the
recursive activation (Eq. 2) over its best-matching neuron u:

e(t) = (1− α) · ‖x − wu‖2 + α · ‖y − cu‖2. (13)

Similarly, we can compute individual errors performing the
activation of Eq. 13, but this time considering each dimension
of x,w, y, and c individually and subsequently combining the
dimensionality-wise activation as follows:

ei(t) = eρ(i,x) + eρ(i,y) + eρ(i,z), (14)

with ρ(i, x) being the dimension corresponding to joint i
and its x, y, z components.

B. Feedback Through Prediction

Recursive prediction carried out through successor chains
(Eq. 11) seems to adequately tell how a correct movement is
to be continued. During its execution, we could then measure
the correctness of such movement in terms of how much it
deviates from its predicted pattern. We then define a function
that provides feedback on the current posture p(t) (Eq. 1) with
respect to the predicted postures from i previous time steps as
follows:

fb(t, i) = ‖si(xb(p(t−i)))− p(t)‖. (15)

This function, however, does not take into account alterna-
tive prediction paths and does not yield variance in timing. We
then assume that given the best-matching neurons at time t− i
and t, we can compute to which extent the latter would have
been predicted by the former, without considering the time
difference i, so that e(t) will yield a small value for a correct
prediction, whereas a higher value for a wrong prediction.
For this purpose, we infer the probability of a neuron v
being predicted as a distant successor of another neuron u
by computing the shortest path distance δ(u, v) from u to v
in a graph Gs containing the successor distances of all the
neurons. In this case, the feedback function is defined as:

fδ(t, i) = δ(b(p(t− 1)), b(p(t))). (16)

In order to project the output of the prediction-based
techniques to use as overall error e(t), we aggregate their
output over the last λ previous time steps as follows:

e(t) =

λ
∑

i=1

f(t, i) · γi, (17)

where γ is a decay factor to favour more recent previous
time steps over older ones.

VI. EXPERIMENTAL RESULTS

We now present our experimental results on a data-set of 3
powerlifting movements used for the training, validation, and
test of the proposed system.

The data collection took place at the Kinesiology Institute
of the University of Hamburg, Germany, where 17 volunteering
participants (9 male, 8 female) performed 3 different power-
lifting exercises:

E1) High bar back squat: One repetition consists of
crouching with a loaded barbell behind the back
until the hips are lower than the knees and then
standing up;

E2) Deadlift: Lift a loaded barbell off the ground to
the hips, then lower back to the ground;

E3) Dumbbell lateral raise: Start with the arms at side
of the body then raise the dumbbells sidewards
while keeping the elbows higher than the wrists.

For a thorough evaluation of our system, we also recorded
a set of typical mistakes for each routine:

E1) M1) Good morning: Raising the hips without
raising the chest with an excessively hor-
izontal back angle;

M2) Half squat: Going only halfway down to
the ground;

M3) Knees in: Bow the knees toward each other
during the lift.

E2) M1) No lockout: The execution is carried out
properly, but the lift is stopped before the
lockout;
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M2) Rounded back: The back is heavily
rounded during the lift instead of being in
a straight line.

E3) M1) Low elbows: Lateral lifts performed with
the wrists being higher than the elbows.

Correct and incorrect executions were captured with a
Kinect v2 at 30 frames per second. The participants executed
the routines frontal to the sensor placed at 1 meter from
the ground. We processed video sequences with Kinect SDK
to segment motion and extract 3D joint coordinates frame
by frame. We manually segmented single repetitions for all
exercises.

A. Training Parameters

We trained a different MergeSOM network for each rou-
tine. The MergeSOM training parameters were empirically
set by choosing the temporal quantization error (TQE) as a
performance measure. The TQE is a temporal generalization
of the SOM quantization error [16] and measures the average
quantization errors of the network over the past inputs [15]. It
thus measures the specificity of neurons to sequences of data.
In Fig. 4 we show the TQE with different pairs of the recursive
parameters α and β (Eq. 2 and 3 respectively) for a network of
1600 neurons after 100 training epochs with linearly decaying
learning rates ǫ0 = 0.1 and ǫf = 0.01, and exponentially

decreasing neighbourhood rates σ0 =
√
Nn and σf = 0.0001.

The lowest TQE was found for the values α = 0.6 and
β = 0.7. For providing feedback over trained networks,
we empirically set the aggregation parameter γ = 0.8 with
λ = 100 (Eq. 18).

B. Evaluation

We evaluated the three feedback extraction techniques
introduced in Sec. 5 on individual subjects and subsequently
on multiple subjects. We divided the correct motion data
with 3-fold cross-validation into training and test repetitions
and trained the models on data containing correct movement
sequences. For the test phase, both correct and incorrect move-
ment sequences were used. Our expectation was that the output
of feedback functions will be higher for sequences containing
mistakes. For evaluation purposes, we used a binary classifi-
cation test in which each sequence is labelled by the system
as positive if a mistake was detected, and negative otherwise.
In this setting, we empirically defined error thresholds τ for
each feedback function, with τ(e(t)) = 0.2, τ(fb(t, i)) = 2.5,
and τ(fδ(t, i)) = 0.6. Fig. 5 shows visual feedback for a
correct squat sequence and another sequence containing knees
in mistakes. We observed true positives (TP), false negatives
(FN), true negatives (TN), and false positives (FP) as well as
the measures true positive rate (TPR), true negative rate (TPR),
and positive predictive value (PPV). Results for single-subject
and multiple-subject data on E1, E2, and E3 routines for the
three feedback functions are displayed in Table I and Table II
respectively. Single-subject evaluation shows that the system
successfully provides feedback on posture errors for the set of
3 training movements with high accuracy. The evaluation for
multiple-subject data shows rapidly decreased performance due
to many reported false positives, especially for the prediction-
based techniques fb and fδ . A likely cause is the model size

Fig. 4. Evaluation of the recursive activation parameters α and β with the
temporal quantization error (QTE) over time instances. Lowest QTE found
for α = 0.6 and β = 0.7.

Fig. 5. Visual feedback for correct squat sequence (first line), and a sequence
containing knees in mistake (second line, joints in red).

being adequately large for learning a movement from one
subject, but not from multiple subjects. Thus, prediction of
future poses on multiple-subject data fails.

VII. DISCUSSION

In this work, we presented a learning system for estimat-
ing automatic feedback on a set of well-defined movement
sequences captured with a Kinect sensor. Our learning archi-
tecture is built upon an extended variant of neural network
self-organization for processing spatio-temporal patterns that
allows to predict future movements and provides an assessment
on the correctness of a current movement sequence.

Our evaluation on three powerlifting routines showed high
system performance for single-subject data. The system was
able to predict a set of learned sequences and then provide
visual hints with the needed feedback to correct postural
mistakes in real time (Fig. 5). As shown in Table I, feedback
functions yielded varying performance depending on differ-
ent movement routines. The evaluation on multiple-subject
data shows a decreased performance for all the movement
sequences (Table II). However, this aspect does not necessarily
represent a drawback, since the main focus of our system is
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TABLE I. SINGLE-SUBJECT EVALUATION.

TP FN TN FP TPR TNR PPV

E1 e(t) 41 4 32 1 0.91 0.97 0.97

fb 35 10 33 0 0.77 1 1

fδ 29 16 26 7 0.64 0.78 0.8

E2 e(t) 23 1 19 1 0.95 0.95 0.95

fb 24 0 20 0 1 1 1

fδ 24 0 20 0 1 1 1

E3 e(t) 63 0 26 0 1 1 1

fb 63 0 26 0 1 1 1

fδ 55 8 26 0 0.87 1 1

TABLE II. MULTI-SUBJECT EVALUATION.

TP FN TN FP TPR TNR PPV

E1 e(t) 326 1 40 118 0.99 0.25 0.73

fb 326 1 7 151 0.99 0.04 0.68

fδ 320 7 0 158 0.98 0 0.66

E2 e(t) 129 0 43 78 1 0.35 0.62

fb 127 2 0 121 0.98 0 0.51

fδ 129 0 0 121 1 0 0.51

E3 e(t) 123 0 32 17 1 0.65 0.88

fb 123 0 8 41 1 0.16 0.75

fδ 123 0 1 48 1 0.02 0.72

tailored feedback for a specific person over person-independent
generalization of movements. Nevertheless, a possible ap-
proach for addressing this limitation is the use of growing
networks that dynamically adapt the model size to represent a
greater number of sequences. Since the recursive mechanism
of the MergeSOM does not depend on the network topology,
we could adopt a recursive incremental model such as Merge
Growing Neural Gas [18], for which the number of neurons
and the lattice topology are not established a priori. Addition-
ally, the fading memory used in the MergeSOM model loses
predictive power on long motion sequences. For addressing this
issue, we could use an extension of MergeSOM that allows to
store multiple contexts for each neuron [19]. This mechanism
would allow to train the networks with multiple β values and
then average their feedback output yielding higher precision
over a range of times scales. Furthermore, this extended model
could be combined with a growing topology [20].

In summary, our system successfully computed real-time
feedback on a set of learned posture sequences. The reported
results show the promising contribution of our learning sys-
tem for movement assessment and person-specific assistance
in fields where the correct execution of accurate movement
routines plays a crucial role such as sports and physical
rehabilitation.
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