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Abstract— Mobile assistive robots can enhance elderly peo-
ple’s perception of safety and prevent loss of confidence at home.
Therefore, multi-modal systems that allow robots to operate
in complex environments represent an enticing milestone for
self-care and independent living applications. We present a
humanoid robot that assists a person in daily activities and
detects situations of danger such as fall events. Our system
integrates multiple sensor modalities to enhance the perception
of the robot through visual active tracking, sound source local-
ization, and automatic speech recognition. Robot motor control
is triggered from the interplay of audio-visual cues conveyed
by onboard sensors. We propose a multi-modal controller to
modulate sensor-driven behaviour of the humanoid robot Nao
and present preliminary results in a home-like environment for
a fall detection scenario.

I. INTRODUCTION

Injuries caused by falling have been identified as the
leading cause of loss of independence and premature death
in elderly people [1]. Consequently, the development of
assistive technologies that detect falls in domestic envi-
ronments and alert caregivers and relatives has received
considerable attention in the health care community in re-
cent years (e.g., [2][3][4]). Mobile robots are a particu-
larly promising area of technology as they are flexible and
relatively non-invasive in comparison to larger distributed
ambient sensor systems. In addition to watching over people
and detecting dangerous events, they can directly undertake
actions that benefit the user in everyday situations, thereby
enhancing the person’s safety perception and preventing
the loss of confidence caused by functional disabilities.
Moreover, advanced robotic systems may encompass inter-
active, socially-aware robot companions that not only detect
dangerous events, but also enhance the person’s experience
and well-being through, for instance, flexible and proactive
human-robot interaction (HRI) [5][6]. On the other hand, the
development of such intelligent systems introduces a vast set
of challenges and technical concerns regarding the robot’s
perception of human activity and the design of sensory-
driven robot behaviour.

As humans, our perceptual experience is modulated by an
array of sensors that convey different types of information
(or modalities), e.g. vision, sound, touch, movement [7].
Similarly, the problem of integrating information conveyed
by multiple sensors has been a paramount ingredient of
autonomous robots. In particular when operating in natural
environments, the robust and efficient processing of multi-
modal information plays a key role to perceive human activ-
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ity. Research efforts have been made towards robots exploit-
ing multi-sensory integration to improve HRI capabilities.
For instance, Lacheze et al. [8] used auditory information
to recognize objects that were partially occluded and thus
difficult to detect through vision only. Sanchez-Riera et
al. [9] presented a scenario with a robot companion that
performs audio-visual fusion for multi-modal speaker detec-
tion. The system targeted multiple speakers in a domestic
environment processing information from two microphones
and two cameras mounted on a humanoid robot. In the
context of assistive robots, Parisi and Wermter [16] presented
a humanoid robot with a depth sensor to extract 3D body
information and a learning-based system to detect abnormal
user behaviour such as fall events. The robot used its head
actuators to move the sensor and keep the person in the
scene, thereby addressing the limiting field of view (FOV) of
the sensor. Martinson [10] introduced a robot with a naviga-
tional aid for visually impaired people using a mobile robot
platform. The system used depth information to detect other
people in the environment and avoid dynamic obstacles. The
system communicated to the person the direction of motion
to reach the goal destination via a tactile belt around the
waist. However, multi-modal systems embedded in mobile
robots that remain operative under situations of uncertain
sensory information, e.g. temporary unavailability of one of
the modalities, represent an enticing milestone for assistive
robots and are still to be extensively investigated.

In this paper, we present a humanoid robot that assists a
person in daily activities and detects situations of danger such
as a fall event. Our system integrates multiple sensor modali-
ties to enhance the perception of the robot through automatic
speech recognition (ASR), sound source localization (SSL),
visual active tracking and action recognition. In the proposed
scenario, the person can communicate with the Nao using
speech commands. We enabled Nao to actively track the
person using its motor abilities and use the extracted depth
information to detect fall events. In the case that the person
is out of the FOV of the depth sensor, SSL is used to locate
the person and establish visual tracking. For this purpose, we
extended Nao with a depth sensor and a stereo microphone
system. Information from Nao’s sonar sensors is used to
avoid obstacles in the environment. When the person asks for
assistance or a fall is detected, the humanoid will approach
the person and record the scene using the depth’s sensor
RGB camera. This video recording can then be sent to the
person’s caregiver or relatives for further human evaluation.

We describe the proposed system with the implementation
of ASR, SSL, action recognition, and obstacle avoidance in
Sec. II, along with the multi-modal controller to integrate
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Fig. 1. Overall architecture of our multi-modal system – a) extended Nao with a depth sensor and stereo microphone, b) OSC-based communication
network for covey sensor information to the multi-modal controller for robot behaviour.

sensory information. Sect. II includes the evaluation of single
modules and the behaviour of the robot driven by the
interplay of audio-visual cues. In Sec. III, we present the
experimental, assistive scenario in a home-like environment
for multi-modal tracking and the detection of fall events. We
conclude in Sec. V with a summary and discussion of our
approach, as well as open issues and future work directions
for our assistive system in terms of technical components
and user-centered usability testing.

II. PROPOSED SYSTEM

The goal of our system is to use the available modalities
for localizing and tracking the person in the environment
with the use of a Nao robot. The behaviour of the humanoid
is driven by the integration of audio-visual cues, that include
ASR for vocal commands (sentences), vision, to track and
detect fall events, and SSL, to detect the position of the
person when visual information is not available. For this
purpose, we use an array of sensors installed on top of
the Nao and a multi-modal controller that integrates the
information conveyed by the sensors to modulate Nao’s
actuators. The overall architecture of the system is shown
in Fig. 1.

Nao is a midsize humanoid robot developed by Aldebaran
Robotics.1 We extended the robot Nao with an ASUS Xtion
Pro2 depth sensor installed on top of the head (Fig 1.a). The
Xtion has a distance of use between 0.8 and 3.5 meters with
a VGA resolution (640x480) at a maximum of 30 fps. In
contrast to the Microsoft Kinect, the Xtion has reduced power
consumption and weight. For SSL, we use a Soundman OKM
II3 binaural stereo microphone with omni-directional polar
pattern and a frequency range of 20Hz–20kHz. We installed

1Aldebaran Robotics: http://www.aldebaran-robotics.com/
2ASUS Xtion PRO LIVE: http://www.asus.com/Multimedia/

Xtion_PRO_LIVE/
3Soundman OKM II Studio: http://www.soundman.de/en/

products/okm-ii-studio/

the stereo microphone on the Xtion sensor with a distance
of 14.5 cm between the right/left channels (Fig. 1.a). We
chose the Soundman microphones by comparing the SSL
performance also with the stereo microphones embedded in
the Nao and the Xtion (see Sec. 2.c). For ASR, we use a blue-
tooth headset (Sennheiser EZX 804) with an omni-directional
microphone that can be comfortably worn by the person
and allows more robustness in noisy environments compared
to the microphones embedded in the Nao, especially when
the robot is moving. We use Nao’s sonar sensors to detect
obstacles on the way. The sonar sensors have an effective
cone of 60◦ with a resolution of 1 cm and a detection range
from 0.25 to 2.55 meters.

A. Active Tracking

The Xtion depth sensor is characterized by a reduced
FOV (58◦ horizontal, 45◦ vertical, 70◦ diagonal), limiting
its use in expansive environments. This motivates the im-
plementation of an active tracking system, which moves the
sensor to keep the person in scene. We use Nao’s head to
move the sensor and increase the horizontal FOV from 58◦

to 138◦ (Fig. 2.a). Nao will then smoothly pan its head
by 10◦ degrees in the required direction, for a maximum
pan angle of 40◦ degrees in each direction. As a strategy
for active tracking, we define a bounding box in which the
person can act without the sensor being moved (Fig. 2.b). We
base the tracking of the person on a 3D skeleton model and
consider the point of the upper-body torso as the reference
of the person’s position. When the torso point lies outside
the threshold, the tracking application will compute the
operations required to keep the person within the bounding
box.

The tracking application is built on top of simple-openni5,

4Sennheiser EZX 80: http://en-de.sennheiser.com/
bluetooth-headset-smart-phone-headset-mobile-ezx-80

5simple-openni – OpenNI library for Processing: https://code.
google.com/p/simple-openni/
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which wraps the OpenNI–NITE framework6 for user iden-
tification, calibration and estimation of skeletal joints. We
use this library with Processing IDE7 with skeleton tracking
provided by OpenNI. In this setting, we obtain the angle of
the person with respect to the sensor as follows:

α = arctan([x− (xmax/2)]/zmax), (1)

where x is the position of the torso joint w.r.t. the
horizontal image plane, xmax/2 is the center of this plane,
and zmax is the focal length (max. depth value).

B. Fall Detection

The robust detection of falls in home environments is
a major concern in the public health care domain [1]. A
combination of computational efficiency and robustness to
changes in light conditions in indoor environments have
made fall detection systems using depth information in-
creasingly important in the research community (e.g. [11],
[12]). However, many approaches do not consider noise-
tolerant solutions able to operate with a mobile sensor. In
particular, reported experiments with low-cost depth sensors
have shown that a moving device has a strong negative
impact on the sensor stability, leading to systematic tracking
errors and noise.

To detect fall events, we use a learning-based ap-
proach (Parisi and Wermter [16]) that reports novel be-
havioural patterns that were not presented during the training
phase. This system trains a neural network architecture
on a dataset of 3D body motion from depth map videos
comprising normal behaviour, i.e. domestic actions such as
walking, sitting, and lying down, and then triggers an alarm
when abnormal behavioural patterns are detected, e.g. a
fall (Fig. 2.c). To contrast sensor noise and tracking errors,
the neural architecture is also responsible for automatically
removing noisy samples from the extracted body features
during the training and test stage. Experiments in a home-
like environment reported that the system detects falls with
96% accuracy [17].

The combination of a depth sensor with the learning-
based approach allows us to tailor the robust detection of fall
events independently from the background surroundings and
changing light conditions. This is especially advantageous in
scenarios with a mobile sensor.

C. Sound Source Localization

There are a number of auditory cues that can be used
for sound-source localization (SSL). Most of these cues are
derived from the spatial separation of sensors. Among these
are the difference in the time at which sounds arrive at
each microphone (time difference of arrival, TDOA), the
difference in intensity (interaural intensity difference, IID),
and spectral variations in the signals [14]. Any number of
microphones greater than two can be used in principle, but

6OpenNI/NITE: http://www.openni.org/software
7Processing IDE: http://processing.org/

(a)

(b)

(c)

Fig. 2. Active tracking and fall detection [17] – (a) Nao with Xtion sensor:
extended horizontal field of view from 58 to 138 degrees with a maximum
head pan angle of 40 degrees in each direction. sensor (b) Threshold-based
active tracking strategy, and (c) Detection of a fall event (red body).

the hardware and computational cost sharply rises with each
additional microphone.

In our scenario, we require fast and reliable SSL. On
the other hand, high accuracy is not an issue. We therefore
choose a simple but reasonably accurate binaural solution
which extracts the TDOA from a stereo signal using the
cross-correlation algorithm [15]. This algorithm shifts the
signals from the individual microphones with respect to each
other and determines the shift producing the greatest cross-
correlation. That shift corresponds to the TDOA and thus to
the angle of incidence.

It is possible to compute the angle of incidence for a given
TDOA from the geometry of the system. However, since
the estimate of the TDOA computed by the cross-correlation
algorithm can be smeared by the acoustic properties of the
environment, the robot body, and the ego-noise it produces,
we opted for an empirical approach: We recorded 60 s of
recorded speech from 19 directions at 10◦ intervals between
−90◦ and 90◦ from the robot. We split each of the recordings
into 0.25 s snippets and computed the relative time shift
maximizing the cross-correlation between the channels for
each snippet. For each occurring time shift, we then selected
that angle of incidence for which it occurred most often as
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Fig. 3. Results of SSL with cross-correlation using different stereo microphones – Histograms of maximizing time shifts for each angle for the Soundman,
Xtion, and Nao microphones. Each shade represents a histogram for one angle.

the most likely angle of incidence. We did this for three
different sets of microphones: the Nao’s own microphones,
those of the Xtion sensor, and the Soundman microphones.

Figure 3 shows histograms of maximizing time shifts for
each angle. The TDOA estimated by the cross-correlation
algorithm was strongly correlated to the angle of incidence
for all stereo microphones, as expected. However, the degree
of correlation, measured by Spearman’s rank correlation
coefficient, differed drastically (Nao: ρ = 0.506, Xtion:
ρ = −0.714, Soundman: ρ = −0.930; p << 0.0001
for all microphones). We therefore chose the Soundman
microphone for SSL.

D. Automatic Speech Recognition

For ASR, we used the approach proposed by Twiefel
et al. [13]. This system improves Google’s cloud-based
speech recognition with domain-dependent post-processing.
The post-processor translates each sentence in the list of
candidate sentences returned by Google’s service into a string
of phonemes. To be able to exploit the quality of the well-
trained acoustic models employed by Google’s service, the
ASR hypothesis is converted to a phonemic representation
employing the SequiturG2P grapheme-to-phoneme converter.
Then, the sentence from a list of in-domain sentences is
selected as the most likely sentence, which has the least Lev-
enshtein distance to any of the candidate phoneme strings.
For our implementation, we used the 10 top results and the
target sentences.

An advantage of this approach is the hard constraints of
the results, as each possible result can be mapped to an
expected sentence. Experiments reported in [13] showed that
the sentence list approach obtained the best performance
for in-domain recognition with respect to other approaches

such as Sphinx-4 [18] on the TIMIT speech corpus8 with a
sentence-error-rate of 0.521.

The sentences that we use for our scenario are: ”Look at
me”, ”Come to me”, ”Turn around”, ”Turn to me”, ”Help
me”, ”Yes, please”, ”No, thank you”, and ”Stop”.

E. Multi-modal Controller

The multi-modal controller modulates the motor behaviour
of the humanoid and other operations of the system based
on the information conveyed by the different sensors. This
module is responsible for estimating the reliability of the
modalities in terms of last arrived valid signal from the audio-
visual modules.

When the vision-based position is not available or the last
tracked position is older than 3 seconds, then SSL will be
used. If the last valid SSL angle is older than 3 seconds, then
the robot will ask ”Where are you?” and wait for either audio
or visual input. If audio-visual inputs are in conflict, i.e. the
user’s position estimated by the tracking framework and the
SSL are widely discrepant, then more priority will be given
to the visual estimation. This is due to the fact that the SSL
module is more likely to return unreliable estimations, e.g.,
in situations with strong background noise.

At any time, the robot can receive vocal commands that
have priority over the other modules. For instance, ”Stop”
will abort the current task of the robot. When the robot
is moving, the controller uses Nao’s sonar sensors to stop
before obstacles that can cause the damage to the robot. If
after a stop, the robot is not able to estimate the position of
the person, it will wait for vocal hints.

A visual example of the interplay of different modalities
is shown in Fig. 4.

8TIMIT Acoustic-Phonetic Continuous Speech Corpus: https://
catalog.ldc.upenn.edu/LDC93S1
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Fig. 4. Visualization of multi-modal robot perception in a ratio of 3 meters - The thickness of the lines represents the reliability of the information sources
(the thicker the more reliable). (a) Visual information is used to estimate the position of the person (SSL is also computed but not used); (b) When visual
information is not available (e.g. out of date), then SSL is used to estimate the position; (c) The person is too close to the robot (30 cm) so that the depth
sensor cannot track the position (out of the operation range) and the sonar sensors detect a possible obstacle.

F. System Interface

All system modules communicate over Open Sound Con-
trol (OSC) [22], a message-based protocol developed for
communication and data control among multimedia devices.
It uses IP/UDP, that makes it very fast and accurate so that is
naturally used also in other domains such as robotics [23].
An important advantage of OSC is the compatibility with
many programming languages that enables us to connect
our modules with a lightweight protocol, in our case using
Python, Java, and Processing.

III. SCENARIO

The scenario for fall detection is shown in Fig. 5. The
Nao was initially positioned on one side of the room to
monitor the scene and connected to the system using wireless
communication. The depth sensor and the microphones were
connected to a laptop (i5-3320M 2,6 GHz, 4GB RAM)
running all system modules through OSC protocol under
Linux (Ubuntu desktop 12.04). The bluetooth microphone
EZX 80 works up to 10 meters from the laptop (enough to
cover a large room).

The person can use a set of vocal commands to interact
with the robot that will result in the following behaviours.
For Look at me, Nao will orient towards the person in the
environment using vision and audio. If the position of the
person is not known through vision (out of the FOV or
occluded), the robot will use SSL. If still the robot is not able
to estimate the position of the person, it will ask ”Where are
you?” and wait for vocal hints.

For Come to me, the robot approaches the person to a
fixed distance of 1 meter using the last estimated position
(Eq. 1). When the person is not in the FOV of the robot, the
command Turn to me is used to rotate the robot (not only the
head) towards the person and then establish visual contact.

For Turn around, the robot will perform a 180◦ turn. The
command Stop will terminate any operation that the robot
is performing, for instance if interrupting a turn or stopping
the approaching robot at a desired distance.

Fig. 5. Fall detection scenario with assistive humanoid robot in a home-like
environment.

When the person says Help me or when a fall is detected,
Nao will approach the person and ask whether assistance
is required (e.g., to stand up in case of fall). If the answer
is Yes, please or no vocal answer is detected, Nao can get
in contact with the person’s caregiver or relative for further
assessment of the situation. In the case of a fall, the system
will store the last 5 seconds of activity before the fall as an
RGB video that can be used to evaluate the seriousness of
the event.

In the future, we plan to conduct a usability study that
allows us to evaluate the system in a real-world setting, for
instance by studying the users’ acceptance of the assistive
Nao in terms of overall performance, human-robot commu-
nication, timing, and task sequence [6].

IV. DISCUSSION

In summary, we have presented a multi-modal system
embedded in a humanoid robot for an assistive scenario.
The robot integrates multiple sensor modalities to enhance
the perception and to detect situations of danger such as fall
events. Robot motor control is triggered by the interplay of
hearing and vision captured by an array of onboard sensors.
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The reported experiments in a home-like environment moti-
vate future work in several directions.

Different from the use of fixed or ambient sensors, mobile
robots can use motor capabilities to improve sensory-driven
perception and better adapt to complex environments. Multi-
sensory integration (MSI) can be advantageous for a variety
of reasons. One is that certain types of information can only
be gleaned from some modalities and not from others. This
is the case in our scenario for verbal information which is
only available in the auditory modality. A second reason why
MSI can be useful is that it provides redundancy which can
help improve accuracy and disambiguate. In our system, we
exploit this aspect of MSI when we integrate segmentation
from depth perception and sound cues to estimate the po-
sition of a person in the environment. This would be much
harder from either modality alone. Finally, it can be useful
to employ another type of sensor even if the information
gleaned through it could be provided by a different sensor in
principle: sometimes one modality just provides information
simply in a more appropriate form, as exemplified by our
use of the Nao’s sonar sensors for obstacle detection which
would be possible, at greater computational cost, using just
color vision or depth perception.

We plan to improve the reliability of our person local-
ization using more sophisticated and robust biologically-
inspired unisensory and multisensory localization modules
(based on work by Davila-Chacon et al. [20] and Bauer et
al. [21]). At the current state of the system, the depth sensor
and the stereo microphone must be wired to an external
processing unit. For a better mobility of the robot, these sen-
sors could be wired to an onboard processing unit and then
transmit the depth and audio information via WiFi for post-
processing in the cloud. From a navigation perspective, the
robot does not have any representation about the operational
environment. A possible extension is to provide Nao with
prior knowledge on the properties of the environment using
a ceiling camera [19] or a mechanism for self-localization
and mapping such as RatSLAM extended for humanoid
robots [24]. This would enhance Nao’s navigational ca-
pabilities for, e.g., a scenario with multiple rooms in a
residential context. Additionally, proxemic behaviours could
be explored for socially-acceptable scenarios to navigate
safely in a cluttered and dynamically changing domestic
environment [25].
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