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Abstract— Gesture recognition is an important task in
Human-Robot Interaction (HRI) and the research effort to-
wards robust and high-performance recognition algorithms is
increasing. In this work, we present a neural network approach
for learning an arbitrary number of labeled training gestures
to be recognized in real time. The representation of gestures
is hand-independent and gestures with both hands are also
considered. We use depth information to extract salient motion
features and encode gestures as sequences of motion patterns.
Preprocessed sequences are then clustered by a hierarchical
learning architecture based on self-organizing maps. We present
experimental results on two different data sets: command-like
gestures for HRI scenarios and communicative gestures that
include cultural peculiarities, often excluded in gesture recog-
nition research. For better recognition rates, noisy observations
introduced by tracking errors are detected and removed from
the training sets. Obtained results motivate further investigation
of efficient neural network methodologies for gesture-based
communication.

I. INTRODUCTION

Human beings perform gestures rather unconsciously in
everyday life, for instance, when we explain the shape of
an object or the way to a station. Thus, gestures provide
a useful visual complement to support language. Gestural
understanding is a significant part in our communication and
is often referred to as co-speech [1]. Gestures are also the
essential visual channel for hearing-impaired and deaf people
who must rely on sign language.

The underlying neural processes which are involved in
gesture understanding are still under investigation [2]. How-
ever, from a bio-psychological perspective, humans pay
attention to a particular object for tracking [3]. The retina
uses motion information to follow the region of interest, i.e.
the perceiver ultimately processes a trajectory [4]. This is
an effective way to separate the foreground from the back-
ground, thus attractive to be integrated in gesture recognition
systems. From different motion trajectories we can infer the
gestural meaning by classification.

In the last decades, researchers explored multiple ap-
proaches and used different devices to provide interfaces,
ranging from mouse-based tools to data gloves, hand- and
arm markers, and multi-camera setups. However, cables
and extra devices are quite cumbersome, and cost factors
and calibration issues additionally hinder a natural gesture
interface. Vision-based approaches provide the most intuitive
interfaces for the recognition of gestures without the use of
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invasive devices. On the other hand, they are characterized by
high computational demand and may therefore not perform
in real time. The emergence of new and cost-effective sensor
technologies such as Microsoft Kinect1 and ASUS Xtion2

simplifies access to color and depth information, allowing
better performance in terms of computational complexity for
estimating the position of objects in real-world coordinates.

We propose a learning framework for the recognition of
hand gestures with the following major interests:

1) An intuitive and robust interface for HRI using a depth
sensor and no other additional equipment;

2) The representation of different types of gestures, i.e.
simple commands and cultural co-speech signs, taking
into account not only hand positions but also, e.g., head
distance and arm angle;

3) The automatic segmentation and recognition of a set of
training gestures with low latency, providing real-time
characteristics.

For our approach, we extract hand motion from depth
map videos and encode gestures as hand-independent motion
sequences. We only extract information of the most salient
moving hand. In case that both hands are used, the type
of interaction between the hands is considered. To collect a
training set of gestures, the system is presented a number
of video clips from which the gestures are automatically
segmented. Motion sequences are then clustered by a two-
stage learning architecture based on self-organizing maps
(SOM) trained with labeled samples for classification pur-
poses. Firstly, noisy observations introduced by tracking
errors are detected and removed from the set of motion vec-
tors. Secondly, labeled sequences are processed through the
hierarchy of SOM networks in terms of motion trajectories.
An overall overview of the learning framework is depicted in
Fig. 1. We run experiments on two data sets with command-
like gestures for HRI scenarios and Italian communicative
gestures, each set with 10 different gesture classes.

II. RELATED WORK
Using depth information to develop a gesture-based digit

recognition system was proposed in [9]. Experiments in-
cluded a subject performing a gesture and at least one other
non-performing person in the background. The authors used
the RGB image to detect skin-color for hand- and face
recognition using histograms and motion information. Depth

1Kinect for Windows. http://www.microsoft.com/en-us/
kinectforwindows

2ASUS Xtion Pro Live. http://www.asus.com/Multimedia/
Motion_Sensor/Xtion_PRO_LIVE/
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Fig. 1. Overview of the HandSOM framework: feature extraction from depth information, preprocessing for the unsupervised detection of outliers and
the segmentation of gestures, and SOM-based hierarchical learning of gesture sequences.

information was used to estimate the hand position. For
the training, gesture data derived from subjects wearing a
green glove needed to generate expressive trajectories. While
testing the system this condition was excluded. The actual
classification was carried out using Dynamic Time Warping
(DTW), which due to the nature of this method accounts
for inter-user variability in the length of individual gesture
performance. The authors showed that their detector using
depth is comparable to a classification with the accurate
trajectories derived for training purposes. However, no au-
tomatic temporal segmentation is provided, thus the start-
and end frames needed to be manually labeled. In addition,
the gesture set was quite limited, so that no real HRI-scenario
could be established.

Using SOMs and modeling gestures as time-series was
combined in a Self-Organizing Markov Model (SOMM)
approach developed in [5]. Tracked hand coordinates and
hand direction, computed as the optical flow, were used as
input for the SOM network. The Best-Matching-Unit nodes
of the SOM grid served then as state trajectories in the
subsequent implemented Hidden Markov Model (HMM).
The system was tested using 30 artificial gestures, as the
goal was to account for intra- and inter subject variability in
gesture performance. In [6] the authors proposed a system
for hand gesture recognition which makes use of attention-
based properties of the human visual system. The authors
used saliency-maps computing potential hand candidates,
which were further integrated to provide the central-foci
features coding for the motion. and the classification with
a SVM. The gesture vocabulary consisted of 7 signs, e.g.
rectangle, performed frontally to the camera and with static
background. Start- and end frame were again annotated
manually.

A recent gesture interface for HRI comprising Growing
Neural Gas (GNG) and reinforcement learning was intro-
duced in [7]. Using 3D information from the Kinect sensor
an assistive robot should learn user specific motion and
commands. Three gestures were provided as initial steps
towards the development of the underlying scenario and im-
plementation. The motion descriptors were estimated using
the concept of dynamic instants (DI), which entail accelera-
tion information. The descriptors were then fed into a GNG

clustering procedure. Finally, the user provides feedback to
their system enabling the robot to perform the according
action. As the approach at an early stage, claimed by the
author as proof-of-concept, there is no thorough evaluation
of their architecture in terms of HRI-related scenarios.

III. MOTION REPRESENTATION

We extract motion properties that describe the dynamics
of gestures in terms of sequences of spatiotemporal features.
For this purpose, we consider a set of motion descriptors for
a given set of tracked body joints, i.e. hands and head. The
descriptors are encoded with a saliency-based approach and
subsequently processed as motion sequences.

We estimate the position of body joints from a 3D model
of the human skeleton. Body joints are represented as a point
sequence of real-world coordinates C = (x, y, z). Head and
hand joints are tracked as the 3D position of their estimated
centers of mass. We obtain the joints Ri and Li for the right
and left hand respectively and use them to calculate a set of
hand motion descriptors at time i. We compute the pixels’
difference Di = (dx, dy, dz) between two consecutive frames
for Ji and Ji−1, and then estimate the intensity of motion
with respect to the sensor as

Vi = {
dx

v
,
dy

v
,
dz

v
} (1)

where v =
√

(dx)2 + (dy)2 + (dz)2. To estimate the posi-
tion of a hand Ji with respect to the head on the image plane,
we firstly compute the polar angle between Ji and the head
joint Hi as

ϕi = arctan(
Jy −Hy

Jx −Hx
). (2)

We finally compute the hand-head distance as

hi =
√
(Hx

i − Jx
i )

2 + (Hy
i − J

y
i )

2. (3)

This approach allows to describe spatially articulated
gestures, in which not only motion but also the positions of
joints with respect to the body are relevant. This additional
joint provides therefore a reference for a more informative
hand position with respect to the upper body, important
for semantic gestures in human communication (e.g. Italian
gestures, where also the head is used as a reference point.).



In: Proc. of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN ’14),
pp. 981–986, Edinburgh, Scotland, UK (2014)

(a) (b) (c)

Fig. 2. Saliency-based gesture encoding and hand interactions: (a) Only the information from the most salient hand is encoded (Att.), (b) symmetric
interaction when moving hands in opposite directions and (c) joint (physical and symmetric) interaction on “washing hands” gesture.

A. Saliency-based Encoding

A number of gesture recognition models encode motion
information from both hands without taking into account
which hand is performing a gesture [8]. This common
approach may often add avoidable complexity to the model,
e.g. leading to motion representations of unnecessary higher
dimensionality. For our approach, we encode only the infor-
mation of the most salient hand in terms of apparent motion
(Fig. 2.a), which is more likely to attract the attention of the
observer. For gestures in which both hands are jointly used
we consider three types of interaction: physical, symmetric,
and joint interaction (Fig. 2.b-c). Physical interaction occurs
when the hands touch or overlap in the visual space as
perceived by an aware observer. On the other side, two
hands moving asynchronously or in opposite directions can
be linked by the semantic meaning of the specific gesture
being performed. Symmetric interactions aim to model the
cognitive process in which two hands, even if not perceptu-
ally overlapped, are tracked as a whole since they contribute
to a single gesture (Fig. 2.b). Joint interaction occurs when
both physical and symmetric properties are detected (Fig.
2.c).

For a tracked target at time i, we obtain the following
motion vector

Mi = (si, Vi, ϕi, hi, λi) , (4)

where si is the type of hand interaction (0=none,
1=physical, 2=symmetric, 3=joint), λi is the annotated
gesture label, and Vi, ϕi, hi are defined by Eq. 1, 2, and
3 respectively.

The purpose of our saliency-based encoding is threefold.
Firstly, we reduce the amount of information required to
represent a gesture. Secondly, we are able to capture hand-
independent gestures by considering the most active hand.
Lastly, we obtain a length-invariant representation of gestures
convenient for neural network based clustering.

B. Preprocessing of Gesture Sequences

To collect a data set of gestures, the system is presented a
set of video streams from which the gestures are extracted in
terms of motion vectors. Each video sequence contains a spe-
cific gesture being performed an arbitrary number of times.
After annotating gesture labels, we apply two preprocessing
steps: 1) detection and removal of outliers from extracted

motion vectors, and 2) segmentation of gestures from the set
of denoised motion vectors to create the training set.

The first step aims to address tracking errors that may lead
to outliers in the data. An outlier is seen as an observation
that does not follow the pattern suggested by dominating data
clouds [11]. We consider inconsistent changes in hand joint
velocity, e.g. isolated peak values, to be caused by tracking
errors rather than actual tracked motion. Therefore, we use
a SOM-based approach to detect and remove outliers from
the training and the test set (see Section IV).

The second step consists of the automatic segmentation
of gestures from the denoised motion vectors. The idea is to
keep only the motion vectors that belong to the execution
of a gesture, while removing the others. Our assumption
is that gestures are performed in a given area of interest,
where significant hand motion occurs during the training
sessions. For this purpose, we define a dynamic area of
interest expressed in terms of distance from the head with
the empiric threshold value

α = max(H)− σ(H) , (5)

where H is the set of hand-head distance values for a the
encoded hand joint, max(H) is the maximum value of H
(maximum distance from the head), and σ(H) is the standard
deviation. Thus, our training set includes only hand motions
(Eq. 4) for which the condition hi < α is satisfied. This
process leaves out motion vectors for which, e.g., hands are
hanging at the sides of the body.

IV. LEARNING FRAMEWORK

The SOM algorithm [12] has shown to be a compelling
approach for clustering motion expressed in terms of multi-
dimensional flow vectors [10], [11]. The traditional SOM is
unsupervised and allows to obtain a low-dimensional dis-
cretized representation from high-dimensional input spaces.
It consists of a layer with competitive neurons connected
to adjacent units by a neighborhood relation. The network
learns by iteratively reading each training vector and orga-
nizes the units so that they describe the domain space of input
observations. Each unit j is associated with a d-dimensional
model vector mj = [mj,1,mj,2, ...,mj,d]. For each input
vector xi = (x1, ..., xn) presented to the network, the best
matching unit (BMU) b for xi is selected by the smallest
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Euclidean distance as

b(xi) = argmin
j
‖xi −mj‖ . (6)

For an input vector xi, the quantization error qi is defined as
the distance of xi from b(xi). We consider two-dimensional
networks with units arranged on a hexagonal lattice in the
Euclidean space. Each competitive network is trained with a
batch variant of the SOM algorithm. This iterative algorithm
presents the whole data set to the network before any
adjustments are made. The updating is done by replacing the
model vector mj with a weighted average over the samples:

mj(t+ 1) =

∑n
i=1 hj,b(i)(t)xi∑n
i=1 hj,b(i)(t)

, (7)

where b is the best matching unit (Eq. 6), n is the number
of sample vectors, and hj,b(i) is a Gaussian neighborhood
function:

hb,i(x) = exp

(
−‖rb − ri‖2

2σ2(t)

)
, (8)

where rb is the location of b on the map grid and σ(t) is
the neighborhood radius at time t. Since the SOM algorithm
uses the Euclidean distance to measure distances between
vectors, variables with different range of values must be
equally important. To avoid range-biased clustering during
the training phase, we perform a standard score transforma-
tion to normalize the training vectors.

A. Outlier Detection

The presence of outliers in the training set may negatively
affect the SOM-based clustering by decreasing the sparsity of
the projected feature map. Therefore, the first SOM network
in our framework (Fig. 1) aims to remove outlier values
from extracted motion vectors (Eq. 4) with an unsupervised
scheme. This network is trained with values for hand velocity
Vi (Eq. 1) only, while the rest of the attributes are not taken
into account. The goal is to approximate the distribution of
the observations with a trained SOM. Outliers will tend to be
mapped into segregated units in the feature map. After the
training of the network has been completed, the training set is
processed again for detecting outliers (see [13] for a complete
description of the algorithm). If an outlier is detected, it
is removed from the training set. Using the trained SOM
network as reference, also outliers in the test set are detected
and removed.

B. Hierarchical SOM Learning

We propose a hierarchical SOM-based approach to cluster
gesture sequences. We first train the network M1 with motion
vectors (Eq. 4) from the denoised training set. After this
training phase, chains of labeled best matching units (Eq.
6) for ordered training sequences produce time varying
trajectories on the network map. We empirically define a
BMU trajectory for a training vector xi as

τi = (b(xi−2), b(xi−1), b(xi), λ(xi)) , (9)

where λ(xi) is the label of xi. We denote the set of all
trajectories for the training set X as T (X). The second
network M2 is trained with a supervised variant of the SOM
algorithm, where the inputs for the network are the labeled
training trajectories from T (X). This final step produces
a mapping with labeled gesture segments from consecutive
standalone samples. We compute the set of labeled trajectory
prototypes as

P = {〈pk, λ(pk)〉 : k ∈ [1..w]} , (10)

where w is the number of training trajectories.

C. Gesture Classification

At recognition time, new extracted samples are processed
separately. For the last three denoised observations, a new
test trajectory τi+1 is obtained from M1 and then fed to
M2. We then compute Pj+1 from M2 and return the label
λ(pj+1) associated to the unit b(pj+1). We consider the last
3 test sequence labels and calculate the statistical mode as
output label for the classified gesture as:

Mo(λ(pj+1), λ(pj+2), λ(pj+3)) . (11)

A new output label of a classified gesture will therefore be
returned every 9 observations, which corresponds to approx-
imately less than 1 second of captured motion. As shown
by our experiments, this approach significantly increases
classification accuracy.

V. EXPERIMENTAL RESULTS

Depth images were acquired with an ASUS Xtion sensor
installed on a fixed platform 1,40 meters above the ground.
The depth map resolution was 640x480 pixels and the
depth operation range was from 0.8 to 3 meters. The video
sequences were sampled at a constant frame rate of 30
Hz. The segmentation and tracking of the user, and the
estimation of body joints were addressed with the publicly
available OpenNI/NITE framework3. To reduce sensor noise,
we computed the median value of the last 3 measurements
resulting in a total of 10 frames per second.

For our experiments, we collected two data sets of labeled
gestures. The first data set consisted of a 10 command-like
gestures for HRI scenarios (Fig. 3) and the second was
composed of 10 common Italian communicative gestures
that introduce cultural peculiarities. Every gesture class was
performed 30 times by 4 different actors for a total of
1200 gestures for each data set. Single-hand gestures were
performed hand-independently and the distance from the
sensor varied from 1 to 3 meters. For a better understanding
of the dynamics of the considered gestures, a number of
experiments are reported on video4.

The system was trained and tested on the two data sets
separately. For the training sessions, we used 900 training
samples and 300 testing samples. During the recognition,
each gesture class was performed 30 times in a random order

3http://www.openni.org/software
4http://www.informatik.uni-hamburg.de/WTM/videos/

videos.shtml
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Fig. 3. Set of 10 gestures for hand-independent HRI scenario: hand interaction (colored squares) and hand motion trajectories (red arrows).

and at different sensor distances. Annotated ground truth data
was used to decide the successful recognition of the gesture,
i.e. when the detection took place between the first and last
frame of its performance. The SOM structure and the training
parameters are as described in [13]. To evaluate the impact
of tracking errors and outliers, we performed experiments
with denoised and raw training data.

Our results show that the system successfully recognized
gesture classes with high recognition rates. For our data
sets with HRI and Italian gestures we obtained averaged
recognition rates by 89% and 90% respectively. As shown
in Fig. 4 and 5, the removal of outliers from the training
data increased recognition by 14.7% and 13.8% respectively.
Misclassification mostly occurred among gestures that shared
similar motion properties or that were performed at signifi-
cant different speeds than during the training phase.

From a SOM perspective, gestures with very similar
representations will be mapped into close regions of the
subspace and will thus tend to be more easily misclassified.
For the evaluation we did not consider tracking conditions in
which at least one of the body joints couldn’t be estimated by
the tracking framework. In this case, the 3D position of the
joint would be missing, leading to the incorrect estimation
of the motion descriptors and therefore compromising the
training phase. To address this issue, the information of the
missing body joint could, for instance, be estimated as the
interpolation of the joint trajectory during the preprocessing
of the gesture sequence. On the other hand, our recognition
algorithm showed to be robust to noisily estimated joints
caused by tracking errors.

VI. DISCUSSION

We presented a neural network approach using motion
sequences for learning and recognizing gesture. The choice
of our gesture data set was motivated on the one hand for
the application in HRI scenarios, where verbal input like

”Turn around” is replaced by a gestural command. On the
other hand we also addressed gestures in the context of com-
munication (iconic gestures). For the gestures serving as co-
speech, we chose different Italian gestures, which necessarily
make also use of head information. With that, we could show
the flexibility of our gesture recognition system concerning
different information input and gesture types. In addition,
we introduced physical and symmetric hand gestures to
differentiate usage of one or more hands to perform a gesture.
We used motion information and an attention-driven scheme
for tracking spatiotemporal properties of gesture sequences.
Two preprocessing steps were implemented to reduce sensor
noise in the data and extract gesture sequences from video
streams. Our system does not need to compute skin-color
regions, which makes our approach more robust to different
skin types and prevents additional processing steps. One mo-
tivation against the use of biologically inspired approaches is
in fact the time-consuming training procedures. Our system
provides real time recognition while concurrently taking
into account temporal information without demanding high
training times. This aspect is significant, as in a HRI scenario
time delays hinder fluent communication. For example, a
robot should react on a command the way humans do, i.e.
turning its head to an object being pointed by a person.

Generally, the set of gestures used for recognition ex-
periments is rather constrained. For real scenarios in HRI,
detecting only ciphers as in [9] is insufficient, since their
expressiveness is quite limited. Rather random or unnatural
gestures [5] or the pure differentiation between two gestures
cannot be adequately employed. Our effort in recognizing
gestures aims to control a humanoid robot with visual
commands or enable it to understand gestures as part of the
language. Although interesting scenarios for gestures have
been shown in, e.g., [6], we claim that research in the field of
gesture recognition should provide more sensible operations
to enable the integration of humanoid robots and other
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Fig. 4. Evaluation on the recognition of 10 HRI gesture classes with 300
testing samples for raw and denoised training data.
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Fig. 5. Evaluation on the recognition of 10 Italian gesture classes with
300 testing samples for raw and denoised training data.

supporting technologies in our everyday lives. Therefore, we
aim to test stable systems on novel robotic platforms.

At the current stage, our implementation requires the
performer to stand frontal to the sensor. However this is
not necessarily a limiting factor, since in gesture-based
communication persons generally face each other.

VII. CONCLUSION AND FUTURE WORK

Our work contributes to the research area of gesture
recognition in several aspects. We showed how the combi-
nation of depth information for motion extraction and the
use of neural network architectures can be a prominent
tool for recognition of gesture sequences with real time
characteristics. In this context, the integration of biological
mechanisms to computer vision approaches has shown to be
a powerful approach to increase robustness and performance
of a number of HRI-oriented applications. Our system can
recognize a set of learned command-like gestures and Italian
co-speech gestures, which were of major interest in our work.
At the current stage, the system provides a natural and intu-
itive interface without the need of additional equipment, e.g.
data gloves. The recognition of gestures is hand-independent
and gestures with the use of both hands were also considered.
Our framework can easily be extended to work on multi-user
scenarios as in [13].

For future experiments we will extend our gesture vo-
cabulary both in terms of command-like gestures and co-
speech. Our goal is to investigate the bidirectional influence
of gestures for complementing language and vice versa, i.e.
how auxiliary phrases such as ”Grasp the bottle” are helpful
in learning and understanding gestures. As a further exten-
sion of our recognition framework, we could also consider
situations in which more persons are present in the scene.

From the neural processing point of view, brain activity
in the frontal and the temporal lobe has been found for
both gestures and languages [14]. These findings imply that
both modalities are processed in the same areas, thus they
may have an influence on each other. Future neural network
approaches could consider these crucial aspects in terms of
development of multi-modal neural architectures to increase
the robustness and reliability in human-robot communication.
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