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Abstract— Open-ended learning is fundamental in au-
tonomous robotics for the incremental acquisition of knowledge
through experience. However, most of the proposed compu-
tational models for action recognition do not account for
incremental learning, but rather learn a batch of training
actions without adapting to new inputs presented after training
sessions. Therefore, this is the need to provide robots with the
ability to incrementally process a set of available perceptual
cues and to adapt their behavioural responses over time. In
this work, we propose a neural network architecture with
multilayer-predictive processing for incrementally learning ac-
tion sequences. Our architecture comprises a hierarchy of self-
organizing networks that progressively learn the spatiotemporal
structure of the input using Hebbian-like plasticity. Along the
hierarchical flow with increasingly larger temporal receptive
fields, feedback connections from higher-order networks carry
predictions of lower-level neural activation patterns, whereas
feedforward connections convey residual errors between the
predictions and the lower-level activity. This mechanism is used
to modulate the amount of learning necessary to adapt to the
dynamic input distribution and develop robust action represen-
tations. We present a simplified hierarchical architecture with
two layers and describe a number of planned experiments for
classifying human actions in an open-ended learning scenario.

I. INTRODUCTION

The robust processing of dynamic input patterns from
video and audio streams plays a crucial role for learn-
ing robots engaged in tasks such as action recognition,
detection of dangerous events (e.g., falling) and socially-
aware communication through flexible human-robot interac-
tion (e.g., multimodal interaction from audiovisual input).
In this context, the design of learning methods that account
for open-ended adaptive learning has been shown to be very
challenging.

Computational models inspired by the hierarchical orga-
nization of the cerebral cortex have become increasingly
popular for learning complex visual patterns such as ac-
tion sequences from video. In particular, neural network
approaches with deep architectures have shown very good
results on a set of benchmark datasets containing daily
actions [1, 2]. The terminology deep architecture generally
refers to models that use a number of hierarchically-arranged
layers (generally more than two) for learning latent struc-
tures in the input at different spatiotemporal scales. This
processing scheme is in agreement with neurophysiological
evidence that supports the presence of increasingly larger
spatial and temporal receptive fields along the visual and
auditory cortical pathways [3, 4]. Despite the number of
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neuroanatomical studies on the organization and connectivity
of cortical areas responsible for the processing of dynamic
stimuli [5, 6, 7], so far no common computational framework
has been introduced that parsimoniously integrates well-
established biological facts in terms of architecture and
learning procedures [8, 9]. Different solutions have been
proposed based on task-oriented neural network modelling,
typically relying on a trade-off between biological findings
and simplifications aimed to yield good performance and
computational feasibility.

In the realm of action recognition, a large number of
computational models have been proposed to learn a set
of training actions with the use of hierarchically-arranged
network layers [10, 11, 1, 2]. For instance, in Parisi et
al. [2] we proposed a hierarchical neural approach for
the self-organizing integration of pose-motion features from
action videos. The model consists of growing self-organizing
networks arranged in a hierarchical fashion to obtain pro-
gressively generalized representations of visual inputs with
increasingly larger temporal windows. Each network in the
hierarchical flow is fed with a set of neural activation
trajectories from the previous layer. A variant of unsuper-
vised learning with two labelling functions was proposed
to extend the model for classification. Experiments have
shown state-of-the-art results on two benchmarks of daily
actions captured with depth sensors, i.e. KT full-body action
dataset [12] and CAD-60 [13].

These and other similar approaches have been designed for
learning a batch of training actions, thus implicitly assuming
that a training set is available. Ideally, this training set
contains all necessary knowledge that can be readily used
to predict novel samples in a given domain. However, such
a training scheme is not suitable in more natural scenarios
where an artificial agent should incrementally process a set of
perceptual cues that become available over time. This kind
of learning paradigm, referred to as open-ended or incre-
mental learning, is considered to be essential for cognitive
development and plays a key role in autonomous robotics for
the progressive acquisition of knowledge through experience
and the development of meaningful internal representations
during training sessions [14, 15].

It has been argued that hierarchical predictive models
with interactions between top-down predictions and bottom-
up regression may provide a computational mechanism to
account for the learning of dynamic input distributions in
an unsupervised fashion [1]. Predictive coding [16, 17] has
been widely studied for understanding many aspects of brain
organization and, in particular, it has been proposed that the



Fig. 1. Diagram of our two-layer architecture with GWR networks. Inter-layer connectivity is implemented with feedforward (purple) and feedback (green)
connections modulating the amount of learning required at each hierarchical stage. In G2, recurrent connectivity is used to learn temporal dependencies
of neural activation trajectories from G1. Furthermore, associative connections (orange) between visual representations and action labels are learned for
classification purposes. Feedback from the ”Action labels” layer is used in G1 to modulate the learning of the set of prototype neurons necessary to
correctly classify action sequences in G2.

visual cortex can be modelled as a hierarchical network with
reciprocal connections where top-down feedback connections
from higher-order cortical areas convey predictions of lower-
order neural activity and bottom-up connections carry the
residual prediction errors. Tani et al. [18, 19] proposed that
the generation and recognition of sensory-motor patterns
for on-line planning in a robot learning scenario can be
obtained by using recurrent neural network models extended
with prediction error minimization. However, neural network
models that implement a predictive learning scheme to
achieve incremental, open-ended learning have not been yet
fully investigated.

In this work, we propose a neural architecture for the
incremental learning of action sequences. Our architecture
comprises a two-stage hierarchy of growing self-organizing
networks for processing action features with increasing tem-
poral receptive windows. The network in the first layer
learns a dictionary of time-independent action features, while
the second network is equipped with recurrent connectivity
to learn neural activation patterns from the first layer. We
introduce a novel type of recurrent self-organizing learn-
ing algorithm (the Gamma-GWR) and an architecture with
reciprocal connectivity based on a hierarchical predictive
processing scheme for modulating the amount of learning
required to learn action representations in an incremental
fashion. In an open-ended learning scenario, the networks
will adapt to the dynamic input distribution, whereas they
will remain stable if the distribution becomes stationary.
For simplicity, we present a neural architecture with two
layers (while the model could be extended to more layers)
and describe a number of experiments that we are planning
to conduct for the task of open-ended learning of action
sequences from multimodal streams (audiovisual input) using
an extended version of the architecture.

II. LEARNING ARCHITECTURE

Our learning model consists of two hierarchically-arranged
Growing When Required (GWR) networks [20]. The first
network layer G1 learns a dictionary of prototype, time-
independent action features using the standard mechanism
of GWR learning. The second network layer G2 is equipped

with recurrent connectivity to learn temporal dependencies
of the input in terms of neural activation trajectories from
G1. This hierarchical flow yields specialized neurons encod-
ing information accumulated over larger temporal windows.
We implement feedforward (bottom-up) and feedback (top-
down) connectivity following the predictive coding principle
for modulating the amount of learning required to adapt
to dynamic input distributions and developing stable action
representations. For classification purposes, the second net-
work layer is equipped with associative connections between
unsupervised visual representations and action labels. The
feedback from the Action labels layer is used in G1 to mod-
ulate the learning of the set of prototype neurons necessary
to correctly classify action sequences in G2. The overall
architecture is illustrated by Fig. 1. For our learning scenario,
we assume that a set of visual features describing relevant
spatiotemporal properties of the input becomes available over
time, e.g. 3D body joints from depth map video sequences
for human action recognition.

A. Incremental Learning of Topographic Maps

Topographic maps exhibiting experience-driven develop-
ment are a common feature of the cortex for processing
sensory inputs [21, 22]. Different models of neural self-
organization have been proposed to resemble the dynamics
of basic biological findings on Hebbian-like learning and
map plasticity (e.g, [23, 24]). In this paper, we focus on
a particular type of self-organizing network for incremental
learning – the Growing When Required (GWR) network [20],
composed of a set of neurons with their associated weight
vectors linked by edges. The activity of a neuron is computed
as a function of the distance between the input and its weight
vector. During the training, the network dynamically changes
its topological structure to better match the input space using
competitive Hebbian learning [25].

Different from other incremental models of self-
organization that create new neurons at a fixed growth
rate (e.g., Growing Neural Gas (GNG) [24]), the GWR-based
learning process creates new nodes whenever the activity
of trained neurons is smaller than a given threshold. The
amount of activation at time t is computed as a function
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Fig. 2. Comparison of GNG and GWR: a) number of neurons, b) quantization error, and c) average activation and firing counter (GWR only) through
30 training epochs for the Iris dataset (150 four-dimensional samples).

of the distance between the current input xt and its best-
matching neuron wbt :

at = exp(−‖xt − wbt‖). (1)

Additionally, the network implements a firing counter η ∈
[0, 1] to express how frequently a neuron wi has fired so
that existing neurons are sufficiently trained before new ones
are created. This mechanism creates a larger number of
neurons at early stages of the training and then tunes the
weights through subsequent training iterations (epochs). A
comparison between GNG and GWR learning in terms of the
number of neurons, quantization error (average discrepancy
between the input and representative neurons in the network),
and parameters modulating network growth (average network
activation and firing rate) is shown in Fig. 2 over 30 training
epochs for the Iris dataset1. Such a learning behaviour is
particularly convenient for incremental learning scenarios
since neurons will be created to promptly distribute in the
input space, thereby allowing a faster convergence through it-
erative fine-tuning of the topological map. It has been shown
that GWR-based learning is particularly suitable for novelty
detection and cumulative learning in robot scenarios [26].

The standard formulation of the GWR algorithm does
not account for temporal sequence processing as required
for action recognition. Therefore, it is necessary to extend
the algorithm with recurrent connectivity while preserving
desirable GWR learning properties such as computational
efficiency and network convergence.

B. The Gamma-GWR Network

In recent work [27] we presented an extension of the
standard GWR network for context learning using recursive
connectivity as introduced in [28], and showed that our
recursive GWR model outperforms other self-organizing
networks that implement similar context learning schemes
(e.g. [29]). This approach for temporal processing equips
each neuron with a context descriptor so that the activation
function is defined by the linear combination of activations
driven by the current input and the previous timesteps. Both
the weights and context descriptors of the neurons lie in the
same feature space as the input.

1http://archive.ics.uci.edu/ml/datasets/Iris

In this work, we introduce a recursive GWR network that
equips each neuron with an arbitrary number of context
descriptors to increase the memory depth and temporal res-
olution following the idea of a Gamma memory model [30].
A similar approach has been previously applied to Growing
Neural Gas learning showing good results in nonlinear time
series analysis [31]. Following previous formulations of
context learning, the activation of the network with a K-order
Gamma memory becomes

di(t) = αw · ‖xt − wi‖2 +

K∑
k=1

αk · ‖Ck(t)− cik‖2, (2)

Ck(t) = β · cIt−1

k + (1− β) · cIt−1

k−1 ∀K = 1, ...,K, (3)

where α, β ∈ (0; 1) are constant values that modulate the
influence of the current input and the past, and cIt−1

0 ≡ wIt−1

with random cI0k at t = 0. It has been shown that the mean
memory depth is D = K/(1−β) and its temporal resolution
is R = 1 − β. Therefore, both depth and resolution are
modulated by the value of β [31]. To be noted is that in
this recursive version of the GWR algorithm, the activation
function (Eq. 1) is replaced with at = exp(−di(t)).

The training procedure of the proposed Gamma-GWR
is illustrated by Algorithm 1. This training algorithm does
not impose a specific criterion to stop the training of the
network. Typically, a maximum number of training epochs
can represent a convenient choice if a batch of inputs is
available. However, if we assume that the distribution of
the inputs is dynamic, then this criterion is no longer valid.
Thus, it is necessary to adopt a mechanism that allows to
keep learning novel input in open-ended learning scenarios
while guaranteeing an acceptable degree of stability when
the distribution becomes stationary.

C. Predictive Coding and Open-Ended Learning

It has been argued that predictive coding [16, 17] provides
a framework for explaining the hierarchical reciprocally con-
nected organization of the cortex. Thus, the question arises
on how this scheme may be used to provide a mechanism that
learns dynamic stimuli distributions in a hierarchical fashion.
More specifically, we are interested in a mechanism for
achieving open-ended learning along a hierarchy of adaptive



Algorithm 1 Gamma-GWR.
1: Start with a set of two random nodes, A = {w1,w2}

with context vectors cik for k = 1, ...,K, i = 1, 2.
2: Initialize an empty set of connections E = ∅.
3: Initialize K empty global contexts Ck = 0.
4: At each iteration, generate an input sample xt.
5: Select the best and second-best matching neurons

(Eq. 2):
b = arg mini∈A di(t), s = arg mini∈A/{b} di(t).

6: Update contexts Ck for next time step (Eq. 3).
7: Create a connection E = E∪{(b, s)} if it does not exist

and set its age to 0.
8: If (exp(−db(t)) < aT ) and (ηb < fT ) then:

Add a new node r (A = A ∪ {r}):
wr = 0.5 · (wb + xt), crk = 0.5 · (Ck(t) + cik), ηr = 1,

Update edges between neurons:
E = E ∪ {(r, b), (r, s)} and E = E/{(b, s)}.

9: If no new node is added, update weight and context of
the winning node and its neighbours i:

∆wb = εb · η(b) · (xt − ws),
∆wi = εn · η(i) · (xt − wi),
∆cbk = εb · η(b) · (Ck(t)− csk),
∆cik = εn · η(i) · (Ck(t)− cik), with 0 < εn < εb < 1.

10: Increment the age of all edges connected to b of 1.
11: Reduce the firing counters of the best-matching neuron

and its neighbours i:
ηb = ηb + (τb · κ · (1− ηb)− τb),
ηi = ηi + (τi · κ · (1− ηi)− τb),
with τ , κ constants controlling the curve behaviour.

12: Remove all edges with ages larger than µmax and
remove nodes without edges.

13: If the stop criterion is not met, repeat from step 4.

networks and modulating the amount of learning required at
each stage so that robust representations of visual inputs can
develop in an unsupervised fashion.

In the predictive coding model of the visual cortex [16],
higher-level neurons attempt to predict responses of lower-
level neurons through feedback (top-down) connections,
while lower-level neurons send forward the prediction error
and the actual neural activity via bottom-up connections.
As one ascends the hierarchy, neurons predict and estimate
signal properties at a larger spatiotemporal scale, as sup-
ported by neurophysiological evidence suggesting increas-
ingly larger spatial and temporal receptive fields along the
cortical pathways [3, 4].

Given two contiguous network layers GL−1 and GL,
neural activations from GL−1 will be sent to GL via feed-
forward connections. GL should be able to encode temporal
dependencies of the input using neural activation trajec-
tories from the previous layer according to the activation
function (Eq. 2). Therefore, we can assume that at each
timestep t the layer GL will predict a set of sequence-
selective inputs from GL−1. This prediction will be sent to
GL−1 via a feedback connection to estimate the prediction

error, which is then sent forward to GL. In our approach, this
is implemented by comparing actual neural activations r from
GL−1 to their prediction r̃ computed as the recursive retrieval
of learned sequences in GL, so that the network is trained
until the difference (r− r̃) is smaller than an error threshold.
Convenient threshold values should be chosen so that the
layers adapt to dynamic input (yielding higher prediction
errors) while showing convergence with stationary input.

D. A Predictive Architecture for Incremental Learning

In our 2-layer architecture (Fig.1), the first network layer
G1 receives as input a set of visual features and learns
a dictionary of prototype neurons encoding spatial (single-
frame) properties. The second layer G2 encodes temporal
dependencies from consecutive frames in terms of neural
activation trajectories from the previous layer. The order
K of the memory of G2 expresses the number of neural
activations from the previous layer that leak into the acti-
vation of the current layer (Eq. 2). Therefore, G2 processes
neural activations from G1 for K+1 timesteps. If we assume
input at 10 frames per second and a network layer G2 with
K = 9, then a neuron in G2 encodes a sequence snapshot
of 1 second.

Each neuron in the Gamma-GWR model stores a set of K
context descriptors that we use to efficiently compute neural
activation predictions. We assume that a network predicts
neural activity from a previous layer if the former is able
to recursively reconstruct the input of the latter for a given
temporal window. More specifically, given a network layer
GL with a K-order memory, the recursive reconstruction of
the input from GL−1 at time t from the last K+1 timesteps
is given by

r̃t =< wb, c1b , ..., c
K
b >, b = argminidi(t). (4)

Given the sequence of neural activations rt from GL−1 at
time t, the prediction error is computed as

et = ‖rt − r̃t‖. (5)

This prediction error is sent forward to GL that keeps
learning if Et is greater than an error threshold eLT .

E. Action Classification

Action representations emerge hierarchically through the
unsupervised training of GWR networks. For classification
purposes, action labels from training samples are attached
to neurons in the last layer. Therefore, we use an extension
of the unsupervised GWR learning with two labelling func-
tions [2]: one for the training phase and one for predicting the
label of unseen samples. Given a set L with j action labels,
each neuron in G2 will be linked to one of these action labels
according to the label of the training sample λ(xi) ∈ L. For
G2 with K = 9, an action label will be predicted for each
segment of 10 frames with a sliding window scheme.

While the growth of G2 is modulated by its capability to
predict neural activation sequences from G1, the performance
of the architecture in terms of the correct classification of
sequence labels is used to modulate the growth of G1. More



specifically, feedback connectivity from the ”Action labels”
layer will have a direct influence on the growth rate of G1

so that a sufficient number of prototype neurons are created
as a dictionary of time-independent primitives subsequently
used to learn spatiotemporal statistics of the input. In each
layer, an error measure is used to modulate the amount of
learning (update of aT and additional training epochs). In
the case of G2, the activation threshold will be increased if
the prediction error (Eq. 5) exceeds an error threshold. A
convenient threshold should take into account a reasonable
prediction error tolerance for learned temporal dependencies,
linking the choice of this error threshold to the activation
threshold (since both the error and the activation are a
function of input–neuron discrepancies). In the case of G1,
the error measure used to update the growth rate is based on
the classification performance of the neurons in G2 in terms
of correct neuron–label associations.

III. PLANNED EXPERIMENTS

The aim of the experiments is to explore different param-
eters that yield 1) a convenient trade-off between learning
adaptability and network convergence, and 2) a good clas-
sification accuracy. For this purpose, the following aspects
should be taken into careful consideration.

The two parameters modulating the growth rate of the
networks are the activation threshold and the firing rate
threshold (Fig. 2.c), with the former having stronger in-
fluence. The activation threshold aT establishes the maxi-
mum discrepancy (distance) between the input and its best-
matching neuron in the network. For larger values of aT , the
discrepancy expressed by Eq. 1 will be smaller. Intuitively,
the average discrepancy between the input and the network
should decrease for a larger number of neurons. On the other
hand, there is not such a straightforward relation between the
number of neurons and the classification performance. This
is because the classification process consists of predicting
the label of novel samples by retrieving attached labels to
the inputs’ best-matching neurons, with the actual distance
between the novel inputs and the selected neurons being
irrelevant for this task. Therefore, a convenient value for
aT should be chosen by taking into account the distribution
of the input and, in the case of a classification task, the
classification performance.

Additionally to the above-mentioned parameters, also the
maximum age of the connections between neurons must be
considered. At each iteration, when a neuron is fired (Eq.
1 or 2), the age of the connections from the neuron to its
neighbours is set to 0, while the age of the rest of the
connections is increased by a value of 1. This mechanism
removes old connections and neurons without any connection
as the result of neurons that have not been fired for a while,
e.g. in the case of dynamically distributed input. On the other
hand, removing a neuron from the network means that the
information learned by that unit is permanently forgotten.
Therefore, a convenient maximum age of connections µmax

must be set so that the network removes neurons that
are no longer fired while avoiding catastrophic forgetting,

i.e. forgetting previously learned representations during the
process of learning new ones.

A. Action Datasets

We plan to evaluate our architecture with two action
datasets:

KT Full-Body Actions Dataset [12] comprising 10 full-
body actions performed by 13 participants with a normal
physical condition. Participants were naive as to the purpose
of the experiment and were recorded individually in a home-
like environment with a Kinect sensor. Depth maps were
sampled with a VGA resolution of 640x480 and a constant
frame rate of 30 Hz. The dataset has periodic actions
(standing, walking, jogging, sitting, lying down, crawling)
and goal-oriented actions (pick up object, jump, fall down,
stand up).

Weizmann Dataset [32] containing 90 sequences with 10
actions (walk, run, jump, gallop sideways, bend, one-hand
wave, two-hands wave, jump in place, jumping jack, and
skip) performed by 9 subjects. Sequences are sampled at
180x144 with static background and are 3 seconds long. For
our experiments, we will use aligned foreground body shapes
by background subtraction included in the dataset.

In addition to evaluating the performance of our system
in terms of classification accuracy for these two datasets,
it would also be interesting to investigate how these two
different representations of human motion (i.e. 3D skeleton
models and 2D segmented body silhouettes) influence the
formation of topographic maps and the overall learning
dynamics.

IV. CONCLUSIONS AND FUTURE WORK

We proposed a self-organizing hierarchy of growing neural
networks with reciprocal connectivity to develop robust
action representations in an open-ended fashion. We plan to
conduct a set of experiments with datasets containing human
actions and evaluate the performance of our system with
respect to batch-learning versions. We presented a simplified
neural architecture based on hierarchical predictive process-
ing, while the convenient values of the parameters modulat-
ing the adaptation to dynamic input and learning convergence
are subject to ongoing investigation. Good results would
motivate future work in several directions. For instance,
we could apply the proposed reciprocal connectivity to a
more complex neural architecture such as a self-organizing
model for the integration of pose-motion features from two
converging processing pathways [2].

We are planning to use hierarchical self-organizing learn-
ing to obtain robust multimodal action representations from
low-level visual and auditory cues. In our current approach,
we have assumed that the labels of the training samples
are available and correct. In order to foster a more natural
learning scenario, action labels could be acquired from
speech recognition with action words being learned in a
hierarchical fashion from low-level auditory cues. An addi-
tional research direction is to extend the associative learning
scheme between visual representations of action segments



and action labels so that robust action–to–label associations
can develop also in the sporadic absence of training labels
or a given amount of label noise.

In this paper, we have proposed open-ended learning
in terms of prediction-driven neural dynamics with action
representations emerging from the interplay of feedforward–
feedback connectivity in a self-organizing hierarchy. How-
ever, we have not taken into account other important prin-
ciples that play a role in open-ended learning such as
the influence of reward-driven motivational and attentional
functions [33], which will be subject of future research.
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