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Abstract Falls represent a major problem in the public health care domain,
especially among the elderly population. Therefore, there is a motivation to provide
technological solutions for assisted living in home environments. We introduce a
neurocognitive robot assistant that monitors a person in a household environment.
In contrast to the use of a static-view sensor, a mobile humanoid robot will keep the
moving person in view and track his/her position and body motion characteristics.
A learning neural system is responsible for processing the visual information from a
depth sensor and denoising the live video stream to reliably detect fall events in real
time. Whenever a fall event occurs, the humanoid will approach the person and ask
whether assistance is required. The robot will then take an image of the fallen
person that can be sent to the person’s caregiver for further human evaluation and
agile intervention. In this paper, we present a number of experiments with a mobile
robot in a home-like environment along with an evaluation of our fall detection
framework. The experimental results show the promising contribution of our sys-
tem to assistive robotics for fall detection of the elderly at home.

1 Introduction

Falls represent a major concern in the public health care domain, especially among
the elderly population. According to the World Health Organization, fall-related
injuries are common among older persons and represent the leading cause of pain,
disability, loss of independence and premature death [1]. Although fall events do
not necessarily cause a fatal injury, fallen people may be unable to get up without
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assistance, thereby resulting in “long lie” complications such as hypothermia,
dehydration, bronchopneumonia, and pressure sores [2]. Moreover, fear of falling
has been associated with a decreased quality of life, avoidance of activities, and
mood disorders such as depression (among fallers and non-fallers) [3].

As a response to increasing life expectancy, plenty of research has been done to
provide technological solutions for supporting living at home and smart environ-
ments for assisted living. The motivation of assistive fall systems is the ability to
promptly report a fall event and by this enhancing the person’s safety perception
and avoiding the loss of confidence due to functional disabilities. Recent systems
for elderly care aim mostly to detect hazardous events such as falls and allow the
monitoring of physiological measurements (e.g. heart rate, breath rate) with the use
of wearable sensors to detect and report emergency situations in real time [4, 5].
Vision-based fall detection is currently the predominant approach due to the con-
stant development of computer vision techniques that yield increasingly promising
results in both experimental and real-world scenarios. Additionally, in the last half
decade the advent of low-cost depth-sensing devices such as the Microsoft Kinect
[6] and ASUS Xtion Live [7] has led to a great number of vision-based applications
using depth information instead of, or in combination with, color information. In
this setting, the use of machine learning and neural network approaches has been
shown to be an appropriate methodology to achieve knowledge generalization of a
set of training activities for the classification of unseen situations [8], and the
detection of abnormal behaviors such as fall events in domestic environments [9].

Contrary to fixed sensors, mobile assistive robots may be designed to process the
sensed information and undertake actions that benefit people with disabilities and
seniors in a residential context. There exists an increasing number of ongoing
research projects using assistive robotics in smart environments to provide tools for
self-care, independence at home, and telematic diagnosis. Moreover, advanced
robotic technologies may encompass socially-aware assistive solutions for inter-
active robot companions, able to support basic daily tasks of independent living and
enhance user experience through human-robot interaction (e.g. dialogues and vocal
commands). Recent studies support the idea that the use of socially assistive robots
leads to positive effects on the senior’s well-being in domestic environments [10].
On the other hand, the use of robotic technologies brings a vast set of challenges
and technical concerns.

In this work, we introduce a humanoid robot assistant that monitors a person in a
household environment and reports abnormal user behavior such as a fall event.
The underlying motivation is that the robot keeps the person in the scene while
he/she performs daily activities, thereby anonymously tracking the user’s position,
body posture, and motion characteristics. The processed visual information is fed
into the neural system which is responsible for triggering alarms in case a fall is
detected. Whenever a fall event occurs, the humanoid will approach the user and
ask whether assistance is required. The robot will then take a picture of the scene
that can be sent to the user’s caregiver or relatives for telematic evaluation.

This chapter is organized as follows. In Sect. 2, we provide an overview on the
state of the art in fall detection, in particular vision-based approaches using depth
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sensors and assistive robotics. In Sect. 3, we introduce our learning-based neural
framework for detecting abnormal events. We show experiments in a home-like
environment and an evaluation of the system for a person falling down or crawling.
In Sect. 4, we present an assistive humanoid robot for detecting fall events in a
domestic scenario. We first depict an overview of our system and then go into detail
about the software, hardware, and the communication interface. We conclude in
Sect. 5 with a discussion on open issues in fall detection, trends and challenges for
assistive robots, and future work directions for aging at home systems.

2 Trends in Fall Detection

Broadly speaking, a fall detection system can be defined as an assistive service with
the main goal to promptly report a fall event. From a technical perspective, this
service represents a pervasively challenging task in real-world scenarios in terms of
reliability and robustness, since it raises a vast set of issues and technological
concerns. As reported by an extensive number of works in the literature, fall
detection systems may be designed, implemented, and evaluated on the basis of a
manifold of approaches using different types of sensing devices and methodologies
to process the sensed information.

The purpose of this section is to provide a concise overview of the state of the art
in fall detection technologies with a particular focus on vision-based approaches,
the developing use of low-cost depth sensing devices for 3D tracking, and emerging
technologies in assistive robotics for aging at home and telematic caregiving.

2.1 Fall Detection Systems

There seems to exist an agreed taxonomy in the literature that classifies fall
detection systems into two main categories according to the type of sensor used to
monitor the user: wearable-based and ambient-based approaches [11, 12].

Wearable-based approaches relate to the use of small electronic devices that can
be worn by the user, for instance, on top of clothing or as accessories. The most
extensively used wearable devices consist of accelerometers and gyroscopes
attached to the body that measure the user’s location and motion. There is a vast
number of applications that use these measurements to evaluate the user’s gait and
balance, and assess the risk of a fall event [13–16]. In the last years, this trend has
seen a significant boost due to the availability of low-cost sensors embedded in
smartphones [17–20]. On the other hand, ambient-based approaches relate to the
use of sensing devices deployed in the environment, thereby not requiring the user
to wear any sensor. Fall detection systems of this kind, also referred to as
non-intrusive and context-aware, may encompass a wide spectrum of sensor types
such as cameras, microphones, pressure and floor sensors [21, 22].
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We focus on the use of cameras for vision-based fall detection with increasingly
promising results in both experimental and real-world scenarios. Lee and Mihailidis
[23] presented a vision-based method with a ceiling camera for monitoring falls at
home. The authors considered falls as lying down in a stretched or tucked position.
The system accuracy was evaluated with a pilot study using 21 subjects consisting
of 126 simulated falls. Personalized thresholds for fall detection were based on the
height of the subjects. The system detected fall events with 77 % accuracy and had
a false alarm rate of 5 %. Miaou et al. [24] presented a customized fall detection
system using an omni-camera for capturing 360° scene images. Falls were detected
based on the change of the ratio of people’s height and width. Two scenarios were
used for the detection: with and without considering user health history, for which
the system showed 81 and 70 % accuracy respectively. Rougier et al. [25] presented
a method for fall detection by analysing human shape deformation in video
sequences. Falls were detected from normal activities using a Gaussian mixture
model with 98 % accuracy. The overall system performance increased when taking
into account the lack of significant body motion after the detected fall event. Liu
et al. [26] detected falls considering privacy issues, thereby processing only human
silhouettes without featural properties such as the face. A k-nearest neighbor
(kNN) algorithm was used to classify the postures using the ratio and difference of a
body silhouette bounding box. Recognized postures were divided into three cate-
gories: standing, temporary transitional, and lying down. Experiments with 15
subjects showed a detection accuracy of 84.44 % on fall and lying down events.

In a multi-camera scenario, Cucchiara et al. [27] presented a vision system with
multiple cameras for tracking people in different rooms and detecting falls based on
a hidden Markov model (HMM). People tracking was based on geometrical and
color constraints and then sent to the HMM-based posture classifier. Four main
postures were considered: walking, sitting, crawling, and lying down. When a fall
was detected, the system triggered an alarm via SMS to a clinician’s PDA with a
link to live low-bandwidth video streaming. Experiments showed that occlusions
had a strong negative impact on the system’s performance. Hazelhoff et al. [28]
detected falls using two fixed perpendicular cameras. The foreground region was
extracted from both cameras and the principal components (PCA) for each object
were computed to determine the direction of the main axis of the body and the ratio
of the variances. Using these features, a Gaussian multi-frame classifier was used to
recognize falls. In order to increase robustness and mitigate false positives, the
position of the head was taken into account. The system was evaluated also for
partially occluded people. Experiments showed real-time performance with an 85 %
overall detection rate.

In contrast to the use of color cameras, Diraco et al. [29] addressed the detection
of falls and the recognition of several postures with 3D information. The system
used a fixed time-of-flight camera that provided robust measurements under dif-
ferent illumination settings. Moving regions with respect to the floor plane were
detected applying a Bayesian segmentation to the 3D point cloud. Posture recog-
nition was carried out using the 3D body centroid distance from the floor plane and
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the estimated body orientation. The system yielded promising results on synthetic
data with threshold-based clustering for different centroid’s height thresholds.

An enduring bottleneck for vision-based approaches is the segmentation of
human shape from acquired 2D image sequences, which is often constrained in
terms of computational effort and robustness to illumination changes. Recent
research work has indicated a trend towards fall detection systems using 3D sensing
devices for more accurate and efficient estimations of human motion and body
posture.

2.2 3D Human Tracking

In the last half decade, the emergence of low-cost depth sensing devices such as the
Microsoft Kinect [6] and ASUS Xtion Live [7] has led to a great number of
vision-based applications using depth information instead of, or in combination
with, color information. This prominent sensor technology provides depth mea-
surements used to obtain reliable estimations of 3D human motion in cluttered
environments, including a set of body joints in real-world coordinates and their
orientations. As shown by a broad number of recent applications for human action
recognition, this sensor trend represents a significant contribution to overcome a set
of limitations related to traditional 2D sensors (e.g. RGB cameras), thereby
increasing robustness under varying illumination conditions and reducing compu-
tational effort for motion segmentation and body pose estimation. Depth sensors
have the additional advantage of avoiding privacy issues regarding the identity of
the monitored person, since color information is not required at any stage. An
extensive review of the depth sensor Kinect and its application to diverse research
fields, e.g. action recognition and navigation, was presented by Han et al. [30].

A combination of computational efficiency, robustness to light changes in indoor
environments, and lower cost factors have made fall detection systems using depth
information increasingly popular in the research community. Rougier et al. [31]
used 3D information from a depth sensor to estimate a person’s centroid height and
velocity relative to the ground plane. Thresholds on ground distance and velocity
computed from training data were used to detect fall events also with occluded
persons (e.g. fallen down behind a sofa). The system was evaluated on simulated
falls and normal activities (e.g. walking, sitting down, crouching) with an overall
success rate of 98.7 %. Planinc and Kampel [32] used depth information to compute
a body axis that described the overall orientation of a person. Thresholds for
similarity to the ground and the height were used to distinguish falls from other
daily activities. The system was evaluated on a dataset of 72 video sequences
containing 40 falls with accuracy of 95 % after eliminating tracking errors. In this
approach, occlusions were not considered. Mastorakis and Makris [33] presented a
depth-based fall detection system taking into account body velocity and inactivity
periods. The velocity was measured on the basis of the contraction or expansion of
a 3D bounding box built around the person’s body. The detection algorithm was
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designed as a Boolean decision tree for distinguishing falls from other actions.
Good results were obtained from different sensor perspectives (frontal, side) on a
customized dataset.

Approaches using depth information in combination with machine learning and
neural networks have shown to provide promising results. Zhang et al. [34] pre-
sented a depth-based system to recognize different types of falls, i.e. fall from a
standing position and fall from a chair. Body features such as structure similarity
and height were extracted from a kinematic model and fed to a hierarchical Support
Vector Machine (SVM) classifier. Promising results for detecting falls from other
three daily actions (i.e. standing, sitting on a chair or on the floor) were obtained on
a dataset of 200 video sequences with different light conditions. Parisi and Wermter
[9] presented a neural network approach to detect abnormal behaviors such as
falling, fainting, and crawling while monitoring domestic daily actions.
A self-organizing neural architecture was trained on a set of domestic actions (e.g.
walking, sitting, picking up objects) from body features such as velocity and ori-
entation. The system detected abnormal behavioral patterns not shown during the
training phase in two different tracking scenarios with fixed and mobile depth
sensors. Best results were obtained by automatically detecting and removing
tracking errors.

In contrast to most of the approaches using the depth sensor positioned parallel to
the horizontal surface, Gasparrini et al. [35] detected falls using a ceiling sensor.
A segmentation algorithm was used to extract blobs in the scene and track human
silhouettes on the basis of several anthropometric relations. Falls were detected for a
tracked person under a threshold-based distance to the floor. Experiments showed
promising results also for scenarios with more persons present in the top-view scene.

While the number of advantages introduced by low-cost depth sensors is sig-
nificant in terms of body motion and posture estimation, these approaches lead to
issues that may prevent them from operating in real-world environments. For
instance, their operation range (distance covered by the sensor) is quite limited
(between 0.8 and 5 m), as well as their field of view (see Table 1 for details),
thereby requiring a mobile or multi-sensor scenario to monitor an extensive area of
interest.

Table 1 ASUS Xtion Live sensor specifications [7]

Depth image size VGA (640 × 480): 30 fps, QVGA (320 × 240): 60 fps

Field of view 58 H, 45 V, 70 D (horizontal, vertical, diagonal)

Distance of use 0.8–3.5 m

Dimensions 18 × 3.5 × 5 cm

Power consumption Below 2.5 W

Interface USB 2.0/3.0

Weight 227 g
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2.3 Assistive Robotics

Mobile robots have been characterized by a constant development for “aging at
home” scenarios. In contrast to fixed sensors, mobile assistive robots may be
designed to process the sensed information and undertake actions that benefit
people with disabilities and seniors in a residential context. In fact, the mobility of
robots represents a big benefit for non-invasive monitoring of users, thereby better
addressing fixed sensors’ limited field of view, blind spots, and occlusions.

There has been an increasing number of ongoing research projects using
assistive robotics in smart environments to provide tools for self-care, independence
at home, and telematic diagnosis. Advanced robotic technologies may encompass
socially-aware assistive solutions for interactive robot companions able to support
basic daily tasks of independent living and enhance user experience through flexible
human-robot interaction (e.g. dialogues, vocal commands). A number of experi-
mental studies support the idea that the use of socially assistive robots implies
positive effects on the seniors’ well-being in domestic environments [10]. Examples
of recent and current interdisciplinary research projects using interactive mobile
robots for aging in place include: Cogniron (Cognitive Robot Companion) [36],
LIREC: Living with robots and interactive companions [37], Hermes: Cognitive
Care and Guidance for Active Ageing [38], KSERA (Knowledgable SErvice
Robots for Aging) [39], GiraffPlus [40], ROBOT-ERA [41], and Accompany
(ACceptable robotics COMPanions for AgeiNg Years) [42]. Despite different
functional perspectives concerning elderly care and user needs (e.g. rehabilitation
[39], robot companions [42]), there is a strong affinity regarding the intrinsic
challenges and issues needed to operate these systems in real-world scenarios. In
fact, the use of mobile robots may be generally combined with ambient sensors
embedded in the environment (e.g. cameras, microphones) to enhance the agent’s
perception and increase robustness under real-world conditions. On the other hand,
complementary research efforts have been conducted on the deployment of
stand-alone mobile robot platforms able to sense and navigate the environment by
relying exclusively on onboard sensors.

Specifically for fall detection, promising experimental results have been obtained
by combining mobile robots and 3D information from depth sensors. This approach
overcomes limitations in the operation range of sensors while preserving reduced
computational power for real-time characteristics. Mundher and Zhong [43] pro-
posed a mobile robot with a Kinect sensor for fall detection based on floor-plane
estimation. The robot tracks and follows the user in an indoor environment, and can
trigger an alarm in case of a detected fall event. The system recognizes two gestures
to start and stop a distance-based user-following procedure, and three voice com-
mands to enable/disable fall detection, and call for help. The robot is provided with a
mobile phone to send notifications via SMS or emergency call if the user does not
recover from a fall within five seconds. Volkhardt et al. [44] presented a mobile
robot to detect fallen persons, i.e. a user already lying on the floor. The system
segments objects from the ground plane and layers them to address partial
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occlusions. A classifier trained on positive and negative examples is used to detect
object layers as a fallen human. Experiments reveal that the overall accuracy of the
system is strongly dependent on the type of extracted features and the classifier.

Additional challenges conveyed by the use of mobile robots for detecting fall
events regard the tolerance of noise in a moving sensor scenario [9], the robust
tracking of occluded persons [45], and effective navigation strategies for following
and finding people in domestic environments [46].

3 Learning-based Abnormal Event Detection

Despite extensive research efforts promoted by advanced computer vision tech-
niques and recent low-cost sensor trends, the question remains open on how to
better process extracted body features for effectively extrapolating the complex
dynamics of actions and fall events exhibiting noise tolerance and robustness in
real-world scenarios. Indeed, the vast majority of the presented algorithms rely on
domain-specific thresholds to distinguish falls from other activities, often being
unable to operate under real-world conditions. On the other hand, learning-based
paradigms such as machine learning and neural networks represent prominent tools
to achieve knowledge generalization in a set of training activities for the subsequent
classification of unseen situations [8, 9, 47]. In this setting, a possible approach for
fall detection consists in learning a set of normal actions from training data and
subsequently detecting events that do not conform to the expected behavior.

In this section, we present our work on abnormal event detection based on
unsupervised neural network learning. The system consists of a hierarchical neural
architecture that learns a set of normal actions, e.g. walking, sitting, and picking up
objects, captured by a depth sensor. After the training phase, the system will report
novel behavioral patterns, e.g., fall event, as abnormal actions and trigger an alarm.
To contrast tracking errors and sensor noise, the neural architecture is also
responsible for automatically removing noisy samples from the extracted body
features. We report a number of experiments in a home-like environment that show
our system can detect fall events with high accuracy in real time.

3.1 Feature Extraction

The first stage of our system consists of the extraction of body action features from
3D motion information captured by a depth sensor. We estimate the position of a
moving target based on a model of the human skeleton. In previous work [9], we
used this skeleton-based representation to compute body centroids that describe
actor-independent posture and motion features. Two centroids were estimated as the
centers of mass that follow the distribution of the main body masses on each
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posture. This technique extrapolates significant motion characteristics while
maintaining a low-dimensional feature space and increasing tracking robustness for
situations of partial occlusions. We then extended our model to describe more
accurately articulated actions by considering three body centroids [47]: C1 for upper
body with respect to the shoulders and the torso; C2 for middle body with respect to
the torso and the hips; and C3 for lower body with respect to the hips and the knees.
Each centroid is represented as a point sequence of real-world coordinates
C ¼ ðx; y; zÞ. We compute upper and lower orientations hu and hl given by the slope
angles of the segments C1C2 and C2C3 respectively. As shown in Fig. 1, hu and hl

describe the overall body posture as the overall orientation of the torso and the legs,
allowing to capture significant posture configurations of actions such as walking,
sitting, picking up and lying down on the floor.

To estimate body motion, we compute the pixel difference Di ¼ ðdx; dy; dzÞ
between two consecutive frames of the upper centroid C1 in the x; y; z direction. The
upper centroid was selected based on the consideration that the torso orientation is
the most characteristic reference during the execution of a full-body action [48]. We
then estimate body velocity with respect to the sensor as

Si ¼ dx

s
;
dy

s
;
dz

s

� �
; ð1Þ

where s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdxÞ2 þðdyÞ2 þðdzÞ2

q
.

We encode Si as horizontal and vertical speed with respect to the image plane,

respectively expressed as hi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxið Þ2 þ Szið Þ2

q
and vi ¼ Syi . The former refers to the

target moving on the width and depth axis, i.e. closer, further, right, and left. The
latter represents the speed with respect to height, e.g. negative if the target is
moving down.

Walking Jogging Sitting Pick up object  Lying on the floor

(a) (b) (c) (d) (e)

Fig. 1 Full-body representation for pose-motion extraction [47]. We estimate three centroids C1

(green), C2 (yellow) and C3 (blue) for upper, middle and lower body respectively. We compute the
segment slopes (hu and hl) to describe the posture with the overall orientation of the upper and
lower body
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For each processed frame i, we obtain the following pose-motion vector:

Fi ¼ hui ; h
l
i; hi; vi

� �
: ð2Þ

This representation describes spatio-temporal properties of actions in terms of
length-invariant, sequential vectors, particularly suitable for serving as input for
neural network architectures.

3.2 Learning Framework

Unsupervised neural network learning has shown to be a prominent approach for
the detection of abnormal events [49], also referred to as anomaly detection [50].
We propose a hybrid neural-statistical framework to approximate the normal
behavior with trained self-organizing map (SOM) networks and subsequently detect
behavioral patterns that do not conform to the expected learned behavior with an
abnormality test.

The SOM is a competitive neural network introduced by Kohonen [51] that has
shown to be a compelling approach for clustering motion expressed in terms of
multi-dimensional flow vectors [52–55]. The proposed learning framework consists
of three SOM networks. A first network U0 is trained to detect outlier values from
the extracted pose-motion vectors caused by tracking errors and sensor noise. After
this initial learning phase, the pose-motion vectors are processed again to perform a
threshold-based test and remove outliers from the training set. The denoised
training set is then fed to a hierarchical SOM-based architecture composed of two
networks, U1 and U2, for clustering the subspace of normal actions taking into
account spatio-temporal relationships of action sequences. A flow chart of this
learning stage is illustrated by Fig. 2.

At detection time, extracted vectors will be denoised and processed through the
hierarchy of trained SOM networks. New observations that deviate from the learned

t

Hierarchical learning

SOM network

Outlier detection

Φ Φ

Φ

0 1

2

Fig. 2 Flow chart of our SOM-based learning stage. A first network U0 is trained to detect and
remove outliers from extracted pose-motion vectors. Preprocessed vectors are fed to a hierarchy of
networks (U1 and U2) to cluster spatio-temporal relationships of action sequences
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behavior, i.e. below an abnormality threshold, will be reported as abnormal. The
detection of noise and abnormal behavior is based on the same abnormality test
using two different automatically computed thresholds.

3.2.1 Training Algorithm

The traditional SOM is unsupervised and allows to obtain a low-dimensional dis-
cretized representation from high-dimensional input spaces. It consists of a layer
with competitive neurons connected to adjacent units by a neighborhood relation.
The network learns by iteratively reading each training vector and organizes the
units so that they describe the domain space of input observations. Each unit j is
associated with a d-dimensional model vector mj ¼ ½mj;1;mj;2; . . .;mj;d�. For each
input vector xi ¼ ðx1; . . .; xnÞ presented to the network, the best matching unit
(BMU) b for xi is selected by the smallest Euclidean distance as

bðxiÞ ¼ argmin
j

kxi � mjk: ð3Þ

For an input vector xi, the quantization error qi is defined as the distance of xi
from the BMU bðxiÞ.

We consider two-dimensional networks with units arranged on a hexagonal
lattice in the Euclidean space. Each competitive network is trained with a batch
variant of the SOM algorithm. This iterative algorithm presents the whole data set
to the network before any adjustments are made. The updating is done by replacing
the model vector mj with a weighted average over the samples:

mjðtþ 1Þ ¼
Pn

i¼1 hj;bðiÞðtÞxiPn
i¼1 hj;bðiÞðtÞ

; ð4Þ

where b is the best matching unit (Eq. 3), n is the number of sample vectors, and
hj;bðiÞ is a Gaussian neighborhood function:

hb;iðxÞ ¼ exp
� rb � rik k2

2r2ðtÞ

 !
; ð5Þ

where rb is the location of b on the map grid and rðtÞ is the neighborhood radius at
time t.

At the second learning stage step, a hierarchical SOM-based approach is used to
learn spatio-temporal properties of action sequences from denoised training sam-
ples. We first train the network U1 with pose-motion vectors (Eq. 2) from the
denoised training set. After this training phase, chains of activated best matching
units (Eq. 3) for ordered training sequences produce time varying trajectories on the
network map. We empirically define a BMU trajectory for a training vector xi as
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si ¼ ðbðxi�2Þ; bðxi�1Þ; bðxiÞÞ: ð6Þ

We denote the set of all activation trajectories X as TðXÞ. This step produces a
time-selective mapping with action segments from 3 consecutive vectors.

3.2.2 Tracking Errors

An outlier can be seen as an observation that does not follow the pattern suggested
by the majority of the observations belonging to the same data cloud [53]. From a
geometrical perspective, outliers are to be found detached from the dominating
distribution of the subspace of normal actions.

In our approach, we differentiate between outliers introduced by tracking errors
and outliers caused by tracked abnormal events. For this purpose, we assume that
the behavior of a moving target must be consistent over time. Therefore, we con-
sider highly inconsistent changes in body posture and speed to be caused by
tracking errors rather than actual tracked motion. As shown by our experiments, the
presence of tracking errors in the training set may negatively affect the SOM-based
clustering of pose-motion features. Figure 3 illustrates these effects after the
learning phase. A first SOM was trained with the full set of extracted motion
vectors, for which outliers in the data decreased the unfolding of the projected
feature map (Fig. 3a). These noisy samples were detected by our algorithm and
removed from the training set. As seen from the second SOM trained with the
denoised training set (Fig. 3b), the absence of outliers allowed a more representative
clustering of the motion vectors for the subspace of normal actions.

While we use the same algorithm to detect outliers, two different abnormality
thresholds are automatically computed that take into account the different

0 2 4 6
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1

(a) (b)

−1 −0.5 0 0.5 1 1.5 2
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1
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3

Fig. 3 Effects of outliers in the clustering of training data [9]. a The first SOM was trained with
the full set of extracted motion vectors. The presence of highly noisy observations in the training
set decreased the unfolding of the projected feature map. b This second SOM was trained after
removing outliers from the training set, resulting in a more representative clustering of the
observations from tracked motion
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characteristics of tracking noise and abnormal pose-motion vectors. Using this first
trained SOM network as reference, also tracking errors in the test set are detected
and removed.

3.2.3 Abnormality Detection Algorithm

The goal of the detection algorithm is to test if the most recent observation is
abnormal or not. For this purpose, the degree of abnormality for every test
observation is expressed with the estimation of a P-value. If the P-value is smaller
than a given threshold, then the observation is considered to be abnormal and
reported as such.

For a given training set X and a new test observation xnþ 1 presented to the
network U, the algorithm is summarized as follows [56]:

0. Compute the set of quantization errors Q ¼ ðq1; q2; . . .; qnÞ.
1. Compute qðnþ 1Þ with respect to U.
2. Define B as the number of quantization errors ðq1; . . .; qnÞ greater than qðnþ 1Þ.
3. Define the abnormality P-value as Pðnþ 1Þ ¼ B=n.

As an extension of the algorithm proposed in [56], abnormality thresholds are
automatically computed for the trained networks U0 and U2. The choice of con-
venient threshold values that take into account the characteristics of the distribu-
tions can have a significant impact on the successful rates for abnormality detection.
From a neural network perspective, the threshold values will consider the distri-
bution of the quantization errors from each trained SOM. Based on related research
[9], we empirically define two different thresholds, TO for outlier detection and TA
for abnormality detection:

TO ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qo þ rðQoÞþmaxðQoÞþminðQoÞ

q
; ð7Þ

TA ¼ c
Qþ rðQÞ

maxðQÞþminðQÞ
� �

; ð8Þ

where Q0 and Q denote the quantization error sets for U0 and U2 respectively, Q
denotes the mean value operator, rðQÞ denotes the standard deviation, and b ¼ 0:5,
c ¼ 0:1. In the case of U0, observations with P-values under the abnormality
threshold TO are considered as outlier values and therefore removed from the
training set. For U2, if Pðnþ 1Þ is smaller than TA, the test observation xnþ 1 is
considered abnormal.
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3.3 Experimental Results

For the acquisition of training data, we monitored a home-like environment with an
ASUS Xtion Live sensor installed on a platform 1.30 m above the ground and
positioned parallel to the horizontal surface. Depth maps were acquired with a VGA
resolution of 640 × 480 and the depth operation range was set from 0.8 to 4 m. The
main technical characteristics of the Xtion live sensor are listed in Table 1 [7].
Video sequences were sampled at a constant frame rate of 30 Hz. To reduce sensor
noise, we sampled the median value of the last 3 estimated points. Body centroids
were estimated from depth map sequences based on the tracking skeleton model
provided by the publicly available OpenNI/NITE framework.1

For the training phase and the system evaluation, we used video sequences from
our data set with full-body actions performed by 13 different participants of the
study with a normal physical condition [47]. To avoid biased execution, the par-
ticipants had not been explained how to perform the actions. Training video
sequences consisted of domestic actions such as walking, sitting down, standing up,
and bending to pick up objects; abnormal actions consisted in falling down and
crawling. We did not take into account those cases in which the user has already
fallen on the ground since the tracking framework built on top of OpenNI would
fail to provide a reliable recognition of the user and therefore, the extraction of body
features would be highly compromised.

At detection time, new extracted vectors were processed to remove outliers. For
the last three denoised vectors, a new test trajectory siþ 1 was obtained from U1 and
then fed to U2 to compute the abnormality test kðsiþ 1Þ. We took the last 3
abnormality test results and returned as abnormality output the result of the sta-
tistical mode:

Moðkðsiþ 1Þ; kðsiþ 2Þ; kðsiþ 3ÞÞ: ð9Þ

A new output was therefore returned every 9 samples, which corresponds to
approximately less than 1 s of captured motion. As shown by our experiments, this
approach led to increased detection accuracy.

We evaluated the detection algorithm on abnormal actions using standard
measurements defined by Van Rijsbergen [57]:

Recall ¼ TP
TPþ FN

; ð10Þ

Precision ¼ TP
TPþ FP

; ð11Þ

1OpenNI/NITE: http://www.openni.org/software.
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F-score ¼ 2 � Recall � Precision
Recallþ Precision

; ð12Þ

True negative rate ¼ TN
TNþ FP

; ð13Þ

Accuracy ¼ TPþTN
TPþTNþ FPþ FN

: ð14Þ

A true positive (TP) was obtained when an abnormal event was detected
between the first and the last frame where the abnormal action took place. True
negatives (TN) refer to normal actions not detected as abnormal. False positives
(FP) and false negatives (FN) refer respectively to normal actions reported as
abnormal and abnormal behaviors not reported by the system.

The system evaluation is shown in Table 2. Our system detected abnormal fall
and crawling events with 96 % accuracy. The removal of noise from the training
and test set was of significant importance for reducing detection errors in presence
of partial occlusions and tracking errors introduced by the mobile sensor, with an
improvement in accuracy of 6.96 %. On the other hand, the accuracy of our system
would be negatively influenced by: (1) highly-occluded users, leading to tracking
errors and compromised feature extraction; and (2) the presence of actions sharing
similar body features subject to classification ambiguity, i.e. detecting lying down
as a fall, leading to a greater number of false positives.

4 Neurocognitive Robot Assistant

We now present a robot assistant that monitors a person in a household environ-
ment and reports abnormal user behavior such as a fall event. The underlying idea is
that the robot will track a person in the scene while they perform daily activities,
thereby tracking the user’s position, body posture and speed. The information
processed by the tracking framework is fed into the neural system which is
responsible for triggering alarms of abnormal events. Whenever an abnormal
action, e.g., a fall, is detected, the humanoid will approach the user and ask whether
assistance is required. The robot will then take a picture of the scene that can be sent
to the user’s caregiver for telematic evaluation and agile intervention.

Table 2 Evaluation of our
abnormality detection
algorithm on a data set of 13
participants

Raw (%) Denoised (%) Improvement (%)

Recall 88 95 7.02

Precision 90 97 7.02

F-score 89 96 7.02

TN rate 90 97 6.90

Accuracy 89 96 6.96

Best results in bold
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In this section, we first depict an overview of our system and its components. We
then go into detail about the software, hardware, and the communication interface,
and finally present the experimental set-up for fall detection in a home-like
environment.

4.1 System Overview

Our fall detection system consists of a humanoid robot Nao extended with a depth
sensor, a tracking framework to keep the user in the scene, and a learning-based
system to process the visual information and detect abnormal user
behaviors (Fig. 4). All these components communicate over a middleware layer
based on Robot Operating System (ROS) that supports different hardware elements
and programming languages.

Fig. 4 Abnormal event detection from video sequences. The system can successfully detect
abnormal actions and report them (red body). a Fall event, b fall event with partially occluded
person, and c crawling sequence
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Robot Nao (shown in Fig. 5) is a middle-size mobile humanoid robot developed
by Aldebaran Robotics.2 Since the beginning of the Nao project in 2004, the
humanoid underwent a significant number of enhancements, thereby becoming the
standard robot platform for a number of research institutions and robot competitions
(e.g. RoboCup3). Nao includes an embedded multimedia system with microphones,
speakers and two cameras. The main technical characteristics of Nao Next Gen are
listed in Table 3. We extended the robot Nao with an ASUS Xtion depth sensor
installed on top of the head (Fig. 5). The Xtion sensor was chosen over the Kinect
because of its reduced power consumption and weight. A set of experiments with
the extended Nao showed that wearing the sensor does not affect the overall sta-
bility of the humanoid while standing or walking. In contrast to the use of a fixed
sensor, Nao will pan its head to seamlessly keep the moving person in the scene. In
case of a fall event detection, a color picture of the scene will be taken using Nao’s
camera.

Fig. 5 Humanoid Nao
extended with ASUS Xtion
Live sensor on the head [9].
This approach allows to use
Nao’s actuators and sensed
depth information to actively
track a moving person in the
environment

Table 3 Nao next gen
specifications

Height 58 cm

Weight 4.3 kg

Autonomy 60–90 min (active/normal use)

Degrees of freedom 21–25

CPU Intel Atom @ 1.6 GHz

Compatible OS Linux, Windows, Mac OS

Vision 2 × HD cameras (1280 × 960)

Connectivity Ethernet, Wi-Fi

2Aldebaran Robotics: http://www.aldebaran-robotics.com/.
3RoboCup Project: http://www.robocup.org/.
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4.2 Tracking with a Mobile Sensor

Depth sensors such as Microsoft Kinect and ASUS Xtion Live Pro are characterized
by a reduced field of view (58 horizontal, 45 vertical, 70 diagonal), and therefore
limiting their use in expansive environments. The idea of active tracking consists of
seamlessly keeping the person in the scene, thereby moving the sensor when the
person is approaching an area outside the field of view (FOV).

We use Nao’s head to move the sensor and increase the horizontal FOV from
58° to 138° (Fig. 6). As a strategy for active tracking, we define a bounding box in
which the target can act without the sensor being moved (Fig. 7a). We consider the
upper-body centroid as the reference of the person’s position. When the centroid
lies outside the threshold, the tracking application will compute the needed oper-
ations to keep the person within the bounding box (Fig. 7b). Nao will then smoothly
pan its head by 10° in the required direction, for a maximum pan angle of 40° in
each direction (Fig. 6).

The body tracking application is built on top of simple-openni [58], which wraps
the OpenNI–NITE framework for user identification, calibration and estimation of
skeletal joints. We use this library with Processing IDE4 with the purpose to enable
a simplified access to some functionalities provided by the OpenNI such as skeleton
tracking and scene analysis.

All system modules for active tracking communicate over Robot Operating
System (ROS), a software framework for robot software development with

4 m

58°

138°

40°40°

Fig. 6 Nao with Xtion sensor: extended horizontal field of view from 58° to 138° with a
maximum head pan angle of 40° in each direction

4Processing IDE: http://processing.org/.
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operating system-like functionality on a heterogeneous computer cluster [59]. It
provides hardware abstraction, device drivers, libraries, visualizers,
message-passing between processes and package management. A diagram of the
overall architecture for active tracking is illustrated in Fig. 8. To interface our
system modules, we use a ROS-based communication network implemented with
publisher-subscriber nodes. We implement publisher nodes to continually broad-
cast a message over the network using a message-adapted class. The subscriber
node will receive the messages on a given topic via a master node, which keeps a
registry of publishers and subscribers. This specific architecture represents a robust
interface to connect different applications, e.g. written in different programming
languages, over a common network of communication. The tracking framework

Fig. 7 Threshold-based active tracking strategy. When the upper-body centroid lies outside the
threshold, the tracking application will compute the needed operations to keep the person within
the bounding box (red lines)

OpenNI Interface

NITE Computer 
Vision Engine

Sensor data 
acquisition

Simple-OpenNI

Processing IDE

Person tracking framework

JSON API

ROSbridge 
Server

ROS Publisher

ROS Subscriber

NAO actuators

ROS
Processing

NAOqi

Fig. 8 A diagram of the communication network for interfacing the tracking framework with
Nao’s actuators over ROS
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communicates to ROS over Rosbridge5 and a modified version of ROSProcessing,6

extended to publish ROS topics. Rosbridge provides a JSON API7 to ROS func-
tionality for non-ROS programs. The rosbridge_suite package is a collection of
packages that implement the rosbridge protocol and provides a WebSocket trans-
port layer. We program Nao to move its head according to the tracking application
via NAOqi framework,8 which allows homogeneous communication between dif-
ferent Nao modules (motion, audio, video), and ROS integration.

4.3 Fall Detection Scenario

To test our system, we run the experiments in a home-like environment with a
person performing daily activities, such as walking around the room, bending to
collect objects, and sitting down to read (Fig. 9). The Nao was initially positioned
on one side of the room to monitor the scene and connected to the system using
wireless communication. The depth sensor was connected to a laptop (i5-3320 M

Fig. 9 Person monitoring in a home-like environment. The Nao will seamlessly track the person
while performing daily activities

5ROSbridge_suite: http://wiki.ros.org/rosbridge_suite.
6ROSProcessing: https://github.com/pronobis/ROSProcessing.
7JSON API: http://jsonapi.org/.
8NAOqi framework: https://community.aldebaran-robotics.com/doc/1-14/dev/naoqi/index.html.
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2.6 GHz Processor and 4 GB of RAM) running all system modules under Ubuntu
desktop 12.049 and ROS Groovy.10 Whenever the person approaches the edge of
the field of view of the sensor, Nao will pan its head to keep him/her in the scene.
When a fall event is detected by the neural framework, the system will trigger an
alarm. As shown in Fig. 10, the humanoid will approach the person by using the last
tracked position before the fall and ask whether assistance is required. The color
camera will be used to take a picture of the fallen person that can be sent to a
relative or to the person’s caregiver for further human assessment.

5 Discussion

The robust detection of falls in home environments represents a paramount com-
ponent for assistive systems aiming to enhance the person’s safety perception and
avoid the loss of confidence due to, for instance, functional disabilities. In this
context, vision-based fall detection has been shown to be a predominant approach
due to the substantial advances in computer vision techniques and reduced cost
factors with respect to wearable sensors. In this setting, the visual recognition of
human actions is a key issue introducing a vast set of challenges for traditional 2D
cameras. The use of low-cost depth sensors capable of performing 3D human
motion segmentation and body posture estimation has led to promising results in
experimental scenarios. However, despite the latest sensor trends, the question
remains open on how to better process extracted body features for effectively
extrapolating the complex dynamics of actions and fall events, exhibiting noise

Fig. 10 Fall detection scenario: In case a fall event is detected by the system, the Nao will
approach the fallen person (a) and take a picture of the scene (b)

9Ubuntu Desktop: http://www.ubuntu.com/desktop.
10ROS Groovy Galapagos: http://wiki.ros.org/groovy.
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tolerance and robustness in real-world scenarios. Learning-based paradigms such as
machine learning and neural networks have been shown to be a promising
methodology for achieving knowledge generalization of a set of training activities
and the subsequent classification of unseen situations [8, 9, 47].

In Sect. 3, we presented research on abnormal event detection based on unsu-
pervised neural network learning. Our system consists of a hierarchical neural
architecture that can learn a set of normal actions, e.g. walking, sitting, and lying
down, captured by a depth sensor. After the training phase, the system will report
novel behavioral patterns, e.g. fall events, as abnormal actions and trigger an alarm.
The combination of a depth sensor with our neural network approach allows to
tailor the robust detection of fall events independently from the background sur-
roundings and changing light conditions. In addition, to contrast sensor noise and
tracking errors, the neural architecture is also responsible for automatically
removing noisy samples from the extracted body features during the training and
test stage. Experiments run in a home-like environment showed that our system can
detect fall events with high accuracy in real time (as shown in Table 2).

Contrary to the use of fixed ambient sensors, mobile assistive robots can
undertake actions that benefit people with disabilities and seniors in a residential
context. As supported by recent studies, socially-aware assistive solutions can
provide positive effects on the senior’s well-being in domestic environments [10],
for instance, by supporting basic daily tasks of independent living and enhancing
the user’s experience through flexible human-robot interaction. On the other hand,
this technology introduces new technical challenges and issues.

In Sect. 4, we introduced a humanoid robot to assist a person in a household
environment and report abnormal user behavior such as fall events. The underlying
motivation is to use a mobile robot to track the user’s position, body posture, and
motion characteristics when the user is performing daily activities. The processed
visual information from the mobile depth sensor is fed into our neural system for
abnormality detection. The removal of noise is of significant importance for
reducing detection errors in presence of partial occlusions and tracking errors
introduced by the mobile sensor, with an improvement in detection accuracy of
6.96 %. In case a fall event is detected, the humanoid will approach the user and
then take a picture of the scene that can be sent to the user’s caregiver for telematic
evaluation and agile intervention. For our experiments, we did not consider those
cases in which the user has already fallen on the ground when the robot starts to
monitor the scene. This is due to the fact that a fallen person would not be detected
by the tracking framework built on top of OpenNI that works better with moving
users for user calibration and pose estimation. Therefore, the reliable detection and
segmentation of a fallen user are open issues to be addressed, e.g. by using com-
plementary RGB information to recognize a body on the ground [60].

The obtained results motivate future work in several directions. For instance, the
ability of the robot to navigate in the environment for following the person through
different rooms and finding a better angle of view to avoid body occlusions. At the
current state of the system, the depth sensor must be wired to an external, fixed
processing unit to perform the tracking, thereby limiting the mobility of the
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humanoid. To achieve better mobility, the sensor could be wired to an onboard
processing unit and then transmit the depth information via WiFi for further pro-
cessing to be carried out in the cloud. Moreover, video files could be adopted
instead of a single picture to better support telematic human evaluation, e.g. sending
a video with the last five seconds of the user’s activity before the fall event. In fact,
the role of human assessment is of crucial importance to determine the seriousness
of the detected event and to undertake effective intervention.

To cope with the dynamic nature of real-world scenarios, a learning artificial
system may not only be robust to unseen situations, but also adaptive. In fact, in
addition to detecting short-term behavior such as fall events and domestic daily
actions (e.g. walking, drinking, lying down), it may be of particular interest to
monitor and learn the user’s behavior over longer periods of time [5]. In this setting,
it would be desirable to collect sensory data to, e.g., perform medium- and
long-term gait assessment of the person, which can be an important indicator for a
variety of health problems, e.g. physical diseases and neurological disorders such as
Parkinson’s disease [61]. To enhance the user’s experience, assistive robots may be
given the capability to adapt over time to better interact with the monitored user.
This would include, for instance, a more natural human-robot communication
including the recognition of hand gestures and full-body actions, speech recogni-
tion, and a set of reactive behaviors based on the user’s habits. In this context,
interdisciplinary research that takes into account the vast set of technical, social, and
ethical issues regarding robots for assisted living is fundamental to provide feasible
and reliable solutions in the near future.
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