Available online at www.sciencedirect.com

"*2* ScienceDirect Knowledge-Based

—SYSTEMS—

ELSEVIER Knowledge-Based Systems 19 (2006) 348-355

www.elsevier.com/locate/knosys

A camera-direction dependent visual-motor coordinate
transformation for a visually guided neural robot

Cornelius Weber *, David Muse, Mark Elshaw, Stefan Wermter

Hybrid Intelligent Systems, School of Computing and Technology, University of Sunderland, UK’

Received 28 October 2005; accepted 28 November 2005
Available online 17 February 2006

Abstract

Objects of interest are represented in the brain simultaneously in different frames of reference. Knowing the positions of one’s head
and eyes, for example, one can compute the body-centred position of an object from its perceived coordinates on the retinae. We propose
a simple and fully trained attractor network which computes head-centred coordinates given eye position and a perceived retinal object
position. We demonstrate this system on artificial data and then apply it within a fully neurally implemented control system which visu-
ally guides a simulated robot to a table for grasping an object. The integrated system has as input a primitive visual system with a what—
where pathway which localises the target object in the visual field. The coordinate transform network considers the visually perceived
object position and the camera pan-tilt angle and computes the target position in a body-centred frame of reference. This position is
used by a reinforcement-trained network to dock a simulated PeopleBot robot at a table for reaching the object. Hence, neurally com-
puting coordinate transformations by an attractor network has biological relevance and technical use for this important class of

computations.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Frame of reference transformations; Neural networks; Boltzmann machine; Reinforcement learning; Robotics

1. Introduction

There is a view of current developments leading to a
major advance in a future personal robot industry, as illus-
trated by citations such as: “In thirty years I think it [the
personal robot industry] will be bigger than the personal
computer industry” [16]. Yet a key capability currently lim-
iting robotic expansion is image processing, one function of
which is to identify the position of an object and making it
available to mechanical actuators, for example for
grasping.

The control of the human body is a complex task due to
the complexity of the body geometry and the difficulty to
extract information from the world by sensors like vision
and to transform it into a motor-relevant representation.
So to simply grasp an object, we need to (i) visually localise

* Corresponding author.
E-mail address: cornelius.weber@sunderland.ac.uk (C. Weber).

! www.his.sunderland.ac.uk

0950-7051/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.knosys.2005.11.020

an object, (ii) infer its position in body-centred coordinates
which are relevant for control of the arm and hand and (iii)
activate the relevant muscles to perform a grasp.

Here, we present a neural model which consists of three
systems, (i) a visual, (ii) a coordinate transform and (iii) a
motor system, which performs such a task on a simulated
robot. The complexity of the human body is schematically
addressed by the robot camera which can pan-tilt its gaze
direction during the docking. This accounts for the fact
that the eyes and/or the head can move with respect to
the body, which makes it necessary to transform a visually
identified location into a body-centred location as is rele-
vant for the motor control.

In [18], we have implemented a vision controlled
robotic docking action that was trained by reinforcement
learning. The assumption that the robot camera was
fixed to the body allowed a direct match from pixel
coordinates to body-centred coordinates. Because of the
fixed camera, objects had to be in a confined space
so that they were visible. The grasping manocuvre is

mailto:cornelius.weber@sunderland.ac.uk
http://www.his.sunderland.ac.uk

C. Weber et al. | Knowledge-Based Systems 19 (2006) 348-355 349

Fig. 1. The simulated PeopleBot robot with its short black grippers in its
environment. Coordinates are as follows: 0 is the angle of the target w.r.t.
the forward direction of the robot and d is the distance between the robot
and the target object. ¢ is the robot orientation angle w.r.t. an axis that is
perpendicular to the table and will be used later, directly in motor control.
0 and d comprise the body-centred representation of the target object
which is relevant for motor control but not given directly by sensors. p is
the pan angle and ¢ is the tilt angle of the camera. 4 and v are the
horizontal and vertical image pixel coordinates of the perceived target
object (the white frame shows the image seen by the robot camera). The
body-centred coordinates (6,d) are to be computed as a function of easily
accessible values (4,v) and (p, 7).

shown at the following URL: www.his.sunderland.ac.uk/
robotimages/Cap0001.mpg.

In [11], the camera is allowed to move, but it is assumed
that it is fixating the target when computing its direction.
Hence a reaching map can be defined using only the camera
posture. When a robot or the object is moving, however, a
camera can hardly fixate the object, in particular when
using commercially available, slow pan-tilt camera mounts.

Let us briefly discuss the underlying geometry of the
coordinate transformation problem. For simplicity we will
in the following not distinguish eye- and head-position,
accounting for a pivoting camera which is mounted on a
robot body. Fig. 1 visualises the geometry of our setup with
a PeopleBot robot.” If the robot is to grasp the fruit object
on the table, then the following coordinates are important
for controlling the motors: the distance d of the robot to
the target object and the angle 0 at which the object is to
the left or the right of the robot body. In order to avoid
bumping into the table with the robot’s “shoulders” when
near the table, the angle ¢ of the robot rotation w.r.t. the
table edge will later also be used for motor coordination.

While d and 0 are required for motor control, the robot
sensory system represents the object only visually, deliver-
ing the perceived horizontal and vertical positions / and v
of the object in the visual field. Knowing also the camera
pan- and tilt-angles p and ¢, it is possible to compute
d and 0. We assume a constant elevation of the camera
over the target object which allows the distance of the
object to be estimated from how low it is perceived, thus

2 Konstantinos Karantzis implemented the PeopleBot in the gazebo
robot simulator.

from v and ¢. This compensates for not using a stereo cam-
era. In summary, (d, 0) are a function of (A, v,p,), and the
purpose of the coordinate transform network is to learn
and compute this function.

It would be possible, even with complicated human
geometries, to compute this function using deterministic
vectorial transformations. Humans, however, learn senso-
ry-motor coordination, which allows for adaptations dur-
ing evolution and ontogenesis. In the mammalian cortex
transitions between visual and motor representations are
made in the posterior parietal cortex (PPC) which lies at
a strategic position between the visual cortex and the motor
cortex. PPC neurons are modulated by the direction of
hand movement, as well as by visual, eye position and limb
position signals [2]. These multi-modal responses allow the
PPC to carry out computations which transform the loca-
tion of targets from one frame of reference to another [3,4].

Models of neural coordinate transformations originally
dealt with the “static” case, in which, for example, Carte-
sian coordinates (¢y, ¢;) of an object (e.g., as seen on the ret-
ina) are neurally transformed into joint angles (0, 6,) of an
arm required to reach the target [8]. Such a model is static
by not accounting for the influence of another variable,
such as the rotation of the head. To account for such a
modulating influence, we need dynamic, adjustable
mappings.

A standard way to achieve a dynamic mapping is to feed
the two inputs such as Cartesian coordinates ¢ and head
rotation r into a hidden layer. These inputs are coded as
population vectors x° and x" for neurons arranged along
a one-dimensional line where the location of an approxi-
mately Gaussian-shaped activation hill encodes the value.
Both inputs are used in a symmetric way. The working
principle of the use of the hidden layer is described as
[17]: “One first creates a two-dimensional [hidden] layer
with an activity equal to the [outer] product of the popula-
tion activity in x“ and x". Next, a projection from this layer
to an output layer implements the output function
z=f(x,x")".

Such a network with two one-dimensional input layers, a
one-dimensional output layer and a two-dimensional hidden
layer has been termed a basis function network [5]. Because
of its structure, the output layer is symmetric with the input
layers and the network can be used in any direction. Lateral
weights within each layer allow for a template fitting proce-
dure during which attractor network activations generate
approximately Gaussian-shaped hills of activations. In a
“cue integration” mode the network receives input with
additive noise at all three visible layers and produces the cor-
rect, consistent hills with maximum likelihood [5].

The gain field architecture [14] adds a second hidden
layer which subtracts certain inputs to remove unwanted
terms from the solution on the first hidden layer. This
allows it to encode not only the position of a hill of activa-
tion, but also its amplitude. Since this breaks the symmetry
between the input layers and the output layer, this network
is used only in one direction.

http://www.his.sunderland.ac.uk/robotimages/Cap0001.mpg
http://www.his.sunderland.ac.uk/robotimages/Cap0001.mpg

350 C. Weber et al. | Knowledge-Based Systems 19 (2006) 348-355

The use of the hidden layer as the outer product of input
layers has the advantage that the hidden code or the weights
can easily be constructed using algebraic transformations.
A learning algorithm for all the weights is not given with
these models. A specific disadvantage is the large dimen-
sionality of the hidden layer: if both input layers are two-di-
mensional, as in our problem, then the hidden layer would
have to be represented as a 4-dimensional hyper-cube.

Here, we propose a network which learns the coordinate
transformation. Every unit is connected with all other units
by connection weights which are trained according to the
Boltzmann machine learning rule [1] (see [9] for an introduc-
tion). This rule is biologically plausible using only local,
Hebbian and anti-Hebbian learning. After training, the net-
work generates the distribution of the training data using
stochastic units. The learning rule furthermore allows to
include any number of additional hidden units in order to
make the network more powerful in generating a complex
data distribution. The hidden code would self-organise dur-
ing learning without requiring the network designer to con-
struct it. For our data, however, no hidden layer was
required. During learning, all three areas receive their respec-
tive coordinate as training data in a symmetric fashion, while
after learning, missing information in any area can be recov-
ered based on the principle of pattern completion.

Using two-dimensional input areas and artificial test data
described in Section 2, we will describe training of the net-
work in Section 3 and show how it performs coordinate
transformations in Section 4, as required for the robotic sce-
nario. In Section 5, we show how the coordinate transforma-
tion network can be applied as part of a neural control
system that docks a robot at a table to grasp a visually iden-
tified object. In Section 6, we will discuss the results and
underlying assumptions and Section 7 gives a summary.

2. Test scenario

Using the symbols from Fig. 1, let us introduce the fol-
lowing notation for two-dimensional coordinates:

{wij}

a’™ = (h,v) is the position of the object of interest in the
camera image. o’““’ = (p,1) is the camera rotation angle.
a"*Y = (0,d) is the body-centred position of the object of
interest. As a first test example, we choose an abstract coor-

dinate transformation defined by
abody — “vis + ahead ; (1)
where the individual terms of the vectors are:

0=nh+p, (2)
d=v+t (3)

Eq. (2) describes well the true relation between body-
centred, visually perceived and camera position in the hor-
izontal plane. Eq. (3), however, would not describe the
true, non-linear, relation between the coordinates in the
vertical dimension. Therefore, these equations are just a
simplified account of more general coordinate
transformations.

The distance d of the object in the real scenario
can somehow be computed from v and ¢ given a real-
istic constraint that the object is on floor-level and
assuming an elevated camera position. Hence the coor-
dinates " and o™’ contain sufficient information to
compute a”°?. Other body-centred coordinates like dis-
tances in x- and y-direction may alternatively be
computed.

We represent our coordinate vectors a'”, « and
«”°? on neural sheets as neural activation vectors x'
x4 and x"% respectively. Such a coding of low-di-
mensional vectors by high-dimensional neuron activa-
tions is called population coding. Neural activations
within the x vectors are defined by envelopes of Gaus-
sians centred on the corresponding positions of the a
vectors. Fig. 2 depicts the algebraic transformation
and the mapping to neural representations. Neural pop-
ulation coding allows arbitrary coordinate representa-
tions by replacing the coordinate systems in the lower
part of Fig. 2.

head

avis ahcad

Fig. 2. A coordinate transformation on two-dimensional manifolds. (Below) Three two-dimensional vectors, ",

abody — avis 4 aheud

vis ¢4 and «?°% and their relation to each

other which is also graphically explained by the dotted lines in the right graph. Note the extended range of the body-centred coordinate system, which

makes the other vectors projected into that system appear half as long. (Middle) The neural population code x**,

vis - head o0 4 body representing each vector

on two-dimensional sheets of neurons. A hill of neural activation carries the information about the corresponding position of each vector. (Top) The
network architecture: the set of weights {w;} connects every unit with every other in all three layers.

C. Weber et al. | Knowledge-Based Systems 19 (2006) 348-355 351

3. Architecture and training

The coordinate transform network architecture is
depicted in Fig. 2, top. It consists of three fully connect-
ed areas which represent x*, x"“*“ and x"°¥. The Boltz-
mann machine learning rule uses randomised unit update
rather than structured information flow and lends itself
to highly interconnected networks with the possibility
to introduce any number of additional hidden units to
boost performance. With its binary stochastic units it is
powerful in learning a given data distribution. For the
specific purpose of function approximation other biolog-
ically plausible schemes (e.g., [12]) would also be
possible.

The Boltzmann machine has two running modes: in
the clamped phase the data distribution is forced upon
the visible units of the network. The network activation
states x are then subject to the distribution P} where
the upper index “+” denotes the clamped phase. Since
in our case there are no hidden units, the network state
consists only of the three visible input areas, i.e.:
x :={x¥, xfead xPodv) The other running mode is the free
running phase in which the distribution P_ over the net-
work states arises from the stochasticity of the units and
is determined by the network parameters, such as
weights and thresholds. Here, the upper index “—”
denotes the free running phase.

The goal of learning is that the distribution P_ generated
by the network approximates the data driven distribution
P! which is given. P} ~ e ¥ is a Boltzmann distribution
which depends on the network energy E(x) =) ;; w;X;X;
where w;; denotes the connection weight from neuron j to
neuron i. Therefore, P, can be molded by training the
network parameters. Derivation of the “distance”?
between P, and P] w.r.t. the network parameters leads
to the learning rule

Aw; = ¢ (Z Plxix; — ZPxx,-xj) (4)

{x} {x}

with learning step size ¢ which we set between 0.0025 and
0.001. Computing the left term corresponds to the clamped
phase of learning, the right term to the free running phase.
Without hidden units, the left term in Eq. (4) can be re-
written as Ziataxﬁ’x}‘ where u is the index of a data point.
Without hidden units thus the clamped phase does not in-
volve relaxation of activations.

The right term of Eq. (4) can be approximated by sam-
pling from the Boltzmann distribution. This is done by
recurrent relaxation of the network in the free running
phase. The stochastic transfer function

1
Pt =) (5)
1 + e— E jw,',-x/-(t)

3 Correctly, the distance has to be termed the Kullback—Leibler
divergence. See [9] for a derivation of the learning rule.

computes the binary output x; € {0,1} of neuron i at time
step ¢ + 1. Repeated relaxation approximates a Boltzmann
distribution of the activation states.

During training, the two phases are computed alter-
nating. One randomly generated data point is presented
to account for the clamped phase. Then a relatively
short relaxation of the network, consisting of updating
all units for 15 iterations using Eq. (5) is performed
to account for the free running phase. Units are initia-
lised in this phase by activating every unit with a prob-
ability of 0.1, regardless of its position. During testing,

we also used the deterministic continuous transfer
function
1

1+ e*Z i (0) '

Self-connections were omitted in the expectation that
they would grow very large, but later assessment showed
that this would not have been the case. Instead, a threshold
0, was added to each unit. It was treated during training as
a weight that was connected to an external unit with a con-
stant activation of —1. There are no further weight
constraints.

4. Coordinate transformation results

We have explored two methods of sampling the train-
ing data, described below. Both satisfy Eq. (1). From the
two-dimensional a vectors, high-dimensional neural pop-
ulation vectors x are produced, as visualised in Fig. 2.
The Gaussian envelopes over the neural activations have
a maximum value of 1. The Boltzmann machine learning
rule accepts continuous values between 0 and 1 which are
treated as probabilities of a neuron being in the active
state.

The first method was to uniformly sample o and o**“,
and then to produce the position a”*? dependent on these.
This leads to a non-uniform distribution of a”*? which is
biased toward the centre (background shading in
Fig. 5(a)). The reason for this is that there are more com-
binations possible from the visual- and head-input to pro-
duce a position in the middle of the body centred
coordinate system.

The second method was to uniformly sample a”? first,
and then randomly generate one of « or «"“““, and con-
struct the other so that geometrical relations are met, if
possible. This was not always the case as some combina-
tions of, e.g., «"* and «”°¥ would require «"* to be outside
of its range. For example if «”? denotes an object position
50° (to the right) and " denotes a head angle of —30° (to
the left), then the object would have to be in the visual field
at a position of 80° in order to satisfy Eq. (1) and
50° = 80° + (—30°), which is outside of the range of the
visual field. In these cases, a different random input activa-
tion was generated until a mapping could be made to pro-
duce the required output. Note that both methods produce

352 C. Weber et al. | Knowledge-Based Systems 19 (2006) 348-355

the same training data, but in a different probability
distribution.

The network was trained to produce the correct vector
x° with 50,000 data points which took around 5h to
complete running on a Linux based desktop. The size of
each layer was 15x 15 units. Even though the network
can work in any direction or perform ‘“‘cue integration”
[5] if input is applied to all areas, we will consider only
the task where it is initialised with x"* and x"? as input
vectors. Then it will produce a vector x*°¥ that is consis-
tent with these inputs (‘“function approximation” [5]). x**
and x"“? will also fluctuate slightly over time, if allowed
to change. This is shown in Fig. 3 where we see that the
activations representing x"* move slightly downward
between time steps 2 and 14. These fluctuations can be
avoided by clamping the input units so that the data repre-
sentation remains fixed on them.

In Fig. 4, we see how constant input x"* and x"**“ effects
the output area representing the body centred coordinates.

Ll IR I

vis . .

head

T

head

T L e || e || ||

t=0 2 4 8 14

pbody '.: -r

rd

Fig. 3. Neural activations produced by the trained network for one
example case. At time step ¢ =0 (left column) the network is initialised
with continuous Gaussian shaped inputs on two of the three areas, x** and
X" and zeros within x"¥. Values are between zero (white) and 1 (dark).
In the following iterations, at time steps indicated at the bottom of this
figure, the network maintains binary stochastic activations. These account
for the positive inputs but also fill in the missing input by generating an
appropriate vector x"%.

a:vis whead wbody

vis head

For example x"“? in Fig. 4(a) represents a head position to

the very far right and it contributes a strong positive net
input to the right of the area representing the body centred
position, as seen in Fig. 4(b). To the left of this area there is
an even larger, inhibitory net input. The reason for this is
that when the head is turned to the very right, the visual
field does not cover the left side of the body, so the object
that is acted upon cannot be at the very left of the body.
Note that every data point involves a hill of neural activa-
tion on every area which implies that the object is always
assumed to be seen. Thus, based on just one observation,

such as ¥ a rough estimate of x”*” can be given even

if x"* is undetermined.

Similarly, a visually perceived position incurs a con-
straint in the body centred target position. If both con-
straints are combined, as in Fig. 4(b), right, then a
relatively small region in the body representation area
receives maximal net input. The remaining external influ-
ence onto the area is mainly inhibitory. Finally, Figs. 4(c)
and (d) demonstrate that via recurrent relaxation using
the lateral weights, after only two steps a focused pattern
of activation emerges around the correct position x°¥,
that is shown in Fig. 4(a). More examples of data and net-
work output pairs are concatenated in an animation which
can be seen at: http://www.his.sunderland.ac.uk/supple-
ments/AI05/.

The errors produced by the network on the body centred
area are illustrated in Figs. 5(a) and (b), here after 10,0000
learning steps with Gaussian centres avoiding the outer-
most units, in order to reduce boundary effects. Positions
encoded by the network and those of the data were
obtained by sliding a Gaussian over the area and selecting
the position with maximum overlap to the neural activa-
tions. Data are averaged over altogether 20,000 data points
while using Eq. (5) as stochastic neuronal activation func-
tion. On the left, we can see a tendency of the network to
generate peripheral positions of x”** and thus «”*¥ toward
the centre. The reason for this can be seen in the back-
ground shading of Fig. 5(a), which shows that a greater
density of a”*” has been produced to the centre of its area

vis+head—©

-0.4

1.8 0
0 f
_21 15

t=1 2 3 10

Fig. 4. Neural activations for an example case. (a) shows input vectors x"* and x

i de

10

head and the corresponding correct target vector x*°%. (b) Individual net

input into the body representation area from the x* (left) and x"** (middle) vectors as well as the sum of both inputs minus thresholds © (right). Scale
bars to the right indicate the values. (c) shows the binary vector x*°? that emerges from the constant input in (b) and from further relaxation at time steps
given below. It reproduces the target vector as a binary, stochastic code. (d) shows x*°? emerging when using the continuous transfer function Eq. (6).

http://www.his.sunderland.ac.uk/supplements/AI05/
http://www.his.sunderland.ac.uk/supplements/AI05/

C. Weber et al. | Knowledge-Based Systems 19 (2006) 348-355 353

a b c
15+ 15 1]
N T N\| [/ L 12}
N e, . 3!
NP R B / 10 ‘m
N TN e - -3 7 7
10 ~--- ~ L 10 N ‘y hillka | ez
Z o= U N N A 8k 2N R
S188 s g HV/ai O e
NS © ¢ e L E
5 ;r~-\.u—\"§ T N 4/§’ !\L.i\‘
RSN AN i N /TR
77 77 TR\ e W 2l
1t 1
1 5 10 15 1 5 10 15 0 2 4 6 8 1012 14

Fig. 5. Deviations of the predicted positions on the area coding the body-centred positions. The shading of the background indicates the data density of
the generated positions. In (a), the distribution is biased toward the centre, as the visual- and head-positions were sampled homogeneously. In (b), body-
centred positions were sampled uniformly, before generating visual and head-positions. Arrows show the systematic network errors, pointing from the
correct target position toward the predicted position. (c) is a similar plot for the robotic data, where the ordinate denotes 0 ranging from —90° to 90° and
the abscissa denotes v/d with d ranging from 0 to 2 m. See Section 5 for details.

when homogeneously sampling «*® and «*“’. The learnt
network represents this trend in its weights and biases.

In order to verify this influence of the inhomogeneity,
we used the second method of sampling the training data,
which ensured that activation hills were uniformly distrib-
uted on the body representation area as shown in Fig. 5(b).
Comparing it with Fig. 5(a), we see that the strong tenden-
cy to predict positions away from the low density data
regions around the border has been greatly reduced. We
have furthermore averaged the errors over single trials,
thus also capturing the noise induced by the stochasticity
of the neurons resulting from Eq. (5). The average devia-
tion between the correct body-centred object position and
its estimation by the network was 0.79 and 0.67 units for
the first and second method of sampling, respectively. With
15 units covering 180° (see Fig. 2) this corresponds to 9.48°
and 8.04° deviation of the network estimation of «”® This
data shows that the network can produce usable and
robust solutions of the dynamic coordinate transformation
problem.

5. Application within a robot control system

The integrated robot control system is shown in Fig. 6.
The visual system feeds into the coordinate transform
system which then feeds into the motor system. The
“eye-move” motor area is only concerned with focusing
the camera on the target object. Its connections have been
learnt in an error-driven fashion, strengthening (weaken-
ing) the weights if the camera movement was too little
(too large) to focus an object. Independent of the range
of the camera movement, when the robot is moving, the
camera moves too slow for centring the object permanent-
ly, but fast enough to keep it somewhere in the field of
View.

Apart from the coordinate transform network, the mod-
el including the visual and motor systems has been present-
ed before [18]. There it docks the robot to the target object
which must be relatively close, since the camera is fixed fac-
ing downward. While there the visual “where” representa-
tion was directly fed into the “state” area (cf. Fig. 6), now

where
(body)
—

cerebral cortex

cerebellum brain stem

Fig. 6. The three areas involved in the coordinate transformation
embedded in the full control model and overlaid on a sketch of the brain.
The boxes denote the implemented areas of neurons; round in the visual
system, oval-boxes in next steps of the coordinate transform system and
rectangular in the motor system. Thick arrows represent trained connec-
tions, partially in both directions as the arrow heads suggest, the thin
arrow denotes mere copying. Not displayed are recurrent within-area
connections in each of the coordinate transform areas (bold outlines).
Light green arrow colour denotes associative learning while dark red
denotes error-driven or actor-critic reinforcement learning of connections
which is associated with the basal ganglia. (For interpretation of the
references to color in this figure legend, the reader is referred to the web
version of this paper.)

the body-centred “where” representation feeds into the
“state” area instead. This body-centred “where’” area codes
along one axis for the body-centred target object angle 0
(cf. Fig. 1), and along the other axis for the square root
Vd of the distance between the robot and the object (the
square root function expands close ranges where higher
precision is needed). Fig. 5(c) shows the errors produced
by the coordinate transform network. Not all of the area
received any data when the robot was moved to randomis-
ed positions, as the background shading shows. Large
errors along the axis of the angle 6 at small distances d
can be explained by the training data: similar visual inputs
h, v and pan-tilt values p, ¢t were sometimes paired with
largely differing, contradicting values of d, 6. This is a

354 C. Weber et al. | Knowledge-Based Systems 19 (2006) 348-355

consequence of a “singularity’ at the origin, where changing
0 does not result in a change of other values, imprecise object
localisation and robot movement and sensor latencies.

The state space area then contains an additional third
dimension coding for the robot rotation angle ¢. The robot
needs this information to avoid crashing into the table with
its wide shoulders when approaching from the side. Dem-
onstration videos of the system controlling the simulated
PeopleBot robot can be seen at: http://www.his.sunderland.
ac.uk/supplements/AI05/.

Next, we will implement this demonstration on the real
PeopleBot robot.

6. Discussion

We have presented a network that can perform dynamic
coordinate transformations on test data and in a practical
scenario based on the principle of pattern completion of an
auto-associator attractor network. The network transforms
a hill of neural activation, but not a general pattern,
because during training such a hill of activation was always
given to the output area. Thereby the weights have been
trained to produce the competition that allows just one hill
to emerge on each area. This would be a limitation in e.g.,
the lower visual system where this transformation would
remove all except the positional information. However,
we conceive the network to reside in a higher level of the
dorsal “where” stream in the PPC, which is known to
abstract from information that is processed in the lateral
“what” stream.

As the network will produce a refined output, even if the
input is more scattered, we observe an effect similar to
attention, which is also attributed to the PPC [7]. This
allows the system to handle noisy input data as the emerg-
ing activation hill removes the noise, leading to robustness
of the network. It should be noted that while such a net-
work architecture allows just one hill of activation for rate
coded neurons, it would allow more than one hill if these
were separated in another dimension such as the phase of
spiking neurons (e.g., [13]).

There is a restriction on the range over which our net-
work can make a transformation. As we have seen in
Fig. 4, location estimates of x"* and x"““? are added to
obtain an estimate of x"*”. It is important that each of
the two inputs must convey information about and provide
a bias for the location of the target. If for example the head
position was irrelevant to the target position, then the visu-
al estimate which per se permits many body-centred posi-
tions could not be narrowed down any further. This does
not imply that the target object is altered by the head posi-
tion, but it means that only such a target may be chosen
which is within the visual field. This is a realistic assump-
tion accounting for all cases in which an agent’s hand is
visually guided to an object.

Extensions of existing networks have been made to
achieve object-centred representations with a basis function
network [6] or to transform another’s frame of references

into a self-centred frame of reference with a gain field archi-
tecture [15] which is necessary to perform imitation. We
believe that our simplified architecture without any hidden
layer also lends itself to such tasks.

We have so far assumed that each area’s input arrives in
a topographically arranged way and as a Gaussian-shaped
activation hill. A specific question is how to learn these
input mappings. The three areas convey different informa-
tion which implies different, possibly independent mecha-
nisms. (i) The topographic mapping of the visual object
position is particularly evident in the lower visual system.
(ii) The eye position is represented in several cortical areas,
e.g., V6A, 7a, V3a, LIP, MT, MST, PO and the ventral
premotor cortex (PMv) [10]. Many of these areas also
respond to e.g., visual stimuli and hand position. There-
fore, the development of an eye position map might be
guided by other, e.g., visual maps, and might take into
account factors such as the activations of the eye muscles.
Since the eyes and the head can be moved independently
(for most robots and their camera this is not the case),
another mapping for the head position, possibly dependent
on the muscles and vestibular signals, would be required.
Finally, (iii) the development of the map of a body centred
coordinate system might be controlled by factors such as
the joint angles of the arm with which to reach the object
or factors such as the duration to reach its position by
self-movement. Thus, such a map is motor related and
might reside in posterior parietal cortex where neurons in
the monkey are also modulated by the direction of hand
movement, as well as by visual, eye position and limb posi-
tion signals [2].

7. Summary

We have developed an artificial neural network capable
of performing a dynamic coordinate transformation to
generate body centred coordinates based on the visual
information and head orientation (pan-tilt of a robot’s
camera). It differs from static coordinate transformations
in that the transformed variable (here, a visual object coor-
dinate) is modulated by another coordinate (the head posi-
tion) in order to obtain the target variable (the object
coordinate relative to the agent’s body). The network
learns in a biologically plausible way and activations con-
verge rapidly to a focused pattern on the output layer. This
removes the need to manually solve and implement any
intermediate computational steps of the transformation
using a large number of additional units as is the case with
other systems. The model advances our understanding of
this important class of processes in the brain and helps
extending the range of robotic applications.

Acknowledgements
This is part of the MirrorBot project supported by a EU,

FET-IST programme, Grant IST-2001-35282, coordinated
by Prof. Wermter.

http://www.his.sunderland.ac.uk/supplements/AI05/
http://www.his.sunderland.ac.uk/supplements/AI05/

C. Weber et al. | Knowledge-Based Systems 19 (2006) 348-355 355

References

[1] D. Ackley, G. Hinton, T. Sejnowski, A learning algorithm for
Boltzmann machines, Cogn. Sci. 9 (1985) 147-169.

[2] C.A. Buneo, M.R. Jarvis, A.P. Batista, R.A. Andersen, Direct
visuomotor transformations for reaching, Nature 416 (2002)
632-636.

[3] Y.E. Cohen, R.A. Andersen, A common reference frame for
movement plans in the posterior parietal cortex, Nature Rev.
Neurosci. 3 (2002) 553-562.

[4] J.D. Crawford, W.P. Medendorp, J.J. Marotta, Spatial transforma-
tions for eye-hand coordination, J. Neurophysiol. 92 (2004) 10-19.
[5] S. Deneve, P.E. Latham, A. Pouget, Efficient computation and cue
integration with noisy population codes, Nature Neurosci. 4 (8)

(2001) 826-831.

[6] S. Deneve, A. Pouget, Basis functions for object-centered represen-
tations, Neuron 37 (2003) 347-359.

[7] S.R. Friedman-Hill, L.C. Robertson, L.G. Ungerleider, R. Desimone,
Posterior parietal cortex and the filtering of distractors, PNAS 100 (7)
(2003) 4263-4268.

[8] Z. Ghahramani, D.M. Wolpert, M.I. Jordan, Generalization to local
remappings of the visuomotor coordinate transformation, J. Neuro-
sci. 16 (21) (1996) 7085-7096.

[9] S. Haykin, Neural Networks. A Comprehensive Foundation, Mac-
Millan College Publishing Company, 1994.

[10] K. Nakamura, H.H. Chung, M.S.A. Graziano, C.G. Gross, Dynamic
representation of eye position in the parieto-occipital sulcus, J.
Neurophysiol. 81 (1999) 2374-2785.

[11] L. Natale, G. Metta, G. Sandini, A developmental approach to
grasping, In Developmental Robotics AAAI Spring Symposium,
2005.

[12] R.C. O’Reilly, Biologically plausible error-driven learning using local
activation differences: the generalized recirculation algorithm, Neu-
rocomputing 8 (1996) 895-938.

[13] A. Raffone, C. van Leeuwen, Dynamic synchronization and chaos in
an associative neural network with multiple active memories, Chaos
13 (2003) 1090-1104.

[14] E. Sauser, A. Billard, Three dimensional frames of references
transformations using recurrent populations of neurons, Neurocom-
puting 64 (2005) 5-24.

[15] E. Sauser, A. Billard, View sensitive cells as a neural basis for the
representation of others in a self-centered frame of reference, In:
Proceedings of the Third International Symposium on Imitation in
Animals and Artifacts, Hatfield, UK, 2005.

[16] T. Doi, Sony vice president. <www.sony.net/sonyinfo/qrio/
interview/>, 2004.

[17] A. van Rossum, A. Renart, Computation with populations codes in
layered networks of integrate-and-fire neurons, Neurocomputing
58-60 (2004) 265-270.

[18] C. Weber, S. Wermter, A. Zochios, Robot docking with neural vision
and reinforcement, Knowledge-Based Systems 17 (2-4) (2004) 165-172.

http://www.sony.net/sonyinfo/qrio/interview
http://www.sony.net/sonyinfo/qrio/interview

	A camera-direction dependent visual-motor coordinate transformation for a visually guided neural robot
	Introduction
	Test scenario
	Architecture and training
	Coordinate transformation results
	Application within a robot control system
	Discussion
	Summary
	Acknowledgements
	References

