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Abstract. In RoboCup soccer, ball localization is an important and
challenging task, especially since the last change of the rule which allows
50% of the ball’s surface to be of any color or pattern while the rest
must remain white. Multi-color balls have changing color histograms and
patterns in dependence of the current orientation and movement. This
paper presents a neural approach using a convolutional neural network
(CNN) to localize the ball in various scenes. CNNs were used in several
image recognition tasks, particularly because of their capability to learn
invariances in images. In this work we use CNNs to locate a ball by
training two output layers, representing the x- and y-coordinates, with
normal distributions fitted around the ball. Therefore the network not
only locates the ball’s position but also provides an estimation of the
noise. The architecture processes the whole image in full size, no sliding-
window approach is used.
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1 Introduction

In RoboCup humanoid soccer standard computer vision algorithms frequently
utilize color and edge information for ball tracking [2, 6, 8, 17], because such al-
gorithms are rather easy to implement and do not require lots of test data. For
example, one of the common solutions is to search for round shapes in the pic-
ture and try to find the center of this shape [2]. Most of the standard algorithms
are computationally cheap and deliver usable results. However, since there is no
intelligent decision whether an object is a ball or not, they detect false positives
quite often. Furthermore, since the complexity of the tasks of RoboCup has in-
creased [20], the motivation for new solutions is growing. For instance, until 2014
the ball’s color was all orange, but from 2015 onwards the specifications have
changed to a ball with at least 50% white color leaving the rest of the ball open
for any color combinations [20]. These changes in complexity adversely affected
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the results of many algorithms which were used up to now, because the color
distribution now significantly changes in dependency of the camera’s direction
(plus lighting) and the orientation of the ball itself. Figure 1 shows the contrast-
ing appearance of the ball for different orientations and movement.

The new ball specifications motivate intelligent approaches that are less de-
pendent on assumptions like a homogeneous color of the ball. Moreover, technical
advances make neural approaches possible in terms of computational power [1].
In sum the hypothesis of this paper is that a neural architecture should outper-
form standard algorithms which were used so far and especially be able to learn
invariants for getting a much better rate of true positives and reduce misclassi-
fication. In general we think that without preprocessing and with a sufficiently
large dataset a deep neural architecture should be able to learn the mentioned
invariants, because the raw information covers not only more variation but also
a more distinctive feature set. LeCun et. al. have already shown that deep net-
works are able to learn visual features for comparable tasks in robotics [15].
Here, we present a CNN which localizes the ball and outputs a distribution that
can be utilized for determining the noise in the input signal.

CNNs have often and successfully been used for object classification tasks
[7, 12, 14, 22] while in the last years also several CNNs for object localization
have been proposed and showed good results [3,4,16,19,21]. However, e.g. sliding-
window approaches are not optimal for ball localization in RoboCup soccer. Due
to the large change in size of the features representing the ball when it is moving
away or towards a robot the ball would cover several segments of a sliding-
window solution quite often. Therefore we decided to let our architecture always
classify the full image and manipulate the output, not the input, by feeding a
probability distribution over the width and height of the image as the teaching
signal. Apart from that, deep learning architectures like convolutional neural
networks seem to be novel in the RoboCup humanoid league for object localiza-
tion tasks.

For evaluating our architectures we randomly chose single frames of a non-
moving ball or a few frames out of sequences as test images and measured the
accuracy. In the sequences the ball is moving in various directions. We started
with clean scenes with just a few objects and the ball, but our current dataset
contains more images with robots, goal posts and miscellaneous objects (tables,
chairs, windows, doors, humans, heaters) in the background.

In the second section we go into detail about our proposed architecture. In
section 3, we describe the methodology of our approach: the used data set, the
experiments in detail, our evaluation method and results. Finally, in section 4,
we present our conclusion and possible future work.

2 Proposed Architecture

2.1 Convolutional Neural Networks

Fully-connected neural networks (e.g. MLPs) use lots of memory when they
are designed for complex computer vision tasks. The vast amount of weights
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Fig. 1. One of the balls currently used in Robocup. The white color of the ball is
almost identical compared to the color of the goal posts and the endlines. In the center
image one can see the overemphasized red channel; this happens occasionally with our
robot’s camera and the lighting in our laboratory. The left and center images show
non-moving balls with a distance of 0.5 meters to the robot. The right image shows a
moving ball with a distance of 1.0 meter to the robot.

increases rapidly with the network’s size. In contrast, CNNs filter the input
information in the first layers [12]. The 2D data of an image is convolved by
different kernel filters which extract characterizing features in the convolution
layer. In subsequent layers this information is pooled and subsampled [12]. At the
end different filters extracted the features by being applied over an image. These
can be color distributions, shapes, specific patterns and so on. Properly designed
and trained deep architectures can supply robust, state-of-the-art results [24].
In our approach we utilize the strengths of CNNs in classification tasks and
combine this with altering the output layer to predict the ball’s location with a
distribution instead of absolute coordinates or bounding boxes.

2.2 Teaching Signal
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Fig. 2. A sample normal distribution that is taken as the teaching signal for the x
output layer of the network. In this hypothetical sample image the ball is located at
x = 400, therefore the normal distribution has a µ of 400. The width σ is 20.

Our teaching signal is a normal distribution fitted around the center of the ball’s
real coordinates. Hence, one 800-dimensional vector for the x output layer (width
of image) and one 600-dimensional vector for the y output layer (height of im-
age). The normal distributions parameter µ is the center of the ball, while σ
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was set to 20. An example of one teaching signal is shown in Figure 2. Using
a normal distribution as the teaching signal (“labels”) lets the network con-
verge faster since a pixel-precise prediction would be harder to learn and has no
substantial advantage in ball localization or tracking. Furthermore, the shape
of the network’s output data can be interpreted for approximating the current
process’s noise: in clean images the distributions (output) mostly had maxima
of similar width, height, and shape. Reflections, blurring, and other visual dis-
tortions frequently caused wider maxima and noised shapes. For that reason
the use of probability distributions as the teaching signal was a huge benefit,
enabling a faster convergence and supplying additional information about the
noise in the input data. Moreover Larochelle et al. stated that a high number of
solutions that deliver a small training error increase the chance of the network
converging into local minima [13]. In consequence, there is a decreased chance
for the network to learn invariants and represent a generalization of the problem,
ensuring the test error to be low, too. By using a probability distribution it is
far less likely for the network to find a solution that only results in a decreased
training error, because a maximum in the distribution consists of many classes
being activated, therefore there are far less possible solutions with a low training
error rate. Figure 2 shows an example for a probability distribution fed to the
network for training.

2.3 Activation Functions

We used three different activation functions: the “traditional” rectified linear
units (ReLU) [18], rectified linear units with an upper bound of 6 (ReLU6) [11],
and soft-sign activation [5]. A ReLU activation is defined by:

h(x) = max(0, x) . (1)

where x represents a feature vector (the input for one complete layer) and
h is the activation transformed by the activation function, calculating the out-
put of one layer. The networks using ReLU6 converged faster regularly. ReLU6
activation is defined by:

h(x) = min(max(0, x), 6) . (2)

The upper bound of 6 in ReLU6 activation preserves the network of having
too high activations since every activation runs into a hard limit and saturation.
Additionally the precision of floating point numbers is higher around 0 and gets
lower with values much higher than 0. As a consequence, our network learned
features faster with ReLU6. A faster convergence and slightly better test results
were provided by using soft-sign activation:

h(x) =
x

|x|+ 1
. (3)

The soft-sign activation function’s shape is comparable to tanh(x) but it
saturates slower. This makes the soft-sign activation less dependent on weight
initialization, which improves the forward activation as well as the backward
learning [5].
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2.4 Weight Initialization

One of the most challenging parts for deep neural networks is the initialization
of weights [5]. If the weights are initialized to high the signal diverges while
being propagated through the network; if the weights are too small it converges
to zero or falls into a local minimum. The first scenario results in an activation
of the output layer which does not deliver usable results. Instead of a proper
distribution with an activity bump, the activation is large for all neurons while
the second scenario results in an output that is very similar for nearly every input
signal – the delta between different outputs for different inputs is very small.
Many networks showed a convergence when their weights were initialized with
a normal distribution N (µ, σ2), where µ = 0 and 0.01 <= σ2 <= 0.2. This was
the case throughout many different parameter settings in the majority (about
60%) of experiments. However, the results of the first experiments depended
on heavy empirical testing which was very time-consuming. Better results were
delivered by normalized initialization [5] (sometimes also referred to as Xavier
initialization) which gives a good approximation for initializing the weights. This
is especially useful because this approach showed good results in combination
with soft-sign activation. Basically, the weights W between layer j and layer
j+1 are initialized with a uniform distribution (U) with upper and lower bounds
defined by:

W ∼ U

[
−

√
6

√
nj + nj+1

,

√
6

√
nj + nj+1

]
. (4)

where nj is the amount of neurons in layer j and nj+1 the amount of neurons
in layer j + 1. Besides the distribution shown in equation 4 it is also possible to
approximate the variance of a normal distribution with normalized initialization
by taking equation 4 as the variance for a normal distribution and set µ = 0.
For ReLU activation this initialization also works but has to be scaled up a bit
because of the ReLU activation’s lower bound of 0.

2.5 Optimization Algorithms

The experiments started with “traditional” gradient descent optimization for the
learning algorithm but big data sets need a huge amount of training steps for the
networks to converge. This problem was solved by using a stochastic gradient de-
scent algorithm: Adam. Adam was developed by Kingma et. al. and successfully
proposed especially for deep networks with a high amount of parameters [10].

2.6 Models

For demonstrating that networks with less neurons actually can achieve at least
comparable results in ball localization we decided to develop two architectures.
Model 1 delivered the best results for our experiments so far and after achieving
this accuracy we abstracted from model 1 to create a network with less neurons
to lower the computational costs of running the architectures.
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Fig. 3. Graphical illustration of the architecture of model 1.

Model 1 is illustrated in Figure 3. It has only three convolutional layers, pooling
is applied on the first two layers. The aim was to find out if less convolution and
especially less pooling leaves more “raw” information that could be interpreted
by the fully-connected classifiers in the last layers. The model was evaluated
with and without dropout. If dropout was used, it was applied on every layer
except the output layer with a dropout rate of 0.5 for training and no dropout
for testing. Instead of dropping single connections, always whole neurons have
been dropped out. The initial bias for the fully-connected layers was zero and
0.01 for the convolutional layers, which showed a marginally faster convergence
for this architecture.
Model 2, illustrated in Figure 4, has a decreased number of fully-connected
neurons. The training time for 10.000 training steps was reduced by 20% in com-
parison to model 1. Further decreasing the training time needs a more aggressive
use of pooling to reduce the dimensionality, but in our case this procedure low-
ered the test error rates drastically. Again, dropout is applied on every layer but
the output layer with the same rates for training and testing as model 1.
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Fig. 4. Graphical illustration of architecture model 2.
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3 Experimental Results

3.1 Dataset

CNNs need a large training data set [15]. All images of our data set have
been recorded in our laboratory, which has a play field set up according to the
RoboCup humanoid league rules but scaled down in size. The dataset contains
1.160 images; 80 are used as test images while 1.080 are used for training the
network. The images portray various scenes, some are very clean with just the
ball on the field, others cover a goalkeeper robot, the goal posts, a striker robot,
and several arbitrary objects in the background (like tables, chairs, a heater,
windows, a door). See Figure 5 for examples. Mostly the distance to the ball
is between 0.5 and 5.0 meters. 400 images show a non-moving ball at various
locations, while the rest are sequences of a moving ball. Roughly 20% of the
training and test images contain a robot, a goal post or something similar right
next to the ball and in almost 50 images the ball is partly covered, e.g. by the
legs of a robot. The images are of dimension 800 × 600 × 3 (width × height ×
RGB-channels) without any preprocessing. Hence, the dataset contains images
with reflections, blurry images, images with overemphasized color channels, and
so forth. Especially the red channel is intensified in some images, letting white
walls appear pink.

Fig. 5. Illustration of some test images used for evaluation, taken from the robot’s
camera.

3.2 Experimental Methodology

For evaluation we use a top-11 error rate, it describes if the top-11 activations
(activity bump of the network) in one feed-forward step matches with the top-11
values of the teaching signal. Due to the symmetric shape of a normal distribution
this guarantees the top-11 activations of the network to be 5 pixels around
the real center of the ball. Hence, we basically count how many of the top-11
activations of the network are found in the teaching signal and build the mean
over this. Only if the ball and therefore the normal distribution is exactly at a
corner, this has a worst case of 10 pixels around the ball’s center.
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3.3 Results

Overall all networks showed a convergence after about 15.000 to 30.000 training
steps. For the easier, cleaner images they started to converge after approximately
8.000 training steps, while about 15.000 training steps were needed for the more
complicated ones. Table 1 shows the full results of our networks classifying the
test images. Model 1 (soft-sign) offered the best results. It outperformed model 2
and the other activation functions. Regardless of which model was used, soft-sign
activation delivered the best results, ReLU6 was always off by some percent and
ReLU even lower. Hyperbolic tangent and sigmoid activation were only tested
in the very first experiments and were dropped due to unsatisfactory results.
The network’s output is visualized by plotting the top-11 prediction as well as
a heatmap on top of the test images. The heatmaps and the distribution plots,
illustrated in Figure 6, show that the network is classifying accurately.

Table 1. Results for full training (40.000 training steps).

network top11 x peak top11 y peak

model 1 soft-sign 81% 75%
model 1 ReLU6 74% 71%
model 1 ReLU 72% 69%
model 2 soft-sign 71% 70%
model 2 ReLU6 66% 68%
model 2 ReLU 65% 63%

3.4 Architecture Benchmarks

For an evaluation of our architecture’s running time we used the full network
(model 1) on a modern laptop (Intel Skylake i7 U-Series; mobile processor for
low power consumption: 15W TDP). Running the complete test data set took
this processor 74.43s, with a mean of 0.91s per image. Even on our new Hambot
robots the full architecture is too big for the RAM (2GB). Hence, we scaled
down model 1 and retrained it. The architecture (layers, configuration, . . . ) is
the same, but the input size is 200× 150 and the output vectors for the x- and
y-axis are 200- and 150-dimensional vectors. With this configuration our robots
were able to load and work with the network. A processing of the full test data
set took our robot 24.05s (laptop: 2.079s), with a mean of 0.304s (laptop: 0.026s)
per image. The performance of model 1’s downscaled version dropped: to roughly
correspond to the top-11 error we evaluated a top-3 error which was 58% (top3
x) and 52% (top3 y) in total. Especially images with a ball-robot distance of over
2 meters dropped drastically in performance (some of these images were below
30%). Near distances up to 1 meter mostly showed error rates of roughly 70%.
Thus, either faster processors for robots are necessary (to run the bigger nets)
or low classification rates at medium to high distances have to be accepted.
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Fig. 6. In the first row the original test image is displayed. The real coordinates (x, y)
for the ball are (458, 153). The x- and y-output, generated by the network for this
specific test image, is also shown in row 1. The second row shows the heatmaps for the
combined output (left), the x-output (center), and the y-output (right). The top11-
activation is plotted into the left image in the second row with red dots.

4 Discussion

In most experiments the soft-sign activation networks dominated in performance,
hence it is the best choice for this particular network design and the task of ball
localization. Additionally the normalized initialization led to better results and
faster convergence. Overall, model 1 as well as model 2 delivered usable results,
while model 1 was the better choice, guaranteeing a very precise prediction in
about 80% of the test images. For more complex images the discrepancy to
the real coordinates often was less than ±10 pixels. Even results with a higher
discrepancy may be useful in a game since the approximated location of the
ball is much more important than a pixel-precise knowledge of it’s position.
Additionally, when catching the ball as a goal keeper or kicking the ball as a
striker, pixel-precise information is unnecessary, since the hardware is not able
to kick or catch balls with such a precision. As a consequence, distributions that
point in the right direction are an efficient way for ball localization, especially
when the discrepancy to the real coordinates is low enough. Furthermore this
gives an approximated idea about the uncertainty in the input signal: clean
shaped distributions cover low noise and high accuracy, while noisy input data
distorts the distribution’s shape. Despite this, less than 5% of the test images
were classified incorrectly, leading to unusable results. In 90% of the test images
the ball was found reliably and the rest showed noisy activity bumps. However,
even these noisy activations were stable enough to filter the output, e.g. with
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a DBSCAN algorithm. Nonetheless, our architecture relies on a big training
data set and the prediction results worsen a lot, if the input signal differs much
from the training data. Thus, there is still work to be done. For example, our
training data set is too small: in some situations the endlines or goal posts
(because of their white color and in some angles round-shaped appearance) shift
the network’s attention, moving the activity bumps in between the ball and these
objects. This most likely happens because many images cover no goal posts or
only small parts of it. Also, scenes showing a partly covered ball led to mis-
localizations, and scenes with no ball falsely led the network to output some
location. Slightly less than half of such scenes were classified correctly. As a
consequence, for such cases, there are clearly not enough training samples and
therefore invariances learned by the network to produce reasonable output.

5 Conclusion and Future Work

We proposed a deep neural architecture, which is able to reliably locate the ball,
although no pre-training was used. If supplied with enough training data (show-
ing different ball orientations, speeds/trajectories, color distributions, distances,
and other characteristics), it should outperform standard algorithms. The low
computational power of robots compared to a computer limits the size of the net-
work. For that reason we concentrate on developing an architecture for achieving
satisfactory accuracy while keeping in mind the limited computational power of
the robots. Hence, the current setup achieves the results with just a few layers
and not too many neurons. The current architectures take no longer than 10 to
20 hours to train and can be run on modern robots with small changes. Our
networks are able to deliver a reasonable performance in locating multi-color
balls with arbitrary color patterns. Additionally, our architecture not only pre-
dicts the ball’s location but does this with producing a distribution over the
full width and height of the image. Therefore it delivers information about the
noise, also. Figure 6 shows that for an accurate prediction the distributions on
the output layer have a single bump with a spiky maximum. Additionally the x-
and y-output bumps are of a similar shape (width, height). This can be seen in
the majority of the test images when fed to the network, which proves the idea
of the distribution output.

One aspect for developing a better architecture, to learn a better representa-
tion of invariances, will be to create a larger, more complex data set. Therefore
more images are needed where the ball is partly covered, as well as images with
no ball at all. Even mirroring the training data set’s images improved our re-
sults: the top-11 accuracy of the test images went up to 83% (top-11 x) and
76% (top-11 y) for model 1. Thus, a bigger training data set with more varying
images should stabilize the results. Up to now our data set only has few images
that hide the ball e.g. between the legs of a robot. Learning inhibitory feedback
should further improve the performance so images with no ball at all and a zero
learning signal as well as more images with robots or other objects partially
covering the ball should be the next milestone.
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Another goal is to filter the noise and to predict the ball’s movement over sev-
eral frames with a recurrent neural network. As already mentioned, the cluster
points even for test images with a low accuracy are close enough to each other to
approximate the right direction to the ball. One possible and interesting solution
is a neural Kalman filter [9]. It predicts a new/subsequent value for some ob-
served feature based on previous input and observation noise as well as process
noise. A neural implementation renders this task more complicated but also more
dynamical, which should increase the filter’s precision in the dynamical environ-
ment of RoboCup humanoid soccer. Standard implementations are used often
but their success heavily relies on the knowledge of process and measurement
errors. Szirtes et al. have shown that a neural architecture can learn predictable
features along with the noise on specific features of the input information [23].
This information can be filtered by specific local neurons rendering the solution
highly dynamical for feature rich, noisy environments. A way to keep the filter
and prediction part computationally cheap and neurally reasonable is to use an
Elman network. Potentially future work could connect both parts of the architec-
ture even more: when the recurrent neural network outputs the next prediction
of the ball’s location, this information could be used to direct the attention of
the convolutional neural network to the corresponding area in the image. Deep
architectures can supply very good, robust results for those tasks [24].
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