
Interaction is more beneficial in complex
reinforcement learning problems than in

simple ones

Chris Stahlhut, Nicolás Navarro-Guerrero,
Cornelius Weber, Stefan Wermter

Universität Hamburg, Fachbereich Informatik, Knowledge Technology,
WTM, Vogt-Kölln-Straße 30,

22527 Hamburg, Germany, (e-mail: kogsys2015@cstahlhut.de)

Abstract: Giving interactive feedback, other than well done / badly done alone, can speed up
reinforcement learning. However, the amount of feedback needed to improve the learning speed
and performance has not been thoroughly investigated. To narrow this gap, we study the effects
of one type of interaction: we allow the learner to ask a teacher whether the last performed
action was good or not and if not, the learner can undo that action and choose another one;
hence the learner avoids bad action sequences. This allows the interactive learner to reduce
the overall number of steps necessary to reach its goal and learn faster than a non-interactive
learner. Our results show that while interaction does not increase the learning speed in a simple
task with 1 degree of freedom, it does speed up learning significantly in more complex tasks
with 2 or 3 degrees of freedom.

Keywords: Interactive Reinforcement Learning; Continuous Actor Critic Automaton; Cacla;
Multilayer Perceptron; Learning to Reach; Robot Teaching

1. INTRODUCTION

Reinforcement Learning (RL) draws inspiration from the
work of Thorndike [1911] as it models operant or instru-
mental conditioning. Instrumental conditioning describes
how a learner can improve on performing a task based on
positive and negative feedback. If an action a results in
a positive feedback r in a particular situation or state s,
the learner will more likely select the same action in this
situation. If an action leads to a negative feedback, the
likelihood of choosing the same action decreases.

One early example of the study of this phenomenon
in animal behaviour is the Thorndike’s puzzle box. For
instance, if a cat is placed inside a box, it will want to
come out; but to escape the box, it needs to perform a
sequence of actions, such as pushing a button and pulling a
lever. At first the cat performs random actions until it, quite
by accident, releases the door, escapes and gets fed. If the
cat is again placed in the same box, it still behaves in most
cases randomly, but tries those actions more often that it
assumes to have let it free. With repeated experiments and
the cat’s growing experience, the cat learns to escape the
box and the time required by the cat decreases. Figure 1
shows an example of such a puzzle box. The line graph
shows the decreasing time of the cat to escape the box.

RL algorithms use mathematical models of the states,
actions and rewards to simulate this kind of behaviour.
For example, if the probability of taking an action a is
proportional to its reward ra, then the highest rewarding
action will be selected most often. Initially, the algorithm
has only a rough or random estimate of the real associations

TrainingT
im

e
re

qu
ire

d
to

es
ca

pe
[s

]

Fig. 1. A puzzle box in the top Figure. The cat has to push
a lever to open the door and escape. The plot in the
bottom Figure shows the decreasing time to escape
with increasing experience. 1

between the actions and rewards, but comparing the
estimates with the real, received rewards and adapting
the estimates allows the algorithm to learn.

The suitability of an action may depend on the state, e.g.
pushing the floor down does not work if there is no lever
and the stochastic behaviour or policy needs to depend on
the state as well. The policy therefore maps from the set of

1 Adapted from image under public domain by Jacob Sussman
https://commons.wikimedia.org/wiki/File:Puzzle_box.jpg

states and actions to the probability of taking that action
in this particular state.

In simple problems, some actions may lead the actor to an
immediate improvement of state. However in typical RL
problems, the reward is usually delayed, which means that
the actor needs to take some apparently suboptimal actions
to obtain a higher reward in the long term. The actor may
get stuck in a local optimum if it only takes immediate-
optimal actions. The value function is formulated in terms
of the received reward r, the value of the expected future
reward V(s′) weighted by a discount factor γ. Minimising
the absolute difference between the currently received
value and the current estimate of the value function V(s)
allows learning of the function. Such algorithms learn by
minimising the Temporal Difference (TD) error

δ = r + γV(s′)−V(s).

All such RL algorithms fall into the class of TD learning
and are a good model of reward-driven learning in animals
[Schultz, 2002].

TD learning forms the basis of Q-Learning in which the
value function and policy is combined into a single Q(s, a)-
function [Watkins, 1989] and is one of the most widely used
RL algorithms in discrete spaces [Thomaz and Breazeal,
2008, Duguleana et al., 2012]. Another subclass of TD
learning algorithm is the actor-critic algorithm [Barto et al.,
1983]. Its name derives from the dual memory used in these
algorithms, i.e. the reward prediction model or critic and
behavioural model or actor. The actor encodes the state-
action mapping, whereas the critic stores the value function
V(s) and evaluates the outcome of the selected action in
the form of a TD error.

2. INTERACTIVE REINFORCEMENT LEARNING

Interactive Reinforcement Learning (IRL) extends this
framework by allowing additional interactions, such as
putting the learner through a sequence of actions and there-
fore demonstrating a working example [Navarro-Guerrero
et al., 2012] or allowing the learner to communicate with a
more knowledgeable teacher [Suay and Chernova, 2011]. In
this way, the teacher can help the learner to avoid actions
which do not lead to a greater reward. Figure 2 shows the
general architecture and interaction of the environment,
learner, and teacher based on Sutton and Barto [1998] with
the additional interaction between learner and teacher.

Learner

Environment

Teacher

a undo

isBetter(s, s′)

bool

sr

Fig. 2. The general RL framework with interactive feed-
back and the ability to undo the last action. The
conventional model is drawn in black and the non-
standard interactions in red.

The former approach of putting the learner through a
working or nearly working example to create an initial

behaviour is known by the terms of Learning from Demon-
stration (LfD) or putting-through or apprenticeship learning
[Navarro-Guerrero et al., 2012]. Theodorou et al. [2010]
used an algorithm called Policy Improvement with Path
Integrals (PI2) to let a simulated robotic arm with up to
50 Degree of Freedom (DoF) move from one fixed position
to another fixed position via one predefined point.

The latter approach reduces the exploration space by
allowing a user suggest an object to do an action with
and therefore guide the learner by reducing the exploration
space, see Thomaz [2006] and Thomaz and Breazeal [2008].
They tested the ability to guide a modified Q-learning
algorithm with a simulated kitchen robot called Sophie.
The task for the teacher was to help Sophie learn to bake
a cake. Baking a cake included taking a bowl, adding flour,
milk, etc. into the bowl and then mixing it with a wooden
spoon and putting it into the oven. The teacher had the
ability to not only give the positive and negative reward,
but to click on an object, e.g. on the bowl to suggest Sophie
that it should do something with it. They also allowed the
human teacher to “undo” an action if it was reversible, for
instance if Sophie grabbed the milk before putting flour
into the bowl or grabbed the bowl in the beginning; not
undoable actions included adding the eggs or milk into
the bowl or putting the eggs into the hot oven which is
not only irreversible but also a catastrophic failure. Suay
and Chernova [2011] used the same algorithm on a Nao
robot 2 in which the robot was taught to sort objects into
two boxes.

In recent developmental robotics research, teachers are
becoming more and more common. For example, Farkaš
et al. [2012] train an iCub to perform an action with Cacla,
while simultaneously teaching the robot to linguistically
describe its actions, which requires a teacher to be present.

Other algorithms also deal with the sparse and often
imperfect nature of human feedback. For instance, Griffith
et al. [2013] introduce the parameters C, to model the
consistency of the feedback, and L to model the likelihood
of receiving feedback. If the likelihood is large but the
consistency small, then the teacher will give advice very
often, but not always the right one. If the likelihood is small
and the consistency large, then the little amount of feedback
will be accurate. Griffith et al. [2013] compared their
algorithm against different others with levels of consistency
of 0.55, 0.8 and 1.0 and interaction likelihoods of 0.5 and
1.0. Yet, their focus is on the advantage of their algorithm
and not on the necessary amount of interaction between
the learner and teacher. All in all, a number of algorithms
for interactive learning exists, which explore the benefit of
different kinds of interaction. However, what has not yet
been thoroughly studied is the amount of feedback needed
by those techniques to improve learning.

3. CONCEPT

In this paper, we intend to quantify the benefits of an
autonomous interactive learning algorithm. We intend to
determine to which degree Reinforcement Learning (RL)
benefits from interactive feedback outside the reward-
function in the context of a reaching task. In a reaching task,

2 https://www.aldebaran.com/en

we need not only to learn to map the goal position from
workspace to joint space, also known as inverse kinematics,
but also to learn the change needed to navigate the arm
from its current position to the goal position.

It is possible to train this change in a supervised fashion,
but this is only possible in cases in which there is a direct
one-to-one mapping between work- and joint space, i.e.
there are no multiple solutions, to the inverse kinematics.
Once there are multiple solutions however, e.g. the point p
can be reached with two configurations c and c′ as depicted
in Figure 3, the learner would reach through the middle
of both configurations and therefore not reach the desired
point p. This is particularly true if both configurations are
sampled equally often.

0

c

c′

p

Fig. 3. Example for multiple solutions of the inverse
kinematics. The configuration c′ shows an alternative
to the configuration c to reach the point p from the
origin 0. The dotted red line shows the average of the
two configurations.

RL, however, converges better on single solutions, because
once the learner has found that configuration c will let it
reach p, it will use this configuration more often than any
other configuration and hence forth learn to reach the point
p with configuration c instead of c′. This is also the case if
more than two solutions for the inverse kinematics exist,
e.g. by using three joints in a plane.

Our task with a variable goal specified as part of the actor’s
input is of interest to hierarchical RL [Rasmussen and
Eliasmith, 2014]. A popular example task in hierarchical RL
is the “taxi domain”, which requires a taxi to navigate to
varying passenger and destination locations. Transferred to
a continuous domain, it resembles a pick-and-place scenario
of a robotic arm. In hierarchical RL, a higher level RL
module may specify a current goal location for the lower-
level module as part of the lower-level’s input. This would
not be possible if the lower-level module only learns one
fixed goal. This is a further reason to include a variable
goal into our task set-up.

In our implementation of an interactive algorithm for
learning to reach [Stahlhut, 2014], we borrow the concept
of undoable actions by Thomaz and Breazeal [2008] and
the idea of likelihood of receiving feedback presented by
Griffith et al. [2013]. For programmatic simplicity, however,
we did not model it as a likelihood of interruption with
feedback for the learner but as likelihood of the learner
to engage the teacher. Specifically, we allow the learner
to ask the teacher for feedback at every time step with a
likelihood L < 1; we speak of a fully interactive learner if
L = maxL. The teacher then judges the last action by the
change in the Euclidean distance between the hand and the
goal. The feedback received by the learner is binary, based
on the idea that a bad action increases the distance while
a good action does not. This set-up will help the learner to

explore action sequences going from one beneficial state to
the next, even better state and thus speeds up the learning
process.

Learning to reach is a task with both continuous input
and output space. Of all the mentioned IRL algorithms,
except for LfD, none of them works in continuous spaces
because guiding the learner with a reduced exploration
space requires the teacher to know in advance which actions
are appropriate at each time step. Undoing the action after
it has been done does not require the teacher to look into
the internal decision-making process of the learner. It only
needs to observe the actions physically taken by the learner,
which is a realistic assumption.

To use IRL in continuous spaces, we first need a continuous
spaces RL algorithm and then implement the modifications
presented in Figure 2 and include the ability to undo action
and ask the teacher for help. We choose the Continuous
actor-critic learning automaton (Cacla) [van Hasselt and
Wiering, 2007], because in contrast to the episodic natural
actor-critic (eNAC) [Peters et al., 2005] does it not depend
on the natural gradient and, therefore, can update the actor
and critic at every time step.

We used multilayer perceptrons (MLPs) for the actor and
the critic, because of their wide availability and ease of
use. The output of the actor’s MLP denotes the action
a(s) for the actor to perform given the state input s. Cacla
lets the actor explore new policies by a small random
variation a′(s) = a(s) + σ of every action, where σ is
typically Gaussian noise as suggested by Williams [1992].
If and only if the variation leads to an improvement of
expected value, i.e. δ > 0, then the new output will be
learnt. Hence, the error a′ − a(s) causes learning of the
actor MLP via back-propagation [Rumelhart et al., 1986].
Algorithm (1) shows the general implementation of the
Interactive Continuous actor-critic automaton (ICacla).

Algorithm 1: The Interactive Continuous actor-critic au-
tomaton (ICacla) algorithm. The red statements show the
differences to Cacla.

Initialize θ, ψ, s
for t ∈ {0, 1, 2, . . . } do

Choose a′ ∼ π (s,ψ)
Perform a′, observe r and s′

if l ∼ uniform(0, 1) < L then

if isBetter(s, s′) then

δ = r + γV (s′)−V (s)
vart+1 = (1− ζ) vart + ζδ2

updateCritic(s, r + γV (s′))
if δ > 0 then

for i 0..dδ/√varte do

updateActor(s, a′)
end

end

end

else

undo(a)
end

if s′ is terminal then

Reinitialize s′

else

s = s′

end

end

Note that δ is estimated by the critic, which is part of
the learner, and so δ > 0 does not necessarily mean that
the action is actually better. A separate critic MLP learns
the state value V (s). The value prediction error δ causes
learning of the critic MLP via back-propagation. If the
output of the actor results in an improvement, i.e. the TD
error δ is small, then updating the actor brings its output
closer to the actually taken action a′.

If an action is exceptionally good, i.e. the ratio of it to
the running variance var : δ/√vart is large, the algorithm
repeatedly updates the actor, making the action even more
likely to be selected in the future.

We compared multiple fully interactive ICacla learners
with non-interactive Cacla learners and later learners with
different likelihoods of asking. Requiring a low level of in-
teraction to improve the learning speed and performance is
highly desirable when relying on human teachers. Section 6
explains our comparison in more detail.

4. ENVIRONMENT

We compared interactive and non-interactive learners using
three set-ups, one consisting of a 1-Degree of Freedom (DoF)
arm, another of a 2-DoF arm and lastly a 3-DoF that moves
in a plane. In all three settings the learner was required
to move the arm from an arbitrary starting position to a
different goal position.

The first environment was the angular space of a complete
circle with an goal zone of

√
0.0012rad, as shown in Figure 4.

In this set-up, the relevant positions were encoded by the
angles between the arm and the vertical line, or the goal
and the vertical line, respectively. Since the arm has a fixed
length, the invariable distance between the end-effector
and the center was not encoded.

0

π

π/2 −π/2

goal zone

φ

j0

Fig. 4. The 1-DoF workspace is represented by the blue
circle with the goal zone and legal value ranges of
the joint indicated in red. The dashed lines show an
alternative arm position. The value φ represents the
angle of the goal zone.

Figure 5 shows the workspace of the 2-DoF arm. The
shoulder had an angular range of [−π/2, π/2] and the elbow
of [−π, 0]. Each link had a length of 0.366m. With this set-
up we obtained a one-to-one mapping between Cartesian
work- and joint space. The goal zone was a circle with

a radius of 0.12m that could be placed with its centre
anywhere within the workspace.

−2 −1 1 2

−1

1

2

goal zone

j0

j1

j′1 x

y

Fig. 5. The 2-DoF workspace is the space within the blue
line. An example goal zone is visible at the upper right
border or the workspace and the legal value ranges for
the joints are depicted in red. The center of the goal
zone can be placed anywhere within the workspace,
even if this means that parts of it lie outside and thus
are unreachable. The Cartesian coordinates are used
to specify the goal’s center for the learner to aim for.

The 3-DoF workspace is an extension to the 2-DoF
workspace. We added an additional link of 0.2m length,
see Figure 6. The range of motion for this new joint was
[−π/2, π/2]. In this set-up there is no longer a direct one-to-
one mapping between work- and joint space. Except for
the workspace border, every position within the workspace
can be reached in at least two joint configurations. The
goal zone was the same as for the 2-DoF arm.

−2 −1 1 2

−1

1

2

j0

j1

j2

goal zone

j′1

j′2

x

y

Fig. 6. The 3-DoF workspace is the space within the blue
line, an example goal zone is shown in black and the
legal value ranges for the joints are shown in red.

For all three scenarios, every joint was only allowed to
move within the interval [−π/4, π/4].

5. CONTROLLER SET-UP

We used varying starting and goal position which required
us to not only give the actor and critic the position
of the goal but also the current position of the arm

itself. We added the goal’s position in angular space for
the 1 dimensional task and in Cartesian coordinates for
the 2 dimensional tasks as input, as well as the arms
proprioception in radians.

We determined the network’s topologies by selecting the
network with the smallest overall square error in learning
to reach for the goal in a single step. This task can easily
be learned with supervised learning by selecting the goal as
a random position in joint space, which means the action is
just the difference between the arm’s and goal’s position in
joint space, and then calculating the Cartesian coordinates
through forward kinematics. We selected networks with
one and two hidden layers and 5, 10, and 20 hidden nodes
each. We used the average distance between the hand and
the goal after training the networks with 100 samples for
500 epochs as guide for the goal zone’s size. We did not
repeat the procedure for the 3-DoF arm but used the same
number of hidden layers and nodes for it as for the 2-DoF
arm.

The actor for the 1-DoF arm had a 2-dimensional input
space and a 1-dimensional output space. For this set-up
we only used a single hidden layer of 10 units, as shown in
Figure 7.

j0

φ

0

...

9

j′0

Fig. 7. The layout of the MLP for the 1-DoF actor. The
input j0 represents the arm’s proprioception and the
input φ the position of the goal’s centre.

In both 2 dimensional tasks we used the Cartesian coor-
dinates of the target (x, y) and the angular positions of
every joint ji. The 2-DoF arm used two input nodes for
the proprioception and two as outputs, while the 3-DoF
used three input and output units, as shown in Figure 8.
Both networks used two hidden layers with 20 nodes each.

j0

j1

j2

x

y

2
-D

o
F

3
-D

o
F

0

...

...

...

19

0

...

...

...

19

j′0

j′1

j′2

2
-D

o
F

3
-D

o
F

Fig. 8. The layout of the MLP for the 2- and 3-DoF arm
actors. x and y represent the coordinates of the target
position, ji represent the current joint value and j′i
represents the chosen joint displacement.

6. METHODOLOGY

We selected a sequence of random initial arm and goal
positions which was used in the same order for all learners.

The initial comparison was between a non-interactive and a
fully interactive learner. We then selected the learners with
the largest difference in the learning speed to ascertain how
much interaction is necessary to gain an advantage.

We ascertained the necessary amount of feedback by
comparing a non-interactive learner against increasingly
interactive ones. We effectively varied the likelihood of
asking L in the range [0, 99]. We did not use the maximum
likelihood of asking of 1, because there are special cases
in which it may be necessary to first increase the distance
slightly to reach a goal. For instance in Figure 5, if the
end-effector is in coordinates (−2, 0) it can take no action
without increasing the distance to a goal at position
(1,−1). In this situation, our teacher, which follows a
simple heuristics “closer to goal is better”, behaves counter-
productively. Always obeying it would let the learner never
discover the goal. Once a likelihood of asking was selected,
it remained constant throughout the training.

For both set-ups we performed a testing episode every 10th

episode. During the testing episode the learner was not
further trained, action exploration and asking the teacher
were turned off. We repeated every experiment with 10
differently initialized controllers to reduce fluctuations, but
every learner used the same initial controller during a single
experiment. We selected learning parameters randomly
from the range shown in Table 1.

Tab. 1. The intervals for the hyperparameters.

Paramter Interval

Critics’s learning rate α [0.05, 0.2[

Actor’s learning rate β [0.05, 0.2[

Exploration rate σ [0.2, 0.5[

Discount factor γ [0.75, 1[

To assess the effectiveness of learning, we need a metrics
that integrates over the entire learning episode of one, or
several, learners. We developed a metrics based on the
number of steps it took the learner to reach the goal. Since
the initial position of the arm and goal were set randomly,
the minimal required number of steps to reach the goal
varied considerably. Therefore, we normalised the number
of steps τi for the ith episode by dividing them through
the initial distance in action space, which in our case is the
joint space, to obtain the sequence T of normalised steps.

LS = |(τi |τi < 4, τi ∈ T)
∞
i=0|+ 1

the number of times, the normalised numbers of steps τ is
below 4, plus 1 to avoid a learning speed of 0. If the learner
reached the goal quickly and frequently, the learning speed
was high, if it reached the goal tardily and infrequently,
the learning speed was low.

To determine whether the learner actually learned anything
we compared its behaviour against a dummy which did
not learn and stayed with the initial, random behaviour.
The dummy performed the behaviour commanded by a
randomly initialized MLP controller.

7. RESULTS

We randomly selected 22 different hyperparameter values
uniformly distributed from Table 1 to compare interactive

with non-interactive learning in the task with the one DoF
arm and compared them against a non-learning dummy,
see Figure 9. In this section we use the blue colour for all
results from non-interactive learners and we use the red
colour for all results from interactive learners. Overall, both
learners learned equally well and better than the dummy. In
a few cases has the non-interactive learner a higher learning
speed and learned more reliably than the interactive one.
The fastest learner, denoted by the label “f” and the yellow
background, is also non-interactive. The difference between
both learners is generally small, except for the instance
with the largest difference which we marked with an “l”.

d l f
hyperparameters

0

5

10

15

20

le
ar
n
in
g
sp
ee
d

1-DoF

Fig. 9. There is no large difference between the interactive
and non-interactive learners in the set-up with the
1-DoF arm. The indexes highlight the dummy “d”,
fastest learner “f” and largest difference between the
interactive and non-interactive learner “l”. The error
bars show the standard deviation of the 10 repetitions.
The red dots show the interactive and the blue dots
the non-interactive learner.

Since both learners are comparatively equal in their
learning speed and reliability, we take a closer look only at
the hyperparameter values with the largest difference. It
seems that the interactive learner learned slightly faster,
yet less reliably, than the non-interactive. Figure 10 shows
the number of normalised steps, averaged through the
repetitions, it took the agent to reach the goal throughout
the test episodes.

For the task with the 2-DoF arm, we also randomly
selected 22 different hyperparameter values from Table 1
and compared the interactive and non-interactive learner
with each other against a dummy. Figure 11 shows that
in this set-up interactive learning is always faster than
non-interactive learning. This implies that interactive
learning is generally more reliable in the hyperparameter
space, requiring less effort to fine-tune the parameters.
If the hyperparameters are well chosen however, the
advantage is not as well pronounced as in poorly chosen
hyperparameters. The hyperparameter configuration with
the fastest interactive learner also brought the fastest non-
interactive learner. On the other hand, this may just be a
coincidence.

In a hyperparameter configuration with a large difference
between interactive and non-interactive learning is the
advantage of interaction clearly visible, as Figure 12
illustrates. The non-interactive learner learned very little,

0 100 200 300 400 500
test episodes

0

5

10

15

20

25

st
ep
s

non-
interactive

interactive

1-DoF

Fig. 10. Even with a large difference in the learning
speed, highlighted in green in Figure 9, did interactive
learning a little better than non-interactive learning
with the 1-DoF arm. The red line shows the progress
of the interactive and the blue line of the non-
interactive learner.

d l f
hyperparameters

0

5

10

15

20

le
ar
n
in
g
sp
ee
d

2-DoF

Fig. 11. Interactive learning is always faster than non-
interactive learning in the task with the 2-DoF arm.
The visualisation follows the same pattern as the
previous one in Figure 9.

if anything at all, but the interactive learner performed
distinctively better with the same hyperparameters.

Figure 13 shows the learning performance of the fastest
learners, marked with an “f” and a yellow background
in Figure 11, in the 2-DoF task. Here, both learners
learned very well and there is no real difference between
them. This supports the hypothesis that interaction is
only advantageous for poorly tuned hyperparameters, such
situations, however, may often be met in complex systems.

Similarly as the for the previous two set-ups did we
also select 22 different, random hyperparameter values
from Table 1, for the 3-DoF arm. We then compared
the interactive and the non-interactive learner with each
other against a dummy. As in the case of the 2-DoF arm,
interaction also facilitated faster learning with poorly tuned
hyperparameters. The 3rd DoF, therefore did not change
the robustness of the interactive learner. This supports
the hypothesis that interactive learning provides a clear
advantage under poorly chosen hyperparameters.

0 1000 2000 3000 4000 5000
test episodes

0

5

10

15

20

25

st
ep
s non-

interactive

interactive

2-DoF

Fig. 12. The interactive learner requires less steps than
the non-interactive learner to reach the test target
positions in the task with the 2-DoF arm. The figure
shows only every 20th episode for readability. The
colour code is the same as in Figure 10.

0 1000 2000 3000 4000 5000
test episodes

0

5

10

15

20

25

st
ep
s

non-
interactive
interactive

2-DoF

Fig. 13. The fastest interactive and non-interactive learn-
ers learned equally well in the task with the 2-DoF
arm. As in Figure 12 does show figure show only every
20th testing episode.

d f l
hyperparameters

0

5

10

15

20

le
ar
n
in
g
sp
ee
d

3-DoF

Fig. 14. Interactive learning is always faster than non-
interactive in the task with the 3-DoF arm. The
visualisation follows the same pattern as the previous
one in Figure 9 and Figure 11.

A closer look at the learners with the largest difference
reiterates the advantage of interactive learning, as Fig-
ure 15 shows. The difference between interactive and non-
interactive learning with well chosen hyperparameters is
again as small as for the task with the 2-DoF arm.

0 2000 4000 6000 8000 10000
test episodes

0

5

10

15

20

25

st
ep
s

non-
interactive
interactive

3-DoF

Fig. 15. The interactive learner learned much better than
the non-interactive with the hyperparameters marked
with an l in Figure 14 in a task with 3-DoF. The figure
shows only every 20th episode for readability.

Figure 16 summarizes the development of learning speed for
different likelihoods of asking for the three environments.
We chose the hyperparameters with the largest difference
in the learning speed to ascertain how much interaction is
necessary to have such a large difference. In the task with
the 1-DoF arm, interactive feedback did not benefit the
learner’s average learning speed, indicating the previous
advantage of the interactive learner to be an aberration.
On the contrary to the previous results in Figure 9
did interaction not speed up learning but increased the
reliability. In the task with 2-DoF, however, a likelihood
of asking of only 10% already shows an improvement in
the learning speed. The largest changes are visible from
0% to 30% of the likelihood, after which the learning speed
converges. In the case of the 3-DoF did the learner need
more interaction in comparison to the 2-DoF task and
generally showed a less stable behaviour, until using the
highest possible level of interaction.

8. DISCUSSION

The advantage of interactive learning seems to apply only
to complex settings, which is clearly visible for the task
with the 2-DoF arm as well as for the task with the 3-DoF
arm. The advantage of interaction is the same with the task
with the 3-DoF arm as it is for the task with the 2-DoF
arm. This, however, maybe attributed to the small samples
of 22 hyperparameter settings and 11 different values for
the likelihood of asking, or to the low amount of feedback
used, i.e. only indicating whether the action was good or
bad without providing any hint towards a better action.
At least the latter point needs further exploration before
judging the advantages of interactive learning in complex
environments. Repeating every experiment 10 times may
also not be enough to accurately demonstrate the effect of
interactive feedback.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
L

0

1

2

3

4

5

le
ar
n
in
g
sp
ee
d

1 DoF

2 DoF
3 DoF

Fig. 16. The learning speed increases asymptotically with
the likelihood of asking L in the task with the 2-
DoF arm (red) and 3-DoF arm (black); the interactive
feedback has no significant effect on the task with the
1-DoF arm (cyan).

Our experiments also show that interaction makes learning
more robust even with poorly tuned hyperparameters. This
is useful not only for simple problems as shown here, but
also for more interesting complex systems where, even
with expert knowledge, it is difficult to find the adequate
learning parameters.

We left it for further study to investigate the effect of
feedback over time as learning progresses. Our expectation
is that interaction has a greater impact during early
learning when the learner knows very little, thus requiring
less and less feedback as the learner gains more experience.

9. CONCLUSION

We showed that interactive learning, at least in its simplest
form, does not provide a clear advantage when working
with simple problems such as learning to reach with a 1-
DoF arm. However, we showed a measurable benefit in the
case of a 2-DoF and a 3-DoF arm. We hypothesise that
the benefit of interactive feedback may be more relevant
or even indispensable for more complex tasks in a higher
dimensional Cartesian space.

The simplistic feedback based on the Euclidean distance
may be imprecise if judged by human teachers, but it
is easy to automate, albeit sometimes leading to wrong
feedback. This was the case even in our simple 2-DoF
scenario, where “closer to goal is better” is incorrect in a
few situations. Erroneous feedback may even be delivered
by a domain expert, who may be consistently wrong in
certain situations, thus we cannot depend on it completely.
Hence, we had to limit the likelihood of asking to L < 1
and allow additional exploration. But as our results show,
already a small likelihood of asking speeds up learning in
our set-ups.

We also found that in the case of well tuned parameters
that the advantage of interaction becomes small. However,
this effect may be attributed to the simplistic feedback
used or may just be a coincidence. The role of the quality
of the feedback should also be further explored to obtain a
better picture of the benefits and types of scenarios where
interactive learning is useful.

REFERENCES

A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike
adaptive elements that can solve difficult learning control
problems. IEEE Transactions on Systems, Man and
Cybernetics, SMC-13(5):834–846, 1983. ISSN 0018-9472.
doi: 10.1109/TSMC.1983.6313077.

M. Duguleana, F. G. Barbuceanu, A. Teirelbar, and G. Mo-
gan. Obstacle avoidance of redundant manipulators using
neural networks based reinforcement learning. Robotics
and Computer-Integrated Manufacturing, 28(2):132–146,
2012. ISSN 0736-5845. doi: 10.1016/j.rcim.2011.07.004.

I. Farkaš, T. Maĺık, and K. Rebrová. Grounding the
meanings in sensorimotor behavior using reinforcement
learning. Frontiers in Neurorobotics, 6(1), 2012. doi:
10.3389/fnbot.2012.00001.

S. Griffith, K. Subramanian, J. Scholz, C. Isbell, and A. L.
Thomaz. Policy shaping: Integrating human feedback
with reinforcement learning. In Advances in Neural
Information Processing Systems (NIPS), pages 2625–
2633, Lake Tahoe, NV, USA, 2013.

N. Navarro-Guerrero, C. Weber, P. Schroeter, and
S. Wermter. Real-world reinforcement learning for
autonomous humanoid robot docking. Robotics and
Autonomous Systems, 60(11):1400–1407, 2012. ISSN
0921-8890. doi: 10.1016/j.robot.2012.05.019.

J. Peters, S. Vijayakumar, and S. Schaal. Natural actor-
critic. In Proceedings of the European Conference on
Machine Learning (ECML), volume 3720 of LNCS,
pages 280–291, Porto, Portugal, 2005. Springer Berlin
Heidelberg. ISBN 978-3-540-29243-2, 978-3-540-31692-3.
doi: 10.1007/11564096 29.

D. Rasmussen and C. Eliasmith. A neural model of
hierarchical reinforcement learning. In Proceedings of
the Annual Conference of the Cognitive Science Society,
pages 1252–1257, Québec City, Canada, 2014. Cognitive
Science Society. ISBN 978-0-9911967-0-8.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Learning representations by back-propagating errors.
Nature, 323(6088):533–536, 1986. doi: 10.1038/323533a0.

W. Schultz. Getting formal with dopamine and reward.
Neuron, 36(2):241–263, 2002. ISSN 0896-6273. doi:
10.1016/S0896-6273(02)00967-4.

C. Stahlhut. Learning to Reach with Interactive Reinforce-
ment Learning. MSc, Universität Hamburg, Hamburg,
Germany, 2014.

H. B. Suay and S. Chernova. Effect of human guidance and
state space size on interactive reinforcement learning. In
IEEE International Symposium on Robot and Human
Interactive Communication (RO-MAN), pages 1–6, At-
lanta, GA, USA, 2011. IEEE. ISBN 978-1-4577-1571-6.
doi: 10.1109/ROMAN.2011.6005223.

R. S. Sutton and A. G. Barto. Reinforcement Learning:
An Introduction. Adaptive computation and machine
learning. A Bradford Book/The MIT Press, Cambridge,
MA, USA, first edition, 1998. ISBN 0262193981.

E. Theodorou, J. Buchli, and S. Schaal. Reinforcement
learning of motor skills in high dimensions: A path
integral approach. In IEEE International Conference
on Robotics and Automation (ICRA), pages 2397–2403,
Anchorage, AK, USA, 2010. IEEE. ISBN 978-1-4244-
5040-4, 978-1-4244-5038-1, 1050-4729. doi: 10.1109/
ROBOT.2010.5509336.

A. L. Thomaz. Socially Guided Machine Learning. PhD,
Massachusetts Institute of Technology, Cambridge, MA,
USA, 2006.

A. L. Thomaz and C. Breazeal. Teachable robots: Under-
standing human teaching behavior to build more effective
robot learners. Artificial Intelligence, 172(6-7):716–737,
2008. ISSN 0004-3702. doi: 10.1016/j.artint.2007.09.009.

E. L. Thorndike. Animal Intelligence: Experimental Studies.
The Macmillan Company, New York, NY, USA, 1911.

H. van Hasselt and M. A. Wiering. Reinforcement learning
in continuous action spaces. In IEEE Symposium on
Approximate Dynamic Programming and Reinforcement
Learning (ADPRL), pages 272–279, Honolulu, HI, USA,
2007. IEEE. ISBN 1-4244-0706-0. doi: 10.1109/ADPRL.
2007.368199.

C. J. C. H. Watkins. Learning from Delayed Rewards. PhD,
Cambridge University, 1989.

R. J. Williams. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
Learning, 8(3-4):229–256, 1992. ISSN 0885-6125, 1573-
0565. doi: 10.1007/BF00992696.

