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Abstract. In today's world, the number of electronic documents made 

available to us is increasing day by day. It is therefore important to 

look at methods which speed up document search and reduce classifier 

training times. The data available to us is frequently divided into 

several broad domains with many sub-category levels. Each of these 

domains of data constitutes a subspace which can be processed 

separately. In this paper, separate classifiers of the same type are 

trained on different subspaces and a test vector is assigned to a 

subspace using a fast novel method of subspace detection. This parallel 

classifier architecture was tested with a wide variety of basic classifiers 

and the performance compared with that of a single basic classifier on 

the full data space. It was observed that the improvement in subspace 

learning was accompanied by a very significant reduction in training 

times for all types of classifiers used. 
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1 Introduction 

The huge amount and variety of data available to us today makes document search 

and classifier training a lengthy process. Due to the ever increasing volume of 

documents on the web, classifiers have to be periodically retrained to keep up with the 

increasing variation. Reduced classifier training times are therefore a big asset in 

keeping classifiers up to date with the current content. Classifier application 

efficiency (test efficiency) is also very important in returning search results. 



Retrieving a relevant document quickly in the presence of millions of records (the 

web) is an essential characteristic for a search engine today. In addition to this, the 

curse of dimensionality [1] degrades the performance of many learning algorithms.  

The large number of dimensions reduces the effectiveness of distance measures [2]. 

Today's data also contains a large number of data domains which can be as diverse as 

medicine and politics. These data domains can be considered as independent 

subspaces of the original data. 

  

Independent data domains give rise to the idea of using parallel classifiers. Instead 

of training a single classifier on the full dataset, we can use many classifiers in 

parallel to process these independent subspaces. Classifier performances can be 

improved further by using only a subset of the dimensions. Active research is going 

on in the area of dimension reduction [3]. 

  

Random Projections [4] have also been used in dimensionality reduction. In the 

Random Subspace Method (RSM) [5], classifiers were trained on randomly chosen 

subspaces of the original input space and the outputs of the models were then 

combined. However, random selection of features does not guarantee that the selected 

inputs have the necessary distinguishing information. Several variations of RSM have 

been proposed by various researchers such as Relevant Random Feature Subspaces 

for Co-training (Rel-RASCO) [6], Not-so-Random Subspace Method (NsRSM) [7] 

and Local Random Subspace Method [8]. 

 

There are many methods of classifier combination. One method is to use many 

classifiers of the same or different  types  on different portions of the input data space.  

The combining classifier decides which part of the input data has to be applied to 

which base classifier.  Two special types of classifier combinations are Bagging [9] 

and Boosting [10] which use a large number of primitive classifiers of the same type 

(e.g. a decision stump) on weighted versions of the original data. 

 

Many classifier combination methods have been applied to text categorization. In 

one method [11], text and metadata were considered as separate descriptions of the 

same object. Another text categorization method [12] was based on a hierarchical 

array of neural networks. The problem of large class imbalances in text classification 

tasks was addressed by using a mixture-of-experts framework [13].  

 

In the real world, documents can be divided into major semantic subspaces with each 

subspace having its own unique characteristics. The above research does not take into 

account this division of documents into different semantic subspaces. Therefore, we 

present here a novel parallel architecture (Fig. 1) which takes advantage of the 

different semantic subspaces existing in the data. We further show that this new 

parallel architecture improves subspace classification accuracy as well as it 

significantly reduces training time. For this architecture, we use parallel combinations 

of classifiers with a single type of base classifier. We use the conditional significance 

vector representation [14] which is a variation of the semantic significance vector  



   

[15],  [16] to incorporate semantic information into the document vectors. The 

conditional significance vector enhances the distinction between subtopics within a 

given main topic. The region of the test data is determined by the maximum 

significance value which is evaluated in O(k) time where k is the number of level 1 

topics and thus can be very effective where time is critical for returning search results. 
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         Fig. 1 :   Parallel Classifier Architecture for Subspace Learning 
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2 Methodology and Architecture 

In our experiments, we used the Reuters Corpus [17] as it is a well-known test 

bench for text categorization experiments. It also has a hierarchical organization with 

four major groups which is well suited to test the classification performance of a 

parallel architecture. We used the Reuters Corpus headlines for our experiments as 

they provide a concise summary of each news article. Each Reuters headline consists 

of one line of text with about 3 – 12 words. Some examples of Reuters Headlines are: 

 

"Estonian president faces reelection challenge."  

"Guatemalan sides to sign truce in Norway report."  

 

The topic codes in the Reuters Corpus represent the subject areas of each news 

story. They are organized into four hierarchical groups, with four top-level nodes: 

Corporate/Industrial (CCAT), Economics (ECAT), Government/Social (GCAT) and 

Markets (MCAT). Ten thousand headlines along with their topic codes were extracted 

from the Reuters Corpus. These headlines were chosen so that there was no overlap at 

the first level categorization. Each headline belonged to only one level 1 category. At 

the second level, since most headlines had multiple level 2 subtopic categorizations, 

the first subtopic was taken as the assigned subtopic. Thus, each headline had two 

labels associated with it – the main topic (Level 1) label and the subtopic (Level 2) 

label. Headlines were then preprocessed to separate hyphenated words. Dictionaries 

with term frequencies were generated based on the TMG toolbox [18] and were then 

used to generate the Full Significance Vector [14], the Conditional Significance 

Vector [14] and the tf-idf [19] representation for each document. The datasets were 

then randomized and divided into a training set of 9000 documents and a test set of 

1000 documents.  

 

The WEKA machine learning workbench [20] provided various learning 

algorithms which we used as base classifiers to test our parallel architecture. Six 

algorithms were used as base classifiers in parallel classifier representations to 

examine the performance of various classification algorithms. Classification accuracy, 

training time and testing time were recorded for each experiment run. The average of 

ten runs for each representation was used to compare the various classifiers. 

3 Data Processing for Experiments 

3.1 Text Data Processing 

 

Ten thousand Reuters headlines were used in these experiments. The Level 1 

categorization of the Reuters Corpus divides the data into four main topics. These 

main topics and their distribution in the data along with the number of subtopics of 

each main topic in this data set are given in Table 1. Level 2 categorization further 



   

divides these main topics into subtopics. Here we took the direct (first level nesting) 

subtopics of each main topic occurring in the 10,000 headlines. A total of 50 

subtopics were included in these experiments. Since all the headlines had multiple 

subtopic assignments, e.g. C11/C15/C18, only the first subtopic e.g. C11 was taken as 

the assigned subtopic. Our assumption here is that the first subtopic used to tag a 

particular Reuters news item is the one which is most relevant to it. 

 

Table 1. Reuters Level 1 Topics 

       

  No.         Main Topic            Description                              Number              Number of 

                                                                                                 Present                Subtopics 

 

18  4600  Corporate/Industrial  CCAT  1.  

8  900  Economics ECAT  2.  

20  1900  Government/Social  GCAT  3.  

4  1600  Markets  MCAT  4.  

     

 

3.2 Semantic Significance Vector Generation 

We used a vector representation which represents the significance of the data and 

weighs different words according to their significance for different topics. 

Significance Vectors [15], [16] were determined based on the frequency of a word in 

different semantic categories. A modification of the significance vector called the 

semantic vector uses normalized frequencies where each word w is represented with a 

vector (c1,c2,..,cn) where ci represents a certain semantic category and n is the total 

number of categories. A value v(w, ci) is calculated for each element of the semantic 

word vector as follows: 

 

 Normalized Frequency of w in ci  

v(w , ci)  =   ________________________________   

  n 

 ∑ Normalized Frequency of w in ck  

                        k = 1 

 

For each document, the document semantic vector is obtained by summing the 

semantic vectors for each word in the document and dividing by the total number of 

words in the document. Henceforth it is simply referred to as the significance vector. 



The TMG Toolbox [18] was used to generate the term frequencies for each word in 

each news document. Word vectors were generated for the main and subtopic levels 

separately and then concatenated. The final word vector consisted of 54 columns (for 

4 main topics and 50 subtopics) for the Reuters Corpus. While calculating the 

significance vector entries for each word, its occurrence in all subtopics of all main 

topics was taken into account. This was called the Full Significance Vector [14]. We 

also generated the Conditional Significance Vector [14] where a word's occurrence in 

all subtopics of only a particular main topic is taken into account while calculating 

the word significance vector entries. 

For each document, the document significance vector was obtained by summing 

the significance vectors for each word in the document and dividing this sum by the 

total number of words in the document. 

 

 

3.3   Data Vector Sets Generation 

 

Three different vector representations (Full Significance Vector, Conditional 

Significance Vector and tf-idf) were generated for our data. The Conditional 

Significance Vectors were processed further to generate four main category-wise data 

vector sets. 

 

3.3.1 Full Significance Vector 

 

Here, the document vectors were generated by using the full significance word 

vectors as explained in section 3.2. For each Reuters Full Significance document 

vector the first four columns, representing four main topics – CCAT, ECAT, GCAT 

& MCAT, were ignored leaving a vector with 50 columns representing 50 subtopics. 

The order of the data vectors was then randomised and divided into two sets – a 

training set of 9000 vectors and a test set of 1000 vectors.  

 

3.3.2 Category-based Conditional Significance Vectors 

 

Here, the conditional significance word vectors were used to generate the 

document vectors. The order of the 10,000 Reuters Conditional Significance 

document vectors was randomised and divided into two sets – a training set of 9000 

vectors and a test set of 1000 vectors. The training set was then divided into 4 sets 

according to the main topic labels. For each of these sets, only the relevant subtopic 

vector entries (e.g. C11, C12, etc for CCAT; E11, E12, etc for ECAT) for each main 

topic were retained. Thus, the CCAT category training data set had 18 columns for  

the 18 subtopics of CCAT. Similarly the ECAT training data set had 8 columns, the 

GCAT training data set had 20 columns and the MCAT training data set had 4 

columns. These 4 training sets were then used to train the 4 separate base classifiers 

of the Reuters parallel classifier. The main category of a test data vector was 

determined by the maximum significance vector entry for the first four columns 

representing the four main categories. After this, the entries corresponding to the 



   

subtopics of this predicted main topic were extracted along with the actual subtopic 

label and given to the classifier trained for this predicted main category.  

 

For the Reuters Corpus, the accuracy of choosing the correct main topic by 

selecting the maximum significance level 1 entry was 96.80% for the 1000 test 

vectors, i.e. 968 vectors were assigned to the correct trained classifiers whereas 3.20% 

or 32 vectors were assigned to a wrong classifier – resulting in a wrong classification 

decision for all these 32 vectors. Hence the upper limit for classification accuracy was 

96.80% for our parallel classifier for the Reuters Corpus.  

 

 

3.3.3 TF-IDF Vector generation 

 

The tf-idf weight (Term Frequency–Inverse Document Frequency) measures how 

important a word is to a document in a data set. This importance increases with the 

number of times a word appears in the document but is reduced by the frequency of 

the word in the data set. Words which occur in almost all the documents have very 

little discriminatory power and hence are given very low weight. The TMG toolbox  

[18] was used to generate the tf-idf vectors for our experiments. The tf-idf  vector 

datasets were then randomized and divided into 9000 training /1000 test vectors. 

  

3.4 Classification Algorithms 

 

Six classification algorithms were tested with our data sets namely Random Forest, 

J48(C4.5), the Multilayer Perceptron, Naïve Bayes, BayesNet, and PART. Random 

Forests [21] are a combination of tree predictors such that each tree depends on the 

values of a random vector sampled independently. C4.5 [22] is an inductive tree 

algorithm with two pruning methods: subtree replacement and subtree raising. The 

Multilayer Perceptron [23] is a neural network which uses backpropagation for 

training. Naive Bayes [24] is the simplest form of Bayesian network, in which all 

attributes are independent given the value of the class variable. BayesNet [25] 

implements Bayes Network learning using various search algorithms and quality 

measures. A PART [26] decision list uses C4.5 decision trees to generate rules.  

 

4  Results & Analysis 

We tested our parallel classifier architecture using six different types of base 

classifiers. In the parallel classifier using Naïve Bayes, four different Naïve Bayes 

classifiers were trained on the four subspaces of the Reuters Corpus namely CCAT, 

ECAT, GCAT and MCAT. Similarly for the parallel classifier using Multilayer 

Perceptrons, four different Multilayer Perceptron classifiers were trained on the four 

subspaces of the Reuters Corpus and so on. The performance of each single classifier 

on the full data was compared with the performance of the parallel classifier combina- 



 

 

Fig. 2:  Parallel Classifier Performance Metrics 



   

tion in which this particular classifier was used as a base                                                                                                                    

classifier. For the baseline single classifier experiments, the Full Significance Vector                                                                                                                                      

and  the  tf-idf  vector  representations  were  used  whereas  for  the  parallel classifier 

experiments, the category-wise separated Conditional Significance Vector 

representation was used. 

In all comparisons, it was observed that the parallel classifier combination performed 

better than the single basic classifier. The classification accuracy was improved 

(Friedman test, p=0.0025), the training times were reduced (Friedman test, p=0.0025) 

and the testing times were reduced (Friedman test, p=0.0094).  The baseline using 

Full Significance Vectors (FSV) performed better than the baseline using tf-idf. Fig 2 

shows the subtopic classification accuracy, training time and testing time for the 

parallel classifiers along with the baselines. Fig 2a shows that the maximum 

improvement in subtopic classification accuracy is achieved by the Naïve Bayes 

Classifier while the other classifiers also show a substantial improvement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Fig 3 shows the  speed-up of  the  parallel classifiers with respect to both baselines. 

Speed-up is calculated by dividing the baseline time by the corresponding parallel 

classifier time. The timing diagrams in Fig. 2 and the speed-up diagrams in Fig. 3 are  

shown on a log scale to accommodate a wide range of values.  The maximum training 

speed-up was achieved by the rule-based classifier PART (14.4 with reference to the 

FSV baseline and 149 with reference to the tf-idf baseline) which was followed by the 

tree-based classifier J48(C4.5) at speed-up 11.76 with reference to the FSV baseline  

   Fig. 3:  Parallel Classifier Speed-up 



and 79.5 with reference to the tf-idf  baseline. The testing time speed-up was 

maximum for the Bayesian classifiers.  Naïve  Bayes  achieved  a  speed-up  of 6 with  

respect  to FSV and 32.8 with respect to  tf-idf  while BayesNet achieved a speed-up 

of 11.75 and 48.75 with the corresponding baselines. Naïve Bayes achieved 

significant speed-up in both training and as well as testing (Train/Test speed-up of  

5.8/6.0 and 15.1/32.8 for FSV and tf-idf respectively).  

 

We also ran the parallel classifier experiments on 10,000 Reuters Full Text news 

items (containing headlines and body text). It was observed that the subtopic 

classification accuracy of Reuters news items was better with Reuters Headlines than 

with Reuters Full Text (Wilcoxon Signed Rank test, p=0.031). A possible explanation 

for this can be that the extra text present in Reuters Full Text acts as noise which 

degrades classifier performances. Fig 4 shows the corresponding subtopic 

classification accuracies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 Conclusion 

Our results show that combining classifiers of the same type in parallel improves 

the classification accuracy of the concerned basic classifier where the underlying data 

has distinct semantic categories. They also show that Reuters Headlines perform 

better than Reuters Full Text for the purpose of news categorization. These results 

Fig. 4:  Comparison of Reuters Headlines and Reuters Full Text 

Classifier Index: 

NB – Naïve Bayes                            BN – BayesNet    

J48 – C4.5 Tree                                       RF – Random Forest 

PART – Rule Based Classifier              MLP – Multilayer Perceptron 



   

show further that a parallel combination of classifiers results in a very sharp reduction 

in training and testing times. The speed-up achieved is very significant in all cases. 

Naïve Bayes achieved a significant speed-up in both training and test timings along 

with the maximum improvement in classification accuracy. Since Naïve Bayes is 

already a fast classifier, further speedup can be put to good use especially in search 

technology. The experiments confirm the fact that the Maximum Significance Value 

is very effective in detecting the relevant subspace of a test document and that 

training separate classifiers on different subsets of the original data enhances overall 

classification accuracy and significantly reduces training/testing times.  
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