
José García-Rodríguez
University of Alicante, Spain

Miguel Cazorla
University of Alicante, Spain

Robotic Vision:
Technologies for Machine 
Learning and Vision Applications



Robotic vision: technologies for machine learning and vision applications / Jose Garcia-Rodriguez and Miguel A. Cazorla 
Quevedo, editors. 
       pages cm 
  Summary: “This book offers comprehensive coverage of the current research on the fields of robotics, machine vision, 
image processing and pattern recognition that is important to applying machine vision methods in the real world”-- Provided 
by publisher. 
  Includes bibliographical references and index. 
  ISBN 978-1-4666-2672-0 (hardcover) -- ISBN 978-1-4666-2703-1 (ebook) -- ISBN 978-1-4666-2734-5 (print & perpetual 
access)  1.  Computer vision. 2.  Pattern recognition systems. 3.  Image processing. 4.  Robotics--Human factors.  I. 
Garcia-Rodriguez, Jose, 1970- II. Cazorla Quevedo, Miguel A., 1970- 
  TA1634.R63 2013 
  629.8’92637--dc23 
                                                            2012029113

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the 
authors, but not necessarily of the publisher.

Managing Director:			  Lindsay Johnston
Editorial Director:			   Joel Gamon
Book Production Manager: 		  Jennifer Yoder
Publishing Systems Analyst:		  Adrienne Freeland
Development Editor:		  Christine Smith
Assistant Acquisitions Editor:		  Kayla Wolfe
Typesetter: 			   Erin O’Dea
Cover Design:			   Nick Newcomer

Published in the United States of America by 
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax:  717-533-8661 
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2013 by IGI Global.  All rights reserved. No part of this publication may be reproduced, stored or distributed in 
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or 
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

			   Library of Congress Cataloging-in-Publication Data



257

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  15

DOI: 10.4018/978-1-4666-2672-0.ch015

Wenjie Yan
University of Hamburg, Germany

Elena Torta
Eindhoven University of Technology,  

The Netherlands

David van der Pol
Eindhoven University of Technology,  

The Netherlands

Nils Meins
University of Hamburg, Germany

Cornelius Weber
University of Hamburg, Germany

Raymond H. Cuijpers
Eindhoven University of Technology,  

The Netherlands

Learning Robot Vision 
for Assisted Living

ABSTRACT

This chapter presents an overview of a typical scenario of Ambient Assisted Living (AAL) in which a 
robot navigates to a person for conveying information. Indoor robot navigation is a challenging task 
due to the complexity of real-home environments and the need of online learning abilities to adjust for 
dynamic conditions. A comparison between systems with different sensor typologies shows that vision-
based systems promise to provide good performance and a wide scope of usage at reasonable cost. 
Moreover, vision-based systems can perform different tasks simultaneously by applying different algo-
rithms to the input data stream thus enhancing the flexibility of the system. The authors introduce the 
state of the art of several computer vision methods for realizing indoor robotic navigation to a person 
and human-robot interaction. A case study has been conducted in which a robot, which is part of an 
AAL system, navigates to a person and interacts with her. The authors evaluate this test case and give 
an outlook on the potential of learning robot vision in ambient homes.

Stefan Wermter
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INTRODUCTION

The phenomenon of population ageing is becom-
ing a serious problem of this century. According 
to the estimate of the U.S. Census Bureau, the 
American population aged over 65 will grow from 
13% to 20% until 2030 (Hootman & Helmick, 
2006). In Europe, more than 20% of the popula-
tion will be beyond 60 by 2020 (Steg, Strese, 
Loroff, Hull, & Schmidt, 2006) and by 2050 
this group will even exceed 37% (OECD, 2007). 
Ageing societies would benefit from the design 
of “intelligent” homes that provide assistance to 
the elderly (Steg et al., 2006). In this context the 
research field of robotics is focusing attention on 
AAL systems which refer to a set of technologi-
cal solutions that permit the elderly population to 
maintain their independence at home for a longer 
time than would otherwise be possible (O’Grady, 
Muldoon, Dragone, Tynan, & O’Hare, 2010). 
Ambient homes will not only react passively, 
like turning on lights when the lighting condition 
changes, but they will also provide active help via 
home electronics, motorized actuators or - in the 
future - socially assistive robots. They can assist 
the elderly effectively in everyday tasks such as 
communication with the external world or the 
ambient system and can provide medicine and 
health check reminders in a proactive fashion.

A number of research topics are involved in 
the design of the functionalities of a socially as-
sistive robot. Among them, robotic navigation and 
human-robot interaction are particularly relevant. 
Robotic navigation in ambient homes, in particular 
mutual positioning between the robot and a per-
son, is an important task for a robot that strongly 
influences the quality of human-robot interaction. 
A robot should find a way to approach a target 
person after localization and go to the person 
without colliding with any obstacles, which is 
very challenging due to the complexity of real-
home environments and the possible dynamical 
changes. A vision-based system is a potential way 
to tackle those challenges. Compared with other 
kinds of sensors, a vision system can provide far 

more information, good performance and a wide 
scope of usage at reasonable cost. A robot can 
perform different tasks and adapt its behavior by 
learning new features if equipped with sophisti-
cated vision algorithms.

Human-robot interaction is a very broad 
research field. Therefore, in the context of this 
book chapter, we understand it as the study of 
how robots can communicate interactively with 
users. Computer vision algorithms are essentials 
for achieving this because they can be used to 
acquire feedback related to the user state during 
interaction. Unlike an industrial robot, that, in most 
cases, runs preprogrammed behaviors without 
being interactive, service robots should be able to 
adapt their behavior in real time for the purpose 
of achieving natural and easy interaction with the 
user. This requires the generation of appropriate 
verbal and non-verbal behaviors that allow the 
robot to participate effectively in communication. 
Vision algorithms can gather information about 
the user’s attention, emotion and activity, and al-
low the robot to evaluate non-verbal communica-
tion cues of the user. The benefits of non-verbal 
communication cues become apparent when the 
conversation is embedded in a context, or when 
more than two persons are taking part in a conversa-
tion. Particularly, head gestures are important for 
a smooth conversation, because cues signaled by 
head gestures are used for turn taking. But head 
gestures serve many more purposes; they influence 
the likability of the observer, communicate the 
focus of attention or the subject of conversation, 
and they can influence the recollection of the 
content of conversation (Kleinke, 1986).

In this chapter we aim at introducing the reader 
to the computer vision techniques used in a robot-
ics scenario for Ambient Assisted Living (AAL) 
in the context of the European project KSERA: 
Knowledgeable SErvice Robots for Aging. Our 
project develops the functionalities of a socially 
assistive robot that acts as an intelligent interface 
between the assisting environment and the elderly 
person. It combines different vision-based meth-
ods for simultaneous person and robot localization, 
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robot navigation, human-robot interaction with 
online face recognition and head pose estimation, 
and adapt those techniques in ambient homes. The 
system is able to detect a person robustly by using 
different features, navigate a robot towards the 
person, establish eye contact and assess whether 
the person is giving attention to the robot.

This chapter is organized as follows: The sec-
tion “Related Works” presents a brief review of 
the state of the art of algorithms and technology 
related to robotics and AAL. Section “Methods” 
provides insight in the computer vision algorithms 
developed and applied in order to increase the 
skills of a socially assistive robot in Ambient 
Homes. Section “Case Study” describes a detailed 
case study of AAL systems, which combines the 
different robotic vision techniques for allowing 
the humanoid robot Nao (Louloudi, Mosallam, 
Marturi, Janse, & Hernandez, 2010) to navigate 
towards a person in a cluttered and dynamically 
changing environment and to interact with the 
person. Section “Conclusion and Future Research 
Directions” summarizes the findings providing an 
outlook on the potential of learning robot vision 
in ambient home systems and outlines the pos-
sible developments of the algorithms and methods 
introduced in this chapter.

RELATED WORKS

This section provides an overview of the state-of-
the-art vision technologies related to our work, 
which combines localization, navigation, face 
detection and head pose estimation algorithms for 
use in an assisted living home environment. We 
show that these vision algorithms are efficient to 
let a robot help a person in an AAL environment.

Simultaneous Person and 
Robot Localization

Person tracking based on vision is a very active 
research area. For instance, stereo vision systems 
(Muñoz-Salinas, Aguirre, & Garcá-Silvente, 

2007; Bahadori, Iocchi, Leone, Nardi, & Scoz-
zafava, 2007) use 3D information reconstructed 
by different cameras to easily distinguish a person 
from the background. Multiple ceiling-mounted 
cameras are combined (Salah, et al., 2008) to 
compensate for the narrow visual field of a single 
camera (Lanz & Brunelli, 2008), or to overcome 
shadowing and occlusion problems (Kemmotsu, 
Koketsua, & Iehara, 2008). While these multi-
camera systems can detect and track multiple 
persons, they are expensive and complex. For 
example, the camera system has to be calibrated 
carefully to eliminate the distortion effect of the 
lenses and to determine the correlations between 
different cameras. A single ceiling-mounted cam-
era is another possibility for person tracking. West, 
Newman and Greenhill (2005) have developed a 
ceiling-mounted camera model in a kitchen sce-
nario to infer interaction of a person with kitchen 
devices. The single ceiling-mounted camera can be 
calibrated easily or can be used even without cali-
bration. Moreover, with a wide-angle view lens, 
for example a fish-eye lens, the ceiling-mounted 
camera can observe the entire room. Occlusion 
is not a problem if the camera is mounted in the 
center of the ceiling and the person can be seen 
at any position within the room. The main dis-
advantage of the single ceiling-mounted camera 
setup is the limited raw information retrieved by 
the camera. Therefore, sophisticated algorithms 
are essential to track a person.

There are many person detection methods on 
computer vision area. The most common technique 
for detecting a moving person is background sub-
traction (Piccardi, 2004), which finds the person 
based on the difference between an input and a 
reference image. Furthermore, appearance-based 
models have been researched in recent years. For 
instance, principal component analysis (PCA) 
(Jolliffe, 2005) and independent component 
analysis (ICA) (Hyvärinen & Oja, 2000) represent 
the original data in a low dimensional space by 
keeping major information. Other methods like 
scale-invariant feature transformation (SIFT) 
(Lowe, 2004) or a speeded-up robust feature 
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(SURF) (Bay, Tuytelaars, & Van Gool, 2006) de-
tect interest points, for example using Harris corner 
(Harris & Stephens, 1988) for object detection. 
These methods are scale- and rotation invariant 
and are able to detect similarities in different im-
ages. However, the computation complexity of 
these methods is high and they perform poorly 
with non-rigid objects. Person tracking based on 
body part analysis (Frintrop, Königs, Hoeller, & 
Schulz, 2010; Hecht, Azad, & Dillmann, 2009; 
Ramanan, Forsyth, & Zisserman, 2007) can work 
accurately, but requires a very clear body shape 
captured from a front view. A multiple camera 
system has to be installed in a room environment 
to keep obtaining the body shape. The color ob-
tained from the clothes and skin can be a reliable 
tracking feature (Comaniciu, Ramesh, & Meer, 
2000; Muñoz-Salinas, Aguirre, & Garcá-Silvente, 
2007; Zivkovic & Krose, 2004), but this has to 
be adapted quickly when the clothes or the light 
condition changes. The Tracking-Learning-
Detection algorithm developed by Kalal, Matas 
and Mikolajczyk (2010) works for an arbitrary 
object, however, it requires an initial pattern to 
be selected manually, which is not possible in a 
real AAL setting.

Navigation as Part of HRI

People tend to attribute human-like characteristics 
to robots and in particular, to socially assistive 
robots (Siino & Hinds, 2004), (Kahn et al., 2012). 
Therefore, when the robot behavior does not match 
prior expectations, humans tend to experience 
breakdowns in human-robot interaction (e.g., 
Mutlu and Forlizzi, 2008). As a consequence, mo-
bile robots that share the same space with humans 
need to follow societal norms in establishing their 
positions with respect to humans (Kirby, 2010). By 
doing so, they will likely produce a match between 
their mobile behavior and people’s expectations 
(Syrdal, Lee Koay, & Walters, 2007). Models of 
societal norms for robot navigation are mostly 
derived from the observation of human-human 
interaction scenarios. For instance, Nakauchi and 

Simmons (2002) developed a control algorithm 
that allows a robot to stand in line using a model 
of personal space (PS) derived from observation 
of people standing in line. Similarly, Pacchierotti 
and Christensen (2007) define the robot’s behavior 
in an avoidance scenario based on human-human 
proxemic distances derived from the work of Hall 
(1966) and Lambert (2004).

Navigation in dynamic and cluttered environ-
ments, such as ambient homes, in the presence 
of a human is still a challenge because the robot 
needs to cope with dynamic conditions while 
taking into account the presence of its human 
companion. Traditionally, two distinct approaches 
have been proposed to tackle this issue. The first 
approach includes societal norms in the naviga-
tion algorithm at the level of global path planning. 
As an example, Kirby (2010) described social 
conventions like personal space and tending to 
the right, as mathematical cost functions that 
were used by an optimal path planner to produce 
avoidance behaviors for a robot that were accepted 
by users. On the same line, Sisbot et al. (2010) 
introduce a human aware motion planning for 
a domestic robot that, besides guaranteeing the 
generation of safe trajectories, allows the robot 
to reason about the accessibility, the vision field 
and the preferences of its human partner when 
approaching him/her. The second approach to 
robotic navigation in the presence of a human 
includes societal norms at the level of reactive be-
haviors. As an example, Brooks and Arkin (2006) 
proposed a behavior-based control architecture 
for humanoid robot navigation that takes into 
account the user’s personal space by introducing 
a proportional factor for mapping human-human 
interpersonal distances to human-robot distances. 
Along the same line, Torta et al. (2011) present 
a behavior-based navigation architecture that 
defines the robot’s target positions through the 
solutions of a Bayesian filtering problem which 
takes into account the user’s personal space. On 
the contrary of Brooks and Arkin, the model of 
the personal space was derived by means of a 
psychophysical experiment.
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Face Detection and Head 
Pose Estimation

One of the most well known face detection methods 
for real-time applications is the one introduced 
by Viola and Jones (2002), which uses Haar-like 
features for image classification. Their work 
inspired subsequent research that extended the 
original method improving its accuracy. Some of 
them extended the spatial structure of the Haar-
like features. For example Lienhart and Maydt 
(2002) have further developed the expression of 
the integral image that allows calculating Haar-
like features which are rotated with respect to 
the original. Their method can cope better with 
diagonal structures. A different way to extend 
the original Haar-like features is presented by 
Mita, Kaneko and Hori (2005). In their work 
they join multiple threshold classifiers to one new 
feature, that they call “Joint Haar-like feature”. 
By using this co-occurrence their method needs 
less Haar-like features for reaching the same ac-
curacy. Beside the Viola and Jones method, other 
technologies and algorithms have been developed 
to solve the face detection problem. For instance, 
(Osuna, Freund, & Girosi, 1997) propose the use 
of support vector machines which yields a higher 
accuracy but is more computational expensive. 
Principal component analysis (Belhumeur, Hes-
panha, & Kriegman, 1997) was also used as well 
as convolution neural networks (Lawrence, Giles, 
Tsoi, & Back, 1997). The latter has the ability to 
derive and extract problem specific features.

Head gestures are specifically interesting for 
measuring the attention or engagement of the 
user related to what the robot is telling. Mutlu, 
Hodgins and Forlizzi (2006) have shown that 
the amount of gaze of the robot to the listener in 
a story telling context relates to the amount of 
information subjects remembered about the story. 
An advanced application of head pose estimation 
is joint attention. Joint attention entails reciprocal 
eye contact, but it can also be used to signal the 
subject of speech. Both interlocutors (the user and 
the robot) in this case focus on the same subject. 

This serves a communicative purpose (Kaplan & 
Hafner, 2006); by using the estimation of gaze 
direction, the robot is able to infer the object that 
the user refers to. For example, the user might 
ask the robot to “pick up that cup”, while look-
ing at the cup on the table. The system can now 
control the robot to pick up the cup on the table, 
and not the one on the mantelpiece. Yücel and 
Salah (2009) proposed a method for establish-
ing joint attention between a human and a robot. 
A more advanced application that requires the 
robot to establish and maintain a conversation is 
turn taking during a conversation with its human 
partner (Kendon, 1967). To give the floor to the 
conversation partner, people often look at the 
partner just before finishing their turn. This can 
also be implemented in a robot by allowing the 
robot to estimate the gaze direction of the user. 
This allows the robot to use these cues to time 
its turn correctly. As robots are joining humans 
in everyday tasks, head pose estimation based 
on computer vision has seen a revival of inter-
est. Different vision-based head pose estimation 
systems have been compared and summarized 
in Murphy-Chutorian and Trivedi (2009). Voit, 
Nickel and Stiefelhagen (2007) developed a neural 
network-based model for head pose estimation 
which has been further developed by van der Pol, 
Cuijpers and Juola (2011) and will be discussed 
in the “Head Pose Estimation” section.

METHODS

Here we present methods for realizing robotic 
navigation in an AAL environment as well as 
human-robot interaction. We first describe a hybrid 
neural probabilistic model for localizing a robot 
and a person using a ceiling-mounted camera. 
Then, we present a behavior-based model for 
robotic navigation which integrates the informa-
tion provided by the localization algorithm with 
the robot’s own sensor readings. A real-time face 
detection model is employed using the robot’s 
camera to allow the robot to make eye contact 
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with a person. The robot determines whether the 
user is paying attention to it with the head pose 
estimation method. The details of each model will 
be described in the following sections.

Simultaneous Person and 
Robot Localization

Inspired by a model of combining different in-
formation for face tracking (Triesch & Malsburg, 
2001), we combine different visual information to 
detect and localize a person’s position reliably. The 
system can track a person with or without motion 
information, and it is robust against environmental 
noise such as moving furniture, changing lighting 
conditions and interaction with other people. The 
work flow (Figure 1) can be split into two parts: 
prediction and adaptation.

In the prediction phase, each particle segments 
a small image patch and evaluates this patch using 
pre-defined visual cues. Four cues are used: 1) 
color memory cue based on a color histogram, 2) 

shape memory cue based on SURF features, 3) 
motion cue based on background subtraction and 
4) fixed shape cue based on a neural network. 
When a person is detected in the image patch by 
for example the motion cue, the value of this cue 
will increase until it reaches a maximum value. 
The higher the visual cues’ values are, the more 
likely is the target person present inside the image 
patch. We generate some extra polynomial com-
bination cues using a Sigma-Pi network architec-
ture (Weber & Wermter, 2007) to increase the 
weights when multiple cues are active at the same 
time. The output of the evaluation will be set to 
the particle filters, which provides robust object 
tracking based on the history of previous observa-
tions. Two particle filters are employed to estimate 
the position of a person and a robot. Particle filters 
are an approximation method that represents a 
probability distribution of an agent’s state st with 
a set of particles {i} and weight values p( ),i which 
is usually integrated in partially observable Mar-
kov decision processes (POMDPs) (Kaelbling, 

Figure 1. The person and robot localization algorithm using input data from the ceiling mounted camera. 
The weights of particles are assigned with a polynomial combination of visual cues.
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Littman & Cassandra, 1998). A POMDP model 
consists of unobserved states of an agent s, in our 
case the x,y position of the observed person based 
on the image frame, and observations of the agent 
z. A transition model P s s at t t( | , )- -1 1 describes 
the probability that the state changes from st-1 to 
st according to the executed action at-1.

If the agent plans to execute the action at-1 in 
state st-1, the probability of the next state can be 
predicted by the transitions model P s s at t t( | , )- -1 1

and validated by the observation P z st t( | ).Hence, 
the agent’s state can be estimated then as:

P s z P z s P s z
P s s a ds

t t t t t t

t t t t

( | ) ( | ) ( | )

( | , ) ,
: :0 1 0 1

1 1 1

= − −

− − −

∫h
	 (1)

where h is a normalization constant, P z st t( | ) is 
an observation model and P s zt t( | ):0 is the belief 
of the state based on all previous observations. 
This distribution can then be approximated with 
weighted particles as:

P s z s st t t
i

i
t t

i( | ) ( ),:
( ) ( )

0 1 1≈ −− −∑ π δ 	 (2)

where p denotes the weight factor of each par-
ticle with p =∑ 1 and d denotes the Dirac 
impulse function. The higher the weight value, 
the more important this particle is in the whole 
distribution. The mean value of the distribution 
can be computed as Σi t

i
tsp −1

( ) and may be used to 
estimate the state of the agent if the distribution 
is unimodal.

In the person tracking system, the person’s 
position is represented by the x- and y- coordinates 
in the image, i.e. s x y= { }, .The direction of a 
person’s motion is hard to predict, because for 
example, an arm movement during rest could be 
wrongly perceived as a body movement into the 
corresponding direction. Hence, we do not use 
direction of movement information, but describe 
the transition model P s s at t

i
t( | , )( )

- -1 1 of the person 
with a Gaussian distribution:

Figure 2. Vision-based localization. Left: in the initial state particles are uniformly distributed in the 
image space. Blue circles represent particles describing the robot’s pose while yellow circles represent 
particles for describing the person’s location. Right: after initialization particles converge to the true 
person and robot locations
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where s( )at-1
2 is the variance of the Gaussian 

related to the action, at-1, st
i
-1
( ) are the previous 

states and st
i( ) is the current states. In case of a 

moving person, the action at-1 is a “binary” vari-
able containing only information whether the 
person is moving or not. The variance s( )at-1

2

will be set larger when motion is detected, which 
allows particles to move further, and set to a small 
value to “stick” the particles on the current posi-
tion when no motion is detected.

On the other hand, since we know precisely 
which actions the robot executes, the transition 
model P s s at t

i
t( | , )( )

- -1 1 of the robot can be built 
based on the robot’s physical motion behavior. 
Therefore for the robot localization, the robot’s 
state consists of three coordinate information: the 
x, y position and the orientation f, i.e. s x y= { }, , .f

As shown in Figure 2, the particles of the robot 
in cyan do not only encode the position coordinate 
as the person’s particles, but also have the orien-

tation information visualized by a short line. We 
can calculate the expected position of the robot 
¢x , ¢y and ¢o based on the designed feed-forward 

model and add Gaussian noise, as described by 
Equation (3).

When the person’s and the robot’s position are 
estimated, the particles will be resampled and 
their position will be updated (green arrows in 
Figure 1). After that, in the adaptation phase, the 
weight factor p( )i of particle i will be computed 
with a weighted polynomial combination of vi-
sual cues, inspired by a Sigma-Pi network (Weber 
& Wermter, 2007). The combination increases the 
effective number of cues and thereby leads to 
more robustness. The activities of the different 
visual cues are set as the input of the Sigma-Pi 
network and the particle weights are calculated 
as:

π α

α

( ) ( )

,
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j
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Figure 3. The equations of navigation rely on the visually obtained information from the localization 
module and on the information of the robot’s proximity sensors. Left: relevant angles for the navigation 
algorithm. Right: view from the ceiling mounted camera.
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where A sc t
i( ) ,( )
− ∈ 


1 0 1 is the activation function 

that signals activity of cue c at the state st-1 (i.e. 
the position) of particle i. The activities of visual 
cues are generated via activation functions and 
scaled by their reliabilities ac .We use a sigmoid 
activation function:

A x
e g x

( ) ,
( )

=
+ − ⋅

1
1

	 (5)

Here, x is the function input and g is a constant 
scale factor. Through the polynomial combination 
of cues represented by a Sigma-Pi network, the 
weights of particles are computed. The coefficient 
of the polynomial cues, i.e. the network weights 
ac
l

j
t( ) denote the linear reliabilities, ac c

q

j k
t( ) the 

quadratic combination reliabilities and ac c c
c

j k l
t( )

are the cubic. Compared with traditional multi-
layer networks, the Sigma-Pi network contains 
not only the linear input but also the second-order 
correlation information between the input values. 
The reliability of some cues, like motion, is non-
adaptive, while others, like color, need to be 
adapted on a short time scale. This requires a 
mixed adaptive framework, as inspired by models 
of combining different information (Bernardin, 
Gehrig, & Stiefelhagen, 2008; Weber & Wermter, 
2007). An issue is that an adaptive cue will be 
initially unreliable, but when adapted may have 
a high quality in predicting the person’s position. 
To balance the changing qualities between the 
different cues, the reliabilities will be evaluated 
with the following equation:

α ε α ε βc c tt t f s( ) ( ) ( ) ( ( ) ),= − − + ′ +1 1 	 (6)

where e is a constant learning rate and b is a 
constant value. f st( )¢ denotes an evaluation func-
tion and is computed by the combination of vi-
sual cues’ activities:

f s A s A sc t i t
i c

n

c t( ) ( ) ( ),′ = ′ ′
≠
∑ 	 (7)

where ¢st is the estimated position and n is the 
number of the reliabilities. In this model n is 14 
and contains 4 linear, 6 quadratic and 4 cubic 
combination reliabilities. We use a Hebbian-like 
learning rule to adapt the reliabilities. When the 
cue c is active together with several others, the 
function f sc t( )¢ is large, which leads to an increase 
of the cue’s reliability ac .For details of each vi-
sual cue please refer to (Yan, Weber, & Wermter, 
2011).

Behavior-Based Robot Navigation

The general view of behavior-based robotics 
states that complex behaviors can be generated 
by the coordination of simpler ones. In the case 
of mobile robot’s navigation each simple behavior 
solves a navigational subtask without the need of 
high level world representation (Arkin, 1998; Al-
thaus, Ishiguro, Kanda, Miyashita, & Christensen, 

Figure 4. Misalignments of the robot with respect 
to the person’s position
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2004). Behavior-based robotics provides real-time 
adaptation to dynamically changing environments 
and can be adopted by robots with very limited 
sensory capabilities, such as humanoid robots 
(Bicho, 1999). These characteristics make this 
navigation framework convenient for applications 
in ambient homes.

There are several frameworks for behavior-
based robotic navigation but here we focus on the 
dynamical system approach to mobile robot 
navigation (Schöner, Dose, & Engels, 1995; Bicho, 
1999). This choice is due to the fact that the equa-
tions of the navigation algorithm do not rely on 
a complete world representation but on the visu-
ally obtained estimates of the user and robot 
positions, which can be obtained from the local-
ization model. A behavior can be described by 
means of a behavioral variable that, in our work, 
is chosen to be the robot’s heading direction f( ),t
and by the temporal evolution of it. The evolution 
is controlled by a non-linear dynamical equation 
that can be generally expressed as:

ω
φ

φ= =
d t
dt

F t( )
( ( )), 	 (8)

where F t( ) defines how the value of the behav-
ioral variable f( )t changes over time (Bicho, 
1999), (Althaus et al., 2004). Multiple behaviors 
are aggregated by means of a weighted sum:

d t
dt

w f t di i
i

mf
f

( )
( ( )) ,= +

=
∑

1

	 (9)

where m represents the number of behaviors that 
are needed for the robot to accomplish its task. 
The term f ti( ( ))f represents the force produced 
by the ith behavior and wi represents the weight 
associated to the ith behavior. The term d represents 
a stochastic term that is added to guarantee escape 
from repellers generated by bifurcation in the 
vector field (Monteiro & Bicho, 2010). Attractor 
and repulsive functions, f ti( ( )),f are modeled 
with opposite signs. We can identify two basic 
behaviors whose coordination brings the robot 
from a generic location in the environment to a 
target location. The process of reaching a target 
point is represented by an attractor dynamic whose 
expression is:

f t t ttar1( ) sin( ( ) ( )),= − −φ ψ 	 (10)

where the term ( ( ) ( ))φ ψt ttar- accounts for the 
angular location of the target with respect to the 
robot at time t and can be obtained by the visual 
estimation reported in the Section “Simultaneous 
Person and Robot Localization”. The attractor 
dynamic acts to decrease the difference between 
f( )t and ytar ; a graphical representation of those 
angles is visible in Figure 3.

Figure 5. Left: integral image; right: haar-like feature
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The ability to obtain collision-free trajectories 
is encoded by a repulsive dynamic whose math-
ematical expression is given by:

f e d t Robs

term A

2
2

1
= − −








β

( ( ) )

(

 
� ��������� ���������

φφ ψ

φ ψ

σ( ) ( ))

( ( ) ( ))

t t eobs

t t

term

obs

obs−
−

−











2

22

  B
� ������������� ������������� .

	 (11)

It generates a force which decays exponen-
tially with the detected distance between the robot 
and the obstacle through the term A and with the 
angular separation between obstacle and robot 
thorough the term B. The detected distance be-
tween the robot and the obstacle at time t is rep-
resented by the term d tobs( ), while the direction 
of the obstacle with respect to the robot at time t 
is encoded in the term ( ( ) ( )).φ ψt tobs- The loca-
tion of the obstacle with respect to the robot and 
the distance from the obstacles can be obtained 
from the robot’s proximity sensors. The coeffi-
cients b2 and sobs determine the range at which 
the repulsion strength acts. The repulsion force 
acts to increase the terms ( ( ) ( ))φ ψt tobs- and 
d tobs( ).A graphical visualization of yobs t( ) is vis-
ible in Figure 3.

Referring to the stage of behaviors coordina-
tion reported in Equation(9), it is possible to 
obtain collision-free trajectories, if the weight w2
associated with the repulsion force is greater than 
the weight w1 associated with the attractor force. 
The aforementioned equations allow the robot to 
move towards a person and to avoid collisions on 
the way based on the localization estimate of the 
person and the robot and on the information of 
the robot’s proximity sensors. We suppose to fix 
the target’s position with respect to the user refer-
ence frame at a point in front of him located in 
the user’s personal space described by:

X u u u u= ( cos( ), sin( )),ρ θ ρ θ 	 (12)

where ru and qu represent the target point ex-
pressed in polar coordinates. While the coordinates 
of the target point are fixed with respect to the 
user reference frame, their expression with respect 
to the robot reference frame ( cos( ), sin( ))ρ θ ρ θu u u u

changes as the user moves. Therefore, knowing 
the position of the user with respect to the robot, 
allows us to derive the position of the target point 
with respect to the robot and from there to derive 
the motion equation that brings the robot in a 
position for facing the user.

Figure 6. Face detection ensemble
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Once the robot has reached its target point, its 
orientation might not be suitable to start interact-
ing. For example it could not be facing the user 
since the equations we described before do not 
control the robot’s final orientation (see Figure 
4). For this reason, once the robot stops, it looks 
for the face of the person and adjusts its body 
orientation according to the detected location of 
the face in its visual field. This passage requires 
face detection techniques then the user interaction 
can start. This is described in the next section.

Human Robot Interaction

A fundamental prerequisite for smooth human-
robot interaction is joint attention. Joint attention 
means that both the person and the robot jointly 
focus their attention on a single object. The same 
applies to eye contact, where human and robot 
mutually attend to each other. For this to happen 
the robot must first be able to localize a person’s 
face and then estimate where a person is paying 
attention to. The feedback about the user’s esti-
mated head pose can be used to modify the robot’s 
behavior with the purpose of achieving effective 

communication. In particular, if the robot wants 
to deliver a message to a person, and this person 
is not paying attention, the robot should attract 
attention using verbal or non-verbal cues. As soon 
as the person pays attention, the robot can deliver 
the message while monitoring whether the person 
is still paying attention to the robot. We focus 
on describing two typical tasks of non-verbal 
interaction between robot and user: building up 
eye-contact through face detection and estimat-
ing user’s attention using head pose estimation. 
We apply computer vision methods to the robot’s 
head camera to realize these functions.

Face Detection

Face detection can serve many different purposes 
in human-robot interaction and one of them refers 
to the correction of the robot’s alignment. With 
this model, the robot is able to align its orienta-
tion with respect to the user’s face position in the 
robot’s visual field. Different computer vision 
methods have been developed for face detection 
and one of the most well-known was proposed by 
Viola and Jones (2002). This algorithm is based on 

Algorithm 1. AdaBoost Algorithm 
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Haar-like features, threshold classifiers, AdaBoost 
and a cascade structure.

Haar-like features (Figure 5 right) are digital 
image features whose shapes are similar to Haar-
Wavelets. A simple rectangle Haar-like feature 
can be described as the difference of the sum of 
the pixels within two rectangle areas (Viola & 
Jones, 2002). In order to speed up the computa-
tion, an intermediate representation of an image is 
processed which is called integral image (Figure 
5 left). The transformation of an integral image 
can be performed with following equations:

s x y s x y i x y
ii x y ii x y s x y
( , ) ( , ) ( , )
( , ) ( , ) ( , ),

= − +
= − +

1
1

	 (13)

where ( , )x y indicates the pixel position of an 
image, s x y( , ) is the cumulative row sum with 
s x( , ) ,− =1 0 i x y( , ) represents the value of the 
pixel at location ( , )x y in the initial image, ii x y( , )
represents the value of the integral image at loca-
tion ( , )x y with ii y( , ) .− =1 0

The calculation of the Haar-like features can 
be simplified by computing four array references. 
As shown in Figure 5 left, the value of an integral 
image at location 1 is the sum of the pixels in 

rectangle A and the value at location 2 is the sum 
of pixels in rectangle (A+B). Similarly, the sum 
within area D equals then 4+1-(2+3) (Viola & 
Jones, 2002). Since the set of rectangle Haar-like 
features is overcomplete (Viola & Jones, 2002), 
an AdaBoost algorithm (Freund & Schapire, 
1995) is employed to select a small number of 
significant features. A set of threshold classifiers 
are built using these Haar-like features. Each clas-
sifier has only a low detection rate therefore they 
are also called weak classifiers. To improve the 
classification results, the classifiers are combined 
with a cascade structure which rejects most of 
the background within few classification steps. 
The detailed AdaBoost algorithm is shown in 
Algorithm 1(Viola & Jones, 2002).

Once a face is detected in the robot’s camera, 
we use a closed-loop control mechanism for 
centering the user’s face in its visual field. Our 
humanoid robot’s head has two degrees of freedom 
namely yaw and pitch. We control the yaw and 
the pitch angle to minimize the distance in the 
vertical and horizontal direction between the 
detected face and a relevant point in the image 
( , ).X Yt t The information we gather from the face 
detection module is denoted as ( , )X Y0 0 and is 

Figure 7. Face tracking is based on the face’s location in the robot’s visual field. The tracking algorithm 
tends to minimize the distance between the position of the face in the robot’s visual field and a relevant 
point in the image which in the case shown is the center of the visual field ( , ).X Yt t= =0 0
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reported in Figure 7. We generate control com-
mands with a simple proportional action as de-
scribed in the following equation:

C k X X
C k Y Y
yaw yaw t

pitch pitch t

= −
= −

( )
( ),

0

0

	 (14)

where kyaw and kpitch represent the strength of the 
proportional control action relative to the yaw 
and pitch angles of the robot’s head.

Head Pose Estimation

Currently, several commercial methods are avail-
able for estimating a person’s head pose (e.g. the 
face API, face.com). These methods are usually 
optimized for situations where a person is sitting 
behind his desktop computer: high-resolution im-
ages of nearby faces. In robotics the image quality 
is typically limited: (1) Small humanoid robots like 
Aldebaran’s Nao typically have limited processing 
capacity available, because of the weight limita-
tions. As a result the cameras do not have optics to 
improve image quality. (2) It is possible to process 
images on a fast remote machine, but this poses 
strong constraints on the bandwidth of the wire-
less connection. In practice, only low-resolution 
images are transmitted with sufficient refresh rate. 

(3) The robot, if autonomous, operates in hugely 
varying lighting conditions. Close inspection of 
Figure 7, for example, reveals large color differ-
ences although the scenes are very similar to the 
human eye. (4) In addition, a robot walking on 
the floor is never very close to the user. Thus, a 
person’s face only covers a small part of the im-
age (see Figure 7). The first two constraints are 
of a technical nature and can be remedied with 
more expensive equipment. The third and fourth 
constraints, however, are due to the different 
role a humanoid robot has when interacting with 
a person. Thus, an improved method is required 
to estimate head pose from a limited amount of 
visual information. Because of these reasons a 
neural network-oriented head pose estimation 
solution was developed based on the work by 
Voit et al. (2007), and further developed by van 
der Pol et al. (2011).

Image Processing

The image patch of the face as detected by the 
Viola and Jones’ face detection method is prepro-
cessed before feeding it into the neural network. 
The images are converted to black and white and 
scaled and cropped to 30 pixels wide and 90 pixels 
tall images containing only the facial region. The 
image aspect ratio is rather tall than wide, because 

Figure 8. Face detection and image processing stages. Head Pose estimation requires face detection 
and image preprocessing, in particular edge detection, to the data acquired from the robot’s camera.
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this way the image contains only parts of the face 
even when it is rotated over large angles. After 
adjusting the image to the appropriate size, the 
image is filtered with a Laplacian edge detection 
filter. This filter is a translation- and rotation-
invariant detector for contrast. The Laplacian 
works like an edge detector and behaves similarly 
to a combination of Sobel filters or a Canny edge 
detector. To be able to average over different data 
gathered from the neural network, the mirrored 
image is also passed through to the next level, as 
well as a cutout one pixel bigger in all directions 
and its mirrored image.

Neural Network

Neural networks are computationally expensive 
to train, but they are efficient after training. Other 
solutions often detect certain features within the 
face to calculate the rotation by using a three-di-
mensional model of the head (Murphy-Chutorian 
& Trivedi, 2009). This requires a high-resolution 
image for robust detection of the fine textures that 
define these features. Therefore, it also becomes 
very dependent on the lighting condition. Our 
neural network-based approach does not use these 
features, nor does it rely on a three-dimensional 
model.

The network is trained using a training set 
of 5756 images some of them coming from the 
database created by Gourier, Hall and Crowley 
(2004). Multiple networks are trained for both 
yaw (horizontal orientation) and pitch (vertical 
orientation) angles (see Figure 9). The Levenberg-
Marquardt training method is used to train the 
two-layer, feed-forward neural network. Note that 
the roll angle cannot be estimated by the neural 
network, because the face detection algorithm is 
only able to detect faces that are upright. While 
training neural networks, especially complex 
ones like this, chances are high to end up at a lo-
cal minimum. Therefore, the output of different 
networks is likely to differ. This method uses the 
best ten networks to increase performance. The 

output of the networks is multiple estimates of 
pitch and yaw angles. After averaging over all 
of these values the estimate of the head pose is 
retrieved (see Figure 10).

Caveats

Currently, the utilized face detection cascade for 
Viola and Jones’ object (2002) detection is limited 
to detect a face when most of the face is visible 
excluding side views. Consequently, our method 
currently works for faces rotated less than 90 
degrees from looking straight at the camera, in 
any direction. Head pose is only an estimator of 
gaze direction as human gaze is also determined 
by the orientation of the eyes. Nonetheless, head 
pose is a good estimator for gaze, because when 
people attend to something for some time they 
always turn their heads. The performance of our 
method in real life heavily depends on the train-
ing set that was used because the variation of, 
say, lighting condition in the training set affects 
the robustness against varying lighting conditions 
during implementation. We find an average error 
for the yaw estimation of about 7 degrees. For the 
pitch angle the average error is approximately 11 

Figure 9. Pitch, yaw, and roll angles
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degrees. These results are sufficiently precise for 
social interaction and they show that our method 
works from a low vantage point with varying 
lighting conditions and low resolution images.

CASE STUDY

Effective assistance refers to both, the ability of 
the robot to interact with the environment and 
the ability of the robot to interact with the user as 
those two aspects are tightly coupled. Think about 
a robot that is able to move safely in a cluttered 
environment but that is not able to know where 
its human companion is or where (s)he is looking 
at. Then the inclusion of such a robot in ambient 

homes would not provide any benefit because 
it would not be able to communicate with the 
person and remind the user to check some health 
parameters. On the other hand, in case of a static 
robotic assistant, the user would be obliged to 
go to the robot. But in this situation how can a 
robot function as a reminder assistant if the per-
son herself needs to be active and remember to 
approach the robot?

These two examples motivate that navigation 
capabilities of a mobile robot and its ability to 
acquire information about the user are coupled 
and they are essential for designing robotics ap-
plications for ambient homes. Effectiveness of 
interaction with the environment and the user can 
only be achieved by the acquisition of real time 

Figure 10. Two-layer feed forward neural network for head pose estimation. Image shows individual 
networks that combined give an estimate of the yaw angle of rotation.

Figure 11. The case study represents tests of the KSERA system done in the Schwechat (Vienna) Nursing 
Home. For privacy reason we have modified the faces to be unrecognizable.
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feedback on the environment’s and the user’s 
conditions. This feedback can be obtained by the 
joint application of the computer vision methods 
presented in the previous sections. Therefore 
this section presents a case study related to the 
introduction of a humanoid robot in an AAL ap-
plication and provides a concrete example of how 
the computer vision techniques introduced in the 
previous sections can be integrated for employing 
a robot in an assisting environment (Figure 11). 
The robot should navigate autonomously towards 
a person, establish eye contact, check whether the 
user is focused on the robot and then ask the user 
to perform the measurement of his oxygen level. 
The test case refers to currently ongoing testing 
of the KSERA system in Schwechat Vienna.

In our case study, we run experiments with dif-
ferent users and one of our test cases is illustrated 
in Figure 12. This test case consists of two parts: 
(1) navigate safely towards a person and (2) human 
robot interaction using nonverbal communica-
tion. The event flow for achieving points (1) and 
(2) is represented as a state machine diagram. At 
first all the components are initialized, and then 
the robot navigates towards the person until it 
reaches its target point. At that moment it tries to 
establish eye contact with the user modifying its 
body pose. It then checks the focus of attention 
of the user and if the user is paying attention it 
asks the user to measure his oxygen level. We start 
by letting the robot approach a localized person. 
Two groups of particles with different setups for 
person and robot localization are initialized at 

Figure 12. The actions of various systems components are coordinated with finite element state machines. 
The figure represents the action sequence that the robot needs to accomplish for going to a person and 
interacting with her.

Figure 13. Simultaneous person and robot tracking. Left: initial position, Right: robot’s movement 
towards a person.
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random position in the image space at first (see 
Figure 13 left).

The person is first localized using motion 
information. The weights of particles close by the 
user increase and the particle cloud converges to 
a single position (Figure 13 right). Meanwhile, 
the shape feature as well as the color histogram 
adapts to store features of the localized user, which 
enables the system to localize the person even 
when motion is missing. The person localization 
has been tested and evaluated according to the 
CLEAR MOT Metrics (Keni & Rainer, 2008). 
Since only a single person is tracked in the system, 
based on our goal design, the frame number of 
misses m and of false positives fp has been 

counted and the multiple object tracking accu-
racy (MOTA) has been calculated. The test results 
are shown in Table 1 and for details please see 
(Yan, Weber, & Wermter, 2011).

For the robot’s particles a precise feed-forward 
motion model has been built according to the 
robot’s behavior. When the robot moves, the 
particles move also with different orientation. 
The particles with wrong orientation will fly 
away from robot’s position and only the particles 
with correct angles can survive which helps the 
system to estimate robot’s orientation. The robot 
moves from its initial position to the final posi-
tion in front of the user based on the navigation 
Equation (8) and Equation (9). Readers interested 

Figure 14. Robot’s movements towards a person. After moving for a short distance the robot stops in a 
proper location for approaching the user as identified by (Torta et al., 2011).

Figure 15. Face of the person in the robot’s visual field before and after the robot’s alignment. Direct 
eye contact can be built after the alignment.
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in more complex navigation trajectories can refer 
to videos reported on the KSERA website http://
www.ksera-project.eu. Personal space models 
have been defined with HRI psychophysical tests 
and are reported in Torta, Cuijpers, Juola and van 
der Pol (2011).

Once the robot reaches its target point, its final 
orientation might be inappropriate for initiating the 
interaction, as can be seen in Figure 14, because 
the robot is not able to establish eye contact with 
the user. In this case the robot can look for the 
user’s face using the algorithm reported in section 
“Human Robot Interaction” with face detection 
and head pose estimation and adjusts its body’s 
orientation and head angle to make eye contact 
with the user. As can be seen in Figure 15, at the 
beginning the face of the user is not centered in 
the robot’s visual field, but after applying the face 
tracking algorithm the robot centers the user’s face 
thus aligning to him. The person’s attention can 
be monitored by applying the head pose estima-
tion method as described in section “Head Pose 
Estimation”. If the person is not paying attention 
to the robot, the robot will generate actions to 
grab user’s attention until the user focuses on the 
robot. Then the robot conveys a message and the 
test case ends.

CONCLUSION AND FUTURE 
RESEARCH DIRECTIONS

The chapter gives an overview of vision algo-
rithms used in a typical scenario of ambient 
assisted living. We have focused our attention 
on robot’s navigation towards a simultaneously 
localized person and on human-robot interaction. 
We discussed challenges for robots in ambient 
homes as well as the benefits of computer vision 
for these applications compared to systems with 
different sensors. A hybrid probabilistic algorithm 
is described for localizing the person based on 
different visual cues. The model is to some extent 
indicative of a human’s ability of recognizing 
objects based on different features. When some 
of the features are strongly disturbed, detection 
recovers by the integration of other features. The 
particle filter parallels an active attention selec-
tion mechanism, which allocates most processing 
resources to positions of interest. It has a high 
performance of detecting complex objects that 
move relatively slowly in real time.

We described a sound method for face detec-
tion, the Viola and Jones method. We used the 
coordinates of the user’s face in the visual field 
for correcting the robot’s orientation for facing the 

Table 1. Experimental results (Yan, Weber, & Wermter, 2011) 
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user. Moreover, we illustrated a head pose estima-
tion method based on the use of multiple neural 
networks. Once trained, the head pose estimation 
is computationally inexpensive, requires only 
low quality images and is robust to non-optimal 
lighting conditions. This makes our approach, 
compared to other methods for head pose estima-
tion, especially useful in robotics applications for 
ambient assisted living.

A case study has been included that provides 
a concrete example of how the computer vision 
techniques can be integrated for employing a ro-
bot in an assisting environment. The experiments 
have been conducted and the evaluation shows 
that intelligent computer vision algorithms using 
a distributed sensory network (camera and robot) 
can be merged for achieving more robust and ef-
fective robot behavior and improve human-robot 
interaction in an AAL environment significantly. 
Our research focus is currently on the localization 
of a single person and robot navigation based on 
computer vision technology. However, in a real 
home situation, multiple persons may appear in 
a room at the same time and the robot should be 
able to distinguish them. Hence, in future research 
we will attempt to extend our model for localiz-
ing multiple persons at the same time using the 
ceiling mounted camera. A sophisticated person 
recognition model would also be employed in this 
case to distinguish the target person from the rest 
based on visual cues obtained from the robot’s 
camera. Intention recognition would be another 
interesting direction for improving human-robot 
interaction and for defining the robot’s proactive 
behavior. Fundamental information for intention 
estimation can come from the ceiling camera 
and the person’s localization method. Another 
approach is to add a neural-based model for 
facial emotion recognition so as to understand 
whether the user is happy or sad and then adapt 
the robot’s interactive behavior. In addition, the 
elaboration of a novel robot navigation method 
without camera calibration would be a useful 
improvement of robotic applications in domestic 

environments. Camera calibration is essential to 
eliminate the distortion effect of the camera lens 
and to ensure the quality of coordinate transfor-
mation from the camera view to the real world, 
but makes the system hard to install by persons 
without professional knowledge. Therefore, we 
are considering a model based on neural planning 
that can learn room mapping from the person’s 
spatial knowledge and plan the robot’s movement 
based on the learned map.

In general, our results show that - although 
many solutions exist to particular detailed 
problems like face recognition, navigation and 
localization - robotic applications in domestic 
environments like AAL require a level of integra-
tion that currently does not exist. This research is 
only the first step in addressing this issue.
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