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Abstract—Emotional learning involves two stages. The first is 
to acquire reinforcers from stimuli and the second is to associate 
such reinforcers with emotional responses. Both stages can be 
found occurring in the amygdala. LeDoux’s fear circuit model 
[1] suggests two routes, a subcortical route and a cortical route, 
for emotional information entering the amygdala for associative 
learning. It can be used to explain how the actual recognition of 
emotions from facial expressions can be processed in the brain. 
Based on the model, a neural architecture is proposed using the 
stochastic Helmholtz machine (SHM) with the wake-sleep 
algorithm. In this paper, the results of three experiments about 
the subcortical emotional learning are reported, where different 
configurations of SHMs are involved. The first two experiments 
are to identify a suitable way to allow behavioural responses 
entering the central nucleus of the amygdala for association. 
However, both experiments show symptoms of overfitting, 
where some weights and biases of neurons are observed that will 
unusually increase during training. Therefore, the final 
experiment is designed to maintain the range of weights between 
-1 and +1 in order to solve the overfitting problem. The last 
experiment shows that the neural architecture with the new 
weight policy holds a lot of potential for modelling subcortical 
learning. 

I. INTRODUCTION 

computational system for online-learning of emotional 
meanings from facial expressions is an anticipated 

capability for future interactive robots [2-4]. However, it is a 
difficult task because human facial expressions are not only 
used for expressing emotions but also for communication [5]. 
Thus, a facial expression can be generated without relating to 
any emotion. In addition, daily experienced emotions are 
social emotions, which are more sophisticated than basic 
emotions and usually are mixtures of multiple emotions. This 
idea is supported by Plutchik’s theory [6] to use colours to 
explain emotions. One emotion can be mixed with another 
emotion to become a new and ambiguous emotion.  

Such an idea is also supported by a biological theory from 
Rolls [7]. He explained emotional learning as a form of 
stimulus-response associative learning, which is related to 
two types of learning called classical conditioning [8] and 
instrumental learning [9]. There is an emotional stimulus 
called a ‘reinforcer’ is used as an intermediate emotional 
stimulus to bridge the sensory stimuli and emotional 
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responses. Some sensory stimuli can recall primary 
reinforcers and elicit autonomic emotional responses directly 
without learning, such as an unexpected scream causing a 
shock face. Such stimulus-response associations are innately 
present in the brain. Then, a new non-emotional stimulus, 
such as a horrified face, can dynamically associate with 
primary reinforcers, thereby becoming secondary reinforcers 
in order to trigger similar emotional responses as original 
primary emotional responses. As a result, humans own 
various reinforcers and different levels of emotional 
responses.  

The recognition of emotions from facial expressions in the 
brain can be considered as the interpretation of reinforcers 
[10], where the reinforcers are recalled by facial expressions. 
In this case, the recognition is more likely to acquire and 
memorise several associations between facial expressions and 
reinforcers, instead of categorising and grouping facial 
expressions to a particular emotional category.  

Therefore, the choice of machine learning approach must 
support the dynamic associations and be configured for long 
term continuous running in robots. In this case, it is unlikely 
that most typical categorisation-based pattern classification 
algorithms are appropriate to use. In addition, because 
emotional learning is involved in many autonomic functions, 
an unsupervised learning method is desired. With all 
requirements considered, the stochastic Helmholtz machine 
(SHM) [11], which is a type of bi-directional associative 
memory, is examined in our research.     
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Figure 1. A block diagram shows the core structure of the neural 
architecture. (1) Visual features of faces are extracted at the retina & 
LGN module. (2) The extracted features are sent to the amygdala to 
recall reactive responses and the visual cortex to obtain detailed analysed 
and encoded results of faces respectively. (3) The encoded facial 
information is sent to the amygdala to produce higher level responses. (4) 
All information are integrated and interpreted at the ACC.    
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II. OVERVIEW OF NEURAL ARCHITECTURE 

Although the focus of this paper is to report the emotional 
learning results obtained from the subcortical route, it is 
useful to give an overview of the biologically inspired neural 
architecture [12] as shown in Figure 1.  

Emotion recognition from facial expressions is considered 
as a process to integrate and interpret two outputs, from 
emotional learning and facial perception. Following the idea, 
the architecture is designed based on the model of LeDoux’s 
fear model [13,14], which describes how the amygdala 
receives sensory inputs via the subcortical route and cortical 
route to perform emotional leaning and generate different 
levels of fear response. The architecture comprises four 
separated regions, which are responsible for particular 
cognitive and emotional functions. The retina and LGN are 
responsible for colour and basic edge extraction for all 
modules. The visual cortex is specialised for analysing visual 
inputs, separating mixture of signals and encoding them as 
compact representations. The amygdala is specialised for 
multiple levels emotional learning. Finally, the anterior 
cingulate cortex (ACC) acts as an emotion and cognition 
interface to receive and centralise different sensory, cognitive 
and emotional information at one place, to enable the social 
interaction and emotional problem-solving [15].  

The difference between the subcortical route and the 
cortical route is the processing speed and the level of detail of 
information. The subcortical route allows visual information 
to bypass the visual cortex entering the amygdala as a rapid 
channel, and the amygdala can directly recall reinforcers and 
elicit emotional responses. However, the quality is rough and 
assumes no sophisticated emotional response needs to be 
generated. This route is especially important to enable 
humans to avoid danger because it supports ‘sense danger’ 
rather than ‘recognise danger’. Conversely, the cortical route 
allows the visual information to be processed by the visual 
cortex before being sent to the amygdala for emotional 
learning. Thus, the speed is relatively slow but more detail 
and accurate information are provided. 

III. STOCHASTIC HELMHOLTZ MACHINE 

 The stochastic Helmholtz machine (SHM) is an 
unsupervised learning associative memory designed to 
simulate the cortical bottom-up and top-down pathways of 
the human perceptual system [11,16,17]. It works like a 
statistic inference to sample input sensory data and 

stochastically infer a binary pattern for representing original 
input data. It can be considered as an alternative approach to 
the Restricted Boltzmann machine (RBM) [18] for deep 
belief nets [19] and deep learning [20,21]. Thus, it can be 
used for compressing and encoding a sensory feature input.  

The original SHM is a three layer model; however, it is 
replaced by a two layer model (as shown in Figure 2) in order 
to advance the implementation of the neural architecture. The 
first layer (A) is the input layer and the second layer is the 
output layer (B). There are two separated connection models: 
a recognition model and a generative model. A recognition 
model refers to the recognition weights (Rab) that connect 
layer A to layer B. A generative model refers to the generative 
weights (Gba) that connect layer B back to layer A.  

All neurons are stochastic binary neurons containing two 
states, 0 or 1.  However, when the input data is non-binary 
such as a natural image, the probability distribution of 
neurons at the input layer is used instead. The mathematical 
expressions for the neurons are: 
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where sb is the actual state of a neuron in layer B with index y; 
sa is the actual state of a neuron in layer A with index x; Rab is 
the recognition weight with bias bR; Gba is the generative 
weight with bias bG.  

The recognition model is a bottom-up model responsible 
for estimating an economical representation for describing 
the input data and separating the generative model. The 
generative model is a reverse top-down model responsible for 
reconstructing the input data based on the estimated 
representation. Two models connected as a circular loop 
allow information exchange between layers. 

For learning, the wake-sleep algorithm was chosen. It is an 
unsupervised learning algorithm consisting of two phases, the 
‘wake’ phase and the ‘sleep’ phase, to update the recognition 
weights and the generative weights separately using the delta 
rule.  

A. Wake Phase Learning 

The details of training in the wake phase are illustrated in 
Figure 3, where the different processing steps are shown. It 
can be considered in two steps: step 1 and step 2.  

In step 1, the input data is entered into the input layer (A). 
The recognition model then calculates a probability 
distribution over the neurons PR(sb) at the output layer (B), 
where the probability of each neuron P(sb=1) can be 
calculated using equation 1. The purpose is to detect features 
from input data and recognise them as a binary 
representation.  

Figure 2. The structure of the SHM 
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In step 2, the generative model calculates a probability 
distribution over the neurons PG(sa) at the reconstruction 
layer (A2), which can be calculated using equation 2. The 
difference between the original input data vector at layer (A) 
and the reconstructed data vector at layer (A2) can then be 
used to adjust the generative weight and its bias by using 
equations 3 and 4 respectively.  
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where n is the iterative count; (sa – saG) is the difference 
between the original input data vector and the reconstructed 
data vector; γ is the learning rate. 

There are two outputs: the binary representation is 
outputted to upper SHMs for further processing and the 
reconstructed input data is used as feedback for guiding the 
learning of lower SHMs.  
 

 

B. Sleep Phase Learning 

Sleep phase learning is important to separate the generative 
model. The details of training are illustrated in Figure 4. It can 
also be considered in two steps: step 3 and 4.  

In step 3, the input of fantasy layer (B3) is a binary selected 
feature randomly sampled from either the feedback of other 
SHMs or a stochastic pattern. The generative model then 
calculates the probability distribution of neurons PR(sa) in the 
approximation layer (A3) using equation 2.  

In step 4, the recognition model calculates the probability 
distribution of neurons PR(sb) in the simulation layer (B4) 
using equation 1. Finally, the difference between layer B3 
and layer B4 can be used to adjust the recognition weight and 
its bias by using equations 5 and 6 respectively. 
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where n is the iterative count; (sb – sbR) is the difference 
between the sampled feature and the simulated feature; γ is 
the learning rate. 

Basically, the update of the generative weight is driven by 
the recognition model in the wake phase for increasing the 
chance of reconstructing an accurate input. Alternatively, the 
update of the recognition weight is driven by the generative 
model in the sleep phase for improving the estimation of the 
input data.  

 

 

IV. EXPERIMENTS 

The experiments presented here are related to testing of 
different configurations of SHM for the amygdala. The 
results obtained will become the basis for the further 
experiments of the neural architecture in the future as shown 
in Figure 1.  

A. Training Dataset 

In order to benefit the analysis of SHM, a simple robotic 
expression image dataset was used. The dataset contains 144 
robotic expression images, including all combinations of 
facial motor positions. There are 36 images for each position 
of left and right eyebrows and 48 images for each position of 
upper and lower lips. Therefore, the probability of each motor 
position being trained is quite even. 

The robotic images are then manually assigned into one of 
four emotion categories: excitement, stress, depression and 
calm, with the meaning positive-high arousal, negative-high 
arousal, negative-low arousal and positive-low arousal 
respectively. These four categories are also used as the 
behaviour responses. As shown in Table I, the quantity of 
image data within each category is uneven because the 
categorisation is performed according to the primary feeling 
to images of expressions and no deliberation has been 
involved. 

 

Figure 4. An unfolded view shows the learning sequences of sleep phase 
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Figure 3. An unfolded view shows the learning sequences of wake phase 



 
 

B. Subcortical Emotional Learning Model 

Figure 5 shows the subcortical emotional learning model 
used in different experiments. There are two modules 
involved: the retina and LGN module and the amygdala 
module. The retina and LGN module is used to extract the 
edged features from images, where a basic canny edge 
detector algorithm is applied. Two SHMs are used in the 
amygdala module for each sub-region, the basolateral 
complex (BLA) and the central nucleus (CeA). BLA directly 
receives the visual features and recognises them as different 
primary reinforcers at high speed as it is assumed that they are 
an innate connection. Its output is then sent to CeA for 
eliciting different emotional responses.  
 

 
 

 
 

C. Experimental Setup 

Three experiments have been carried out with different 
configurations, as shown in Table II. Experiment 1 is 
designed to test the configuration with the behavioural 
responses entering CeA from the ‘top’. Both BLA and CeA 

are configured to receive feedback from CeA and CeA 
receives feedback (or supervision) from other cortical areas. 
Also, no negative weight is permitted. In contrast, experiment 
2 is to test another configuration, where the behavioural 
responses are entered from the ‘side’, pairing with the output 
of BLA. Finally, experiment 3 is used to test the effect of 
limiting the value of connection weights between -1 and +1.  

V. RESULTS 

In order to evaluate the learning performance of the SHM, 
the average reconstruction error for every SHM is calculated 
based on the difference between the input data at layer A and 
the reconstructed data at layer A2.  

A. Experiment 1 

The average error of BLA is shown in Figure 7(a). The first 
half of the curve continuously drops in steps. Every step 
represents a new feature being discovered from the input data. 
Later, overfitting occurs in the second half of the learning 
curve. In a practical situation, however, this should not occur, 
as robots will be continuously exposed to new faces. A 
network will be selected only if it can satisfy the requirement 
of long-term learning without overfitting. Therefore, the 
current configuration of SHM for BLA is not yet desired.  

In order to address this issue, a deeper analysis is 
necessary. Three points have been measured from the 
learning curve for representing different learning stages: 
on-going training, best training and overtraining. Their 
subsets of weights are plotted in Figure 6. The weights 
indicate that lips features are easier to discover than eyebrows 
features. The reason is that some non-overlapped features, 
such as lips, involve more input units (as pixels) resulting in 
easier and faster learning. In contrast, overlapped features, 
such as eyebrows, involve relatively fewer units; therefore, 
BLA need more iterations to separate them.  

 

 
 
The average error of CeA is shown in Figure 7(b). The 

learning curve of CeA drops rapidly at the beginning. 
However, it then rises and drops again at the end. The reason 
is that BLA and CeA were learnt together. At the beginning, 
not all features have been discovered by BLA and this 

Figure 6. An example of weights extracted from three different 
learning stages: ongoing training best training and overtraining 
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TABLE II 
THE CONFIGURATION OF NETWORKS 

Exp 
Behavioural 

Response 
 BLA  CeA 

Weight 
Limit 

1 Top 
(4980 – 64) 
[0.1, 0.001] 

(64 – 4) 
[0.1, 0.1] 

[0,+∞] 

2 Side 
(4980 – 64) 
[0.1, 0.0001] 

(68 – 64) 
[0.1, 0.01] 

[0,+∞] 

3 Side 
(4980 – 64) 
[0.001, 0.01] 

(68 – 64) 
[0.01, 0.1] 

[-1,+1] 

* (Size of layer A – Size of layer B) [lr_w, lr_s] 
* ‘lr_w’ is the learning rate for the wake phase and ‘lr_s’  is the learning 

rate for the sleep phase  

TABLE I 
THE DISTRIBUTION OF FOUR EMOTION CATEGORIES 

Category Image 

Excitement 
(57) 

[1,2,3,4,5,6,7,8,9,13,14,15,17,22,23,24,26,31,32,40,41, 
42,44,49,50,51,53,58,59,67,68,69,71,72,76,77,78,80,81, 
85,86,94,95,96,98,99,103,104,112,113,114,116,117, 
121,122,130,131] 

Calm (10) [10,19,28,37,46,55,64,73,91,109] 

Depression 
(20) 

[11,12,20,21,29,30,38,39,47,48,56,57,65,66,74,75,92, 
93,110,111] 

Stress (57) 

[16,18,25,27,33,34,35,36,43,45,52,54,60,61,62,63,70, 
79,82,83,84,87,88,89,90,97,100,101,102,105,106,107, 
108,115,118,119,120,123,124,125,126,127,128,129, 
132,133,134,135,136,137,138,139,140,141,142,143,144] 

Figure 5. A subcortical emotional learning model 
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incompletely detected feature was sent to CeA for learning. 
After that, BLA continuously discovered features and CeA 
also adapted the change and started learning so that the curve 
is slightly rising in the middle stage and dropping again as 
CeA is learnt.  

Table III summarises the range of parameters in BLA and 
CeA at the best training stage and the overtraining stage. 
Comparing the best training stage and overtraining stage, it 
indicates that some weights and biases at the overtraining 
stage are boosted to an unusual large value. In principle, the 
bias of neuron is an adaptive threshold of the total of the 
weighted inputs for keeping the weights changed within an 
effective region of a sigmoid curve. Therefore, the weights 
should not be very large and the bias should be just large 
enough needed. However, the result indicated that both of 
them increase continuously.  

 

  
 

B. Experiment 2 

Due to the overfitting of BLA occurring in experiment 1, it 
was suggested that a slower detailed update of the recognition 
weights can improve the detection of features and reduce the 
overtraining. Therefore, the learning rate of the sleep phase is 
decreased. 

The results of BLA and CeA are shown in Figure 8(a) and 
(b) respectively. Basically, the shape of the learning curves of 
BLA obtained in this experiment is almost the same as the 
curve obtained in experiment 1, but it is slower. However, the 
overtraining still occurred at the end. One possible reason is 
that the reduction of learning rate of the sleep phase only 
reduces the speed of learning, but cannot improve the 
estimation. It implies that the optimisation of SHM requires a 
balance of the actual learning speed between the recognition 
model and generative model. 

Similarly, the result of CeA obtained here is close to the 
result obtained in the experiment 1. This experimental result 
indicates that whether the behavioural response is entered 
from the top of CeA or from the side pairing with the output 
of BLA, the learning curves are similar. Table IV summarises 
the range of the parameters in BLA and CeA, which shows 
that some weights are still dominant. 

To summarise, although no significant performance 
improvement has been observed, the ‘side’ configuration is 
still useful if only four behavioural responses are included. 

TABLE III 
THE MINIMUM AND MAXIMUM RANGE OF PARAMETERS (EXP 1) 

Best training (1,000) Overtraining (2,000) 
BLA.Rab [0, 0.58646] 
BLA.br [5.7828, 7.4531] 
BLA.Gba [0, 27.6475] 
BLA.bg [-12.3183, 28.222] 
 
CeA.Rab [0, 22.8772] 
CeA.br [9.4139, 11.4182] 
CeA.Gba [0, 20.4676] 
CeA.bg [-2.0622, 16.1244] 

BLA.Rab [0, 5.8483] 
BLA.br [5.9083, 8.8663] 
BLA.Gba [0, 20.5761] 
BLA.bg [-12.3149, 55.2897] 
 
CeA.Rab [0, 22.9526] 
CeA.br [11.3525, 12.3263] 
CeA.Gba [0, 22.7251] 
CeA.bg [-4.1517, 16.8109] 

Figure 8. The average error of BLA (a) and CeA (b) for the experiment 2 

(a) 

(b)  

Figure 7. The average error of BLA (a) and CeA (b) for the experiment 

(a)  

(b)  



When the problem becomes more complicated, the ‘top’ 
configuration becomes difficult to manage; instead, the ‘side’ 
configuration should be able to deliver a reasonable result via 
increasing the size of the output layer.  

 

 
 

C. Experiment 3  

Based on the previous experiences, the ‘balance’ of the 
learning performance of the two connection models in a SHM 
is important. In order to deal with this, the idea is to avoid the 
weights and biases to become too large. The best value of 
weights should always be kept moving along the effective 
range in a sigmoid curve. Therefore, a limit is applied to 
maintain the range of weights between -1 and +1 to emulate a 
biological neuron’s ability to inhibit and excite.  

Additionally, in the wake phase, many units are updated at 
once. Conversely, in the sleep phase, only one unit is updated 
every time. Thus, the generative weights are initially updated 
faster than the recognition weights. For this reason, the 
learning rate of the wake phase is decreased to smaller than 
the sleep phase in order to balance the update speed of the 
recognition model and the generative model.    

The result of the BLA in the experiment 3 is shown in 
Figure 9(a). The learning curve drops rapidly at the beginning 
and then keeps stable for a long time. The result of the CeA is 
shown in Figure 9(b). The curve slightly drops at the 
beginning when no features have been detected by BLA. 
However it quickly recovers since the BLA learns fast. The 
curve then rises back to the normal training level before 
continuously decreasing gradually.  

Since no overtraining is observed, Table V summarises the 
range of the parameters in BLA and CeA at the early training 
stage and the on-going stage instead. The result indicates that 

TABLE IV 
THE MINIMUM AND MAXIMUM RANGE OF PARAMETERS (EXP 2) 

Best training (4,000) Overtraining (5,000) 
BLA.Rab [0, 1.149] 
BLA.br [5.4607, 7.9958] 
BLA.Gba [0, 30.5946] 
BLA.bg [-13.5879, 36.6932] 
 
CeA.Rab [0, 50.1305] 
CeA.br [4.4423, 12.3617] 
CeA.Gba [0, 19.4583] 
CeA.bg [4.0958, 25.75] 

BLA.Rab [0, 2.458] 
BLA.br [5.4684, 8.0648] 
BLA.Gba [0, 26.0096] 
BLA.bg [-13.591, 36.7777] 
 
CeA.Rab [0, 60.1103] 
CeA.br [4.4707, 14.1286] 
CeA.Gba [0, 23.8297] 
CeA.bg [4.1461, 26.5465] 

Figure 9. The average error of BLA (a) and CeA (b) for the experiment 

(a))  

(b) 

Figure 10. Some examples of BLA (left) and CeA (right) in the 
experiment 3 including the original input, output and reconstructed 
input.  
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TABLE V 
THE MINIMUM AND MAXIMUM RANGE OF PARAMETERS (EXP 3) 

Early training (100) On-going training (3,000) 
BLA.Rab [-1, 0.99666] 
BLA.br [0.92835, 1.2641] 
BLA.Gba [-1, 1] 
BLA.bg [-4.3729, 4.7831] 
 
CeA.Rab [-1, 1] 
CeA.br [3.0499, 6.4116] 
CeA.Gba [-1, 1] 
CeA.bg [0.011917, 8.2109] 

BLA.Rab [-1, 1] 
BLA.br [0.76513, 2.4521] 
BLA.Gba [-1, 1] 
BLA.bg [-8.6574, 9.9374] 
 
CeA.Rab [-1, 1] 
CeA.br [0.81233, 9.7944] 
CeA.Gba [-1, 1] 
CeA.bg [-0.80241, 10.3686] 



the value of weights and biases is much smaller compared to 
previous results. It can thus be assumed that the activations of 
neurons are controlled in an effective range. 

In order to robustly confirm the performance, some 
examples of BLA and CeA are plotted in Figure 10. This 
includes the original input, output and reconstructed input at 
layer A, B and A2 respectively.  

Different robotic facial expressions are clearly separated 
and encoded at BLA. The output at layer B can be considered 
as the representation of primary reinforcers and it can be used 
for further associations with the cortical inputs. With 
reference to CeA, the first eight columns represent the output 
of BLA and the rightmost column represents the behavioural 
responses. It can be sent that the reinforcers are successfully 
associated with the behavioural responses. The correct 
associated rate is 121/144 and it is about 84% after 
30,000,000 times of learning cycles (iterations). The accuracy 
should further increase as the trend of the learning curve for 
CeA is still decreasing.  

Figure 11 shows a subset of the recognition weights and 
the generative weights of BLA and CeA. In this case, the 
weights closely represent the factors of inputs. Therefore, 
Figure 6 shows a clear result since it only contains positive 
weights. However, the current weights of BLA obtained in 
this experiment involve both positive and negative factors, 
and therefore it is not contributing for tracking the learning.   

VI. DISCUSSION  

Several computational models of the amygdala have been 
suggested. They usually target the conditioning behaviours of 
the amygdala, using neuron-level simulation [22] or 
topographic conditioning maps [23]. In contrast, our research 
targets the recognition of emotions from facial expressions 
via the subcortical and cortical routes using SHM, where the 
amygdala is core in the emotional learning.  

The study presents the experimental results for configuring 
the SHM for subcortical emotional learning. The main 
contribution is to model the subcortical route in which the 
amygdala receives visual information from the thalamus 
(LGN), recall primary reinforcers and associate reinforcers to 
behavioural responses. The subcortical route contains the 
characteristics of high speed and low details. Therefore, the 
internal structure of the amygdala is simple and only BLA 
and CeA, are involved. The edged feature of robotic 
expressions without any segmentation is used to emulate the 
low detail input. In addition, robots will be continuously 
exposed to new faces in a practical situation; therefore, the 
selected approach would support long-time continuous 
learning and the ability to dynamically associate stimuli with 
various responses.    

The SHM has been used as it is a type of associative 
memory using unsupervised learning. Its learning speed is not 
very fast; however, the execution time is fast. Also, it learns 
based on a simple algorithm and contains two models to assist 
mutual learning in order to learn without supervision. This is 
an important characteristic to model different autonomic 
structure in the brain. Potentially, it can avoid the network 
overtraining and is suitable for use in long-term learning 
applications. In addition, the SHM can be practically 
configured for handling both encoding and association tasks.  

Biologically, the association of some particular stimuli, 
primary reinforcers and behavioural responses can be 
considered as innate connections. All other associations 
should be formed based on learning, where an input from the 
cortex should be present. For this reason, experiments 1 and 2 
are designed to study which configuration of SHM in CeA is 
better for associating the reinforcers retrieved from BLA and 
the behavioural responses from the cortex.   

In experiments 1 and 2, both have a problem of 
overtraining. Addressing this problem, experiment 3 attempts 
to restrict the range of recognition and generative weights.  
The results show a faster, smoother and more stable learning 
behaviour and a good encoding outcome. It indicates that the 
limit of weights can control the overfitting problem. Finally, 
SHM is proved capable of encoding facial expressions 
without any detail and complicated analysis, and associating 
the encoded results (as reinforcers) with behavioural 
responses.    

Future work should include the integration of the cortical 
sections in order to demonstrate parallel processing 
behaviours. Also, it can allow the subcortical model 
responsible to awake some reactive responses which can 

Figure 11. A subset of the recognition weights (a) and the generative 
weights (b) of BLA. The gray colour represents 0 (natural), the white 
colour represents 1 (excite) and the black colour represents -1 (inhibit).  

(b) 

(a) 



assist recognition in the cortex. For example, when the 
subcortical model issues a fear response, the cortex can 
change to a particular mode that is mainly for detecting the 
source of fear or danger.   
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