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Abstract. Mirror neurons are premotor neurons that are considered to
play a role in goal-directed actions, action understanding and even social
cognition. As one of the promising research areas in psychology, cognitive
neuroscience and cognitive physiology, understanding mirror neurons in
a social cognition context, whether with neural or computational models,
is still an open issue [5]. In this paper, we mainly focus on the action un-
derstanding aspect of mirror neurons, which can be regarded as a funda-
mental function of social cooperation and social cognition. Our proposed
initial architecture is to learn a simulation of the walking pattern of a
humanoid robot and to predict where the robot is heading on the basis
of its previous walking trajectory.
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1 Introduction

Mirror neurons are a kind of premotor neurons that exist in primates (e.g. mon-
keys). They have been detected in monkey’s premotor area (F5), but the exis-
tence of mirror neurons in humans is also evident in the premotor cortex and the
inferior parietal lobule (IPL) [8]. According to the experiments done with mon-
keys, mirror neurons are involved in learning by imitation and social cognition.
Moreover, in cooperation with environment affordances, they have the ability
to indicate motor actions by activating corresponding neurons in the superior
temporal sulcus (STS), indicating the code of action [10].

One class of computational models of mirror neurons focuses on the action
imitation property, for instance, the modular action approaches by Demiris [4,3]
and Wolpert [18,9]. These models emphasize how to generate motions by decen-
tralized automatic modules of the action parts using mirror neurons. The core of
these architectures are multiple forward-inverse models, which compete for con-
trol based on the selection of likelihoods to imitate actions. Also the selection of
a controller can be regarded as action recognition to some extent.
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With the further discovery that the mirror neuron system takes part in the
recognition of what the agent is doing by both the observations from the execu-
tors the executions of own actions by the primate itself, further implementations
refer to the charateristics incorporating different network patterns to deal with
multimodal inputs, in parallel to the vision, somatosensory or auditory stimuli
in the human brain, so that the network discharges as a goal-directed action
layer. This idea was realized by an association network based on the Helmholtz
machine, in which goal-directed codes were associated with vision and language
representations, as well as the output of motor actions [7,17]. The learned asso-
ciation enabled neurons of the hidden layer to behave like mirror neurons.

Another network model called RNNPB advocated by Tani et al. [15] can
generate and recognize temporal actions by the self-organizing property of an
additional layer, called parametric biases units (PB Units). This model deals with
temporal inputs with the PB units acting as additional biases to compensate the
back-propagation error (Figure 1(a)). Three running modes (learning, observing
and action generation) functionally simulate different imitation stages of mirror
neurons in the human brain. With the ability of recognizing and generating the
desired action from previous training, the PB units behave in a similar manner
as mirror neurons in human brain [2].

Recent research [16,11] further suggests that it is not necessary to split how
and what. In fact, as an integrated process, all mirror neurons receive information
from visual inputs and represent both how the agent does an action and what
the agent is doing, supporting that these two levels can be switched flexibly.

To integrate the two levels of understanding of mirror neurons and their re-
lated processes, the target of our project is to establish a computational model
that enables a robot to recognize and understand the action sequence of another
robot without communication, and then to act by mimicking or imitation [1].
Due to PB units’ property of recognizing temporal input sequences, PB units
should be beneficial to robot action understanding. With a prototype architec-
ture of PB units, we will focus on robot trajectory prediction and recognition
in the following sections, and test their ability to understand what the robot is
doing. In the remainder of this paper, we will present a new combined version
of recurrent network with PB units and an experiment for predicting and recog-
nizing robot trajectories.

2 SRNPB for Robot Trajectory Recognition

The Simple Recurrent Network with Parametric Biases (SRNPB) is based on an
Elman network [6] with additional PB units. In a SRN, the hidden layer is fully
connected with its previous state, so that it is not only updated with the external
input but also with activation from the previous forward propagation. With the
recurrent input from the hidden layer, rather than from the output layer as in
the RNNPB [15], the short term memory processed in the Elman Network is
attractive for sequential processing, because the error which is back-propagated
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in the recurrent process is smaller. Furthermore, the recurrent connections in the
hidden layer can be seen as related to the horizontal connections in the human
cortex. By directly delivering the past history of the hidden layer instead of
relying only on the output memory as in the RNNPB, the SRNPB should learn
the temporal data with less effort from the network dynamic uncertainty and the
learning capability is expected to improve. A layer of parametric bias units is also
connected to the hidden layer. Figure 1(b) shows the architecture of the SRNPB.
It is based on an Elman Network [6], with an additional layer connecting to the
hidden layer as the parametric biases, which serve as adaptable biases learned
by the back-propagation through time (BPTT) algorithm [13]. There exist three
running modes in SRNPB. In the learning mode, all connection weights and PB
values are updated by BPTT. In the recognition mode, only the PB units are
updated. The PB value and manually set in generation mode. The determined
synaptic weights are common for all learning patterns, but the parametric biases
are the sigmoid function values (Equation 2) of the interval values of the PB
units. The outputs of the PB units also act as a compensation for the network
output error.

Learning mode: The learning is performed supervised and off-line; when pro-
viding the training stimulus (positions) for each pattern, the weights are updated
with BPTT from layer to layer. Similarly, the internal values of the PB units
are also updated. In the updating of PB units, we refer to one entire learning
cycle (all sequences) as an epoch e. In each epoch, the kth PB unit u updates
its internal value based on the summation of the back-propagation error from
the whole sequence (Equation 1 and 2).

uPBk,e+1 = uPBk,e + ηl

T∑
t=1

δPBk,t (1)

pk,e =
1

1 + eu
PB
k,e

(2)

δPBk,t represents the back-propagation error of the PB unit uk at time-step t, and
ηl is the learning rate of the PB unit, pk,e is the output value of parametric units
which are transfering into the hidden layer via full connectivity. T represents the
length of the whole training sequence, so the update value of the internal value is
the summation of the error based on the whole sequence multiplied by a specific
updating rate.

Action recognition mode: This mode is responsible for the recognition by
updating the PB units according to the past observation. The information flow
is mostly the same as in the learning mode, except that the synaptic weights are
not updated. The generated error between target and prediction is only back-
propagated and updated into the PB units. If a trained sequence is presented
to the network, the activation of the PB units will converge to the values that
were previously shown in the learning mode.

The internal values of PB unit are updated by:
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uPBk,t+1 = uPBk,t + ηr

t∑
step=t−l

δPBk,step (3)

where ηr is the updating rate. The internal values of the PB units are integrated
with a specific time length l. The reason of doing a summation is that we expect it
can smooth the local fluctuations of the error to decrease its effect and maintain
the PB unit at a stable value.

Action generation mode: After learning and after the synaptic weights are
determined, the SRNPB can act in a closed-loop, in which the output prediction
can be applied as the input for the next time step. The network can automatically
generate a trajectory by externally setting the PB unit, representing action codes
(what to do). Although action generation has not been tested in the experiment,
we regard it as an important feature to give commands for robot behavior in
future experiments.

(a) Network Architecture
of RNNPB

(b) Network Architecture of SRNPB

Fig. 1. Comparison of architectures of RNNPB and SRNPB

3 Experimental Results

As a foundation of robot action understanding, the recognition and prediction
of robot walking trajectories are the objectives of the following experiments.
For effectiveness, we use the Webots simulator [12] to collect the trajectory
data. Our NAO robot is controlled in the Webots simulator to walk along pre-
defined trajectories. From the supervisor function within Webots, three kinds of
trajectories, that is a straight line, a sine curve and a half circle were recorded
using x and y coordinates. Different combinations of these curves with different
parameters make the robot walk in various trajectories. As an initial controlled
experiment with known trajectories, we select three trajectories: 1. sine curve:
y = 0.5sin( 2π

3 ∗ x); 2. a half circle curve with 0.57m radius; 3. straight line.
The reason why we use these kinds of trajectories is that they can be com-

bined into different kinds of trajectories, e.g. into a walking trajectory when
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(a) Prediction of sin curve (b) Prediction of circle curve

(c) Prediction of straight line

Fig. 2. Prediction of three curves: Prediction experiments were done for three types of
trained sequences. Solid lines represent the true positions and the dashed line represent
the predictions. We can see the predicted sequence and the target sequence were quite
close in the above figures.

doing obstacle avoidance, by changing their parameters, i.e. frequency and am-
plitude in sine curve and radius in half circle. We train the network with three
types of input sequences. The expectation is that the generalization ability of PB
units can recognize similar trajectories with different parameters. As denoted in
the remarks in Figure 1(b), for all simulations we use the same network: 2 input
nodes, 10 hidden nodes, 10 context nodes, 2 output nodes. Additionally, we use
3 PB nodes in the experiment. The empirically determined network parameters
are: l = 30, ηl = 0.01, ηr = 0.5, and the learning rate of connection weights in
back-propagation is defined by ηBP = 0.01.

After training, we input the walking records from the above three trajectories
respectively and attempt to predict position one step ahead given the previous
inputs. As shown in Figure 2, after several time-steps, the network can basically
predict the learned trajectories. Furthermore, we inspect the values in the PB
units while we continuously feed three types of input sequences into it. As shown
in Figure 3 internal values in the PB units can reflect different input patterns of
the whole learning sequence.
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(a) Output in PB Unit 1 (b) Output of PB Unit 2

(c) Output of PB Unit 3

Fig. 3. Three sequences were fed into the network to demonstrate the recognition in
PB units.

Secondly, we attempt to input another three different types of similar pat-
terns, but with different parameters in order to test the generalization ability
for other untrained trajectories. Figure 4 shows the prediction results of the
network. Although some errors occur, the generalization of the network still suc-
cessfully predicts the trend of the curves: 1. sine curve: y = sin(π2 ∗ x); 2. half
circle curve with 0.3m radius; 3. straight line. The Table 1 below shows the RMS
error between the true value and prediction.

RMSE sine line circle sine2 line2 circle2

x coordinate 0.0714 0.0052 0.0077 0.2655 0.0187 0.0427

y coordinate 0.0829 0.0066 0.0108 0.1884 0.0094 0.0744

Table 1. Root Mean Square Error of two curve sets predictions
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(a) Prediction of sin curve 2 (b) Prediction of circle curve 2

(c) Prediction of straight line 2

Fig. 4. Prediction of three untrained curves: The errors between the predicted curves
and untrained curves were larger than those in Fig. 2, but the trend of the similar
curves can also be predicted.

4 Conclusion and Future Works

In this paper, the Simple Recurrent Network with Parametric Biases (SRNPB)
is developed for trajectory prediction simulation. The SRNPB is an Elman net-
work with parametric biases, which can predict the robot trajectory as temporal
sequence and recognize the trajectory type. After training, the network not only
shows the prediction and recognition ability of the robot walking trajectory, but
also the generalization ability during prediction of unknown trajectories records.
The internal values in PB units can be interpreted as the different discharging
rate of mirror neurons indicating the action codes. To conclude, the temporal
property is an important feature for action understanding and imitation, there-
fore, a recurrent network could be a basic prototype building block for modeling
mirror neurons to understand what the action sequence means [14].

In future research, the generalization ability will be further used as infor-
mation for how to generate similar actions. Also the future architecture may
incorporate multi-modal inputs as a representation of environment affordances,
so that the network will integrate multiple temporal sequences from both audi-
tory and vision inputs.
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