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Abstract
     

In this paper we describe new results of 
statistical and neural data mining of audiology 
patient records, with the ultimate aim of 
looking for factors influencing which patients 
would most benefit from being fitted with a 
hearing aid. We describe how a combination of 
neural and statistical techniques can usefully 
subdivide a set of patients into clusters, based 
on their hearing thresholds at six different 
frequencies, and then label the clusters with 
meaningful text labels. In our first experiment 
we cluster the patients based on similarities 
between their audiograms using k-means 
clustering, resulting in two main clusters. We 
then use the chi-squared test to label each 
cluster with the keywords selected from the 
text comment, diagnosis and hearing aid type 
associated with each patient which are most 
typical (and atypical) of each cluster. In our 
second experiment, we again cluster the 
patients based on similarities between their 
audiograms, but this time using a self-
organizing map (SOM). Here the locations in 
the resulting map, corresponding to individual 
patients, are labeled with the type of hearing 
aid selected for each patient. We demonstrate 
that this automatic textual labeling addresses 
well the heterogeneous character of medical 
audiology records, since they consist of 
numeric, structured and free text data.  
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1.  Introduction 

In medicine a substantial amount of new data is created 

constantly and the amount of data produced is much 

higher than the amount of knowledge produced. 

Therefore, large increases in the production of data 

require a quick transfer to knowledge. To achieve this, 

clustering examines groups of data items that are 

similar and dissimilar. It identifies areas of high sample 

density (data clusters) and shows the centers of these 

clusters (Principe, Euliano, & Lefebvre, 2000). 

Clustering techniques include statistical and artificial 

neural network approaches.  

In unsupervised clustering unlabelled data is collected 
without any supervised knowledge (Wermter, & Sun, 
2000). In this paper, we will present an approach of 
integrating unsupervised clustering of patient audiology 
data with the identification of textual keywords 
associated with each cluster, in particular those related 
to text comment, diagnosis and hearing aid type. 
Previous authors have made use of the TF.IDF measure, 
widely used in search engine technology for automatic 
indexing, for finding the words most associated with 
clusters. For instance, Maqbool and Babri (2006) used 
the TF.IDF (Term Frequency Inverse Document 
Frequency) measure to identify the words extracted 
from comments in computer code which best 
characterized clusters of code found by hierarchical 
agglomerative clustering. Similarly, Ke et al. (2005) 
selected words from email messages using TF.IDF to 
characterise clusters of emails found by k-means 
clustering. The TF.IDF weighting W for a particular 
label i (such as a word) with respect to a particular 
cluster j is given by the formula 

 

 

 

where ijTF is the number of times word i is seen in 
cluster j, N is the total number of clusters, and 









=

i

ijij
NDoc

N
TFW 2log.



Clustering Audiology Data 
 

 

iNDoc is the number of clusters which contain word i. 
In this paper, we use an alternative technique based on 
the chi-squared measure for finding the vocabulary 
associated with clusters, which is better suited for 
labeling small numbers of clusters (Manning, 
Raghavan, & Schütze, 2009).   

2.  Audiology Data Repository 

For this study, we obtained audiology data from the 
James Cook University Hospital, Middlesbrough, 
England. The audiology database contains 180,000 
individual records covering 23,000 different patients. It 
contains heterogeneous records which consist of 

• Audiograms, which are the graphs of hearing 

ability at different frequencies in each ear. 

Two graphs (AC and BC) are obtained for 

each ear, where AC stands for air conduction 

(using sounds from a headphone on the ear, 

measuring overall hearing ability) and BC 

stands for bone conduction (the sound is given 

to the mastoid bone behind the ear, measuring 

the hearing ability of the inner ear - cochlea 

and auditory nerve). An example of an 

audiogram for one ear would be 

|65|65|35|40|45|55|0|10|25|40|50|. The first six 

values are AC thresholds (the faintest sound 

that the patient can hear in decibels) at 250, 

500, 1000, 2000, 4000 and 8000 Hz, and the 

following five values are the BC thresholds for 

the same set of frequencies except 8000 Hz. 

• Structured data, such as gender, date of birth, 

and hearing aid type, as in a typical relational 

database, e.g. |F|, |25-07-1991|, |ITENN|. 

• Free text data / text comments, which are 

specific observations made about each patient 

e.g.  |AT REV LT ITENL TO ITENN AS 

INSUFFICIENT GAIN-SOUNDED MUCH 

BETTER!|, which is shorthand for “At review, 

the left ITENL hearing aid was replaced by an 

ITENN hearing aid, as the old one had 

insufficient gain. The new one sounded much 

better.” 

3.  K-Means Clustering 

There are several potentially suitable clustering 

algorithms for audiology data, such as k-means 

clustering, hierarchical clustering, principal component 

analysis (PCA), or Self Organising Maps (SOM). We 

first consider k-means clustering, which is a non-

probabilistic vector clustering method that uses iterative 

relocation to minimize within cluster variance. Here k is 

the number of cluster centroids. The k-means clustering 

algorithm can be described as follows (Bramer, 2007): 

• Selection of the value of k  

• Selection of any k objects and using them as 

the initial set of k centroids 

• Assignment of each of the objects to the 

cluster with the closest to the centroid   

• Recalculation of the centroids of the k clusters 

• Repeating  steps 3 and 4 until the centroids no 

longer move 

 

3.1  Clustering of Audiograms by K-means 

We performed clustering of hearing aid patient 
audiograms (right ear, AC, 250 to 8000 Hz) by using 
the k-means algorithm on 10,437, 1,316 and 13,136 
records with text comments, diagnosis and hearing aid 
type respectively. We used all the records available in 
the database for each field under study for the 
experiments, keeping the criterion that none of the field 
values should be empty.  

Table 1. Average Silhouette Values for clusters 

Clusters 
Text 

comment 
Diagnosis 

Hearing aid 
type 

2 0.4005 0.5264 0.3934 

3 0.3155 0.3679 0.2708 

4 0.2760 0.3478 0.2618 

5 0.2730 0.2749 0.2455 

6 0.2524 0.2755 0.2381 

22 0.1843 0.1793 0.1676 

 

 

 

 

 

 

 

 

 

 

 

 

 

To determine the correct number of clusters of 
audiograms we used average silhouette values. The 
silhouette plot displays a measure of closeness of points 
of a cluster with neighbouring clusters (Rao, & Kumar, 
2009). The value ranges from +1 (indicating that points 
are very distant from neighbouring clusters) to -1 
(indicating that points are assigned to the wrong cluster) 
while 0 indicates that points are not distinctly in one 
cluster or another (Rousseeuw, 1987; Matlab, 2010).  

We calculated the average silhouette values for 2, 3, 4, 
5, 6, and 22 clusters. The value of 22 was chosen by a 
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Figure 1. Silhouette plot with 2 clusters for hearing aid type of 

right ear air conduction frequencies. 
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rule of thumb which estimates the optimal number as 
clusters as the square root of half the number of records. 
The results are given in Table 1. Greater average 
silhouette values indicate that the clusters are better 
separated and average silhouette values do not always 
decrease with the number of clusters (Rousseeuw, 
1987; Matlab, 2010). In our case, the optimal number of 
clusters based on right ear air conduction frequencies 
was 2 for each of three sets of records, as shown in 
Table 1. Figure 1 shows the silhouette plot obtained for 
2 clusters for the set of records where hearing aid type 
was given. The other sets of records were those in 
which the text comment field was filled, and those in 
which the diagnosis field was filled in.   

Table 2. Class Exemplars of each cluster of right ear air 
conduction frequencies for text comment 

 ac250 ac500 ac1K ac2K ac4K ac8K 

C1 73.66 73.00 74.99 80.48 91.08 108.21 

C2 35.17 33.56 35.87 43.26 55.90 66.50 

 

Table 3. Class Exemplars of each cluster of right ear air 
conduction frequencies for diagnosis 

 ac250 ac500 ac1K ac2K ac4K ac8K 

C1 65.11 66.40 69.31 73.69 81.89 91.02 

C2 21.88 18.39 17.83 20.87 34.85 42.94 

 

Table 4. Class Exemplars of each cluster of right ear air 
conduction frequencies for hearing aid type 

 ac250 ac500 ac1K ac2K ac4K ac8K 

C1 68.78 68.12 70.35 76.56 87.86 106.88 

C2 36.98 35.77 39.10 48.44 61.20 72.13 

 

We calculated the class exemplar (cluster centroid) of 
each cluster, being the mean of the audiograms 
contained within each cluster, as shown in Tables 2 to 
4.  In Tables 2 and 4, the class exemplars show that 
cluster 1 consists of patients with severe hearing loss, 
and cluster 2 consists of patients with a mild to 
moderate hearing loss. In Table 3, cluster 1 corresponds 
to moderate to severe hearing loss and cluster 2 
corresponds to normal or near-normal hearing. This is 
because in the majority of cases where a diagnosis was 
given, the diagnosis was tinnitus, which can occur even 
when there is little or no hearing loss.  

3.2 Automatic Labeling of Clusters 

Labeling clusters with the chi-squared technique is a 
reliable method (Manning, Raghavan, & Schütze, 
2009). But, automatic cluster labeling has not been 
given much importance in the field of data mining 
(Tzerpos, 2001). Automatically labeling clusters gives 
the advantages of time reduction, better understanding 

and defining the purpose of each cluster (Maqbool, & 
Babri, 2006). After clustering the right ear air 
conduction audiograms, we used the chi-squared test to 
find which of the text keywords in the text comment, 
diagnosis and hearing aid type fields of the database 
were most and least typical of each cluster.  

The Chi-squared test is a statistical non-parametric test 
which reveals associations between pairs of variables 
(fields of tables). It allows a comparison of frequencies 
found experimentally with those based on a theoretical 
model (Lucy, 2005; Oakes, & Farrow, 2007). It is 
calculated by determining the difference between a set 
of observed and expected frequencies within a 
population, and is given by the formula (Altman, 1991): 

 

 

 

where r is the number of unique terms in a particular 
field of the patient records (corresponding to rows in 
Table 6), and c is the number of clusters in the data 
found by the average silhouette values (Matlab, 2010), 
corresponding to columns in Table 6. The Chi-squared 
test is a simple test but is widely used in the medical 
domain. For example, it was successfully used in 
pharmacology by Oakes et al. (2001) to classify texts 
according to subtopics. We then produced a table for 
each field showing how often each of these words was 
associated with each cluster. 

 Table 5. Observed and Expected frequencies for right 
ear diagnosis 

Diagnosis Cluster 1 Cluster 2 Row Total 

TINNITUS 

171 

(241.93) 
[5030.54] 

954 

(883.07) 

[5030.54] 

1125 

OTHERS 

112 

(41.07) 
[5030.54] 

79 

(149.93) 
[5030.54] 

191 

Column Total 283 1033 1316 

 

Table 5 is the table produced for diagnoses occurring in 
the diagnosis field. Observed frequencies appear at the 
top of each cell, Expected frequencies are in ( ), and  
(Observed frequency – Expected frequency)

2
  values 

are shown in [ ]. For example, if 171 of the diagnosis 
fields of the records of patients in cluster 1 contained 
the term ‘TINNITUS’, we would record a value of 171 
for that term being associated with that cluster. These 
values were the “observed” values, denoted ijO  in the 
formula above. The corresponding “expected” values 

ijE were found by the formula: 

Row total x Column total / Grand Total 

The row total for ‘TINNITUS’ diagnosis is the total 
number of times ‘TINNITUS’ hearing aids were 
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prescribed to patients in two clusters = 171 + 954  = 
1125. The column total for cluster 1 is the total number 
of patients assigned to cluster 1 over all diagnosis types 
= 283. The grand total is the total number of patient 
records in the study = 1316. Thus the “expected” 
number of ‘TINNITUS’ diagnosis in cluster 1 was 1125 
* 283 / 1316 = 241.93. The significance of this is that 
the observed value is less than the expected value, 
suggesting that there is a negative degree of association 
between the ‘TINNITUS’ diagnosis and the severe 
hearing loss cluster. The remainder of the test is then 
performed to discover if this association is statistically 
significant.  

Next the ijO  and ijE  values were used to calculate an 
overall chi-squared value for the relationship between 
keywords in the diagnosis field and cluster, using the 
formula above in Table 6. All the above steps were 
performed separately for the words in the text 
comments, diagnosis and hearing aid type fields, as 
shown in Table 6.  From this data we could show, with 
99.9% confidence, that these keywords were not 
randomly distributed, and that some keywords 
definitely are more associated with some clusters. 

Table 6. Overall χ2 

Fields Overall 
χ2 

Degrees 
of 
freedom 
(df) 

P 

Comments text 4243.87 668 P < 0.001 

Diagnosis 182.52 1 P < 0.001 

Hearing aid type 5710.58 38 P < 0.001 

 

Having shown that overall, some keywords are more 
associated with some clusters, the next step was to 
discover exactly which individual keywords were most 
(and least) associated with each cluster. To do this, we 
considered the individual contributions of each word in 
each cluster to the overall chi-squared value for each 
text field, found by the formula 

 

 

 

for each word in each cluster.  

As the chi-squared test is unreliable for expected values 
of less than 5, for the diagnosis fields all words with 
such low expected values were grouped into a single 
class called ‘OTHERS’.  

Since we were in effect performing many individual 
statistical tests, it was necessary to use the Bonferroni 
correction (Altman, 1991) to control the rate of Type I 
errors where a word spuriously appears to be typical of 
a cluster. Since we wished to be 95% confident that a 
particular keyword was typical of a particular cluster, 
the corresponding significance level of 0.05 had to be 
divided by the number of simultaneous tests, i.e. the 

number of unique words times the number of clusters. 
In the case of words in the diagnosis fields, this gave a 
corrected significance level of 0.05 / (2 * 2) = 0.0125. 
Using West’s chi-squared calculator (Chi-square 
calculator, 2010), for one degree of freedom we 
obtained a corresponding chi-squared threshold of 
6.239. Thus we took all words in each cluster with 
individual contributions to the overall chi-squared value 
of over 6.239 to be significant at the 95% confidence 
level. The corresponding chi-squared thresholds were 
11.65 for hearing aid type and 17 for the text 
comments.   

Words associated with clusters with 95% confidence 
were deemed typical of those clusters if O > E, 
otherwise they were deemed atypical of those clusters.  
The words most typical and atypical of each cluster are 
shown in Tables 7 to 9.  These automatically discovered 
words provided a suitable set of both positive and 
negative labels for each of the clusters. The labels seem 
intuitively reasonable. For example, in Table 7, it 
appears that the patients in cluster 2, the mild hearing 
loss group, were more concerned about tinnitus (ringing 
in the ears) than hearing loss. Thus the words tinnitus 
and masker (a machine for producing white noise to 
drown out tinnitus) were typical of this cluster and also 
are atypical of cluster 1, the severe hearing loss group. 
The hearing aid types associated with cluster 1 were 
those with high gain, while less powerful hearing aid 
types were negatively associated with this cluster. 
Similarly, in (Table 7) cluster 1, the atypical words 
“canc” (cancelled) and “dna” (did not attend) show that 
patients with severe hearing loss were less likely to 
cancel (or simply fail to attend) their appointments. 
‘Tinnitus’ appears as ‘tinnitu’ and ‘Suitable’ appears as 
‘suitabl’ in  Table 7, since all the text was passed 
through Porter’s (1980) stemmer for the removal of 
grammatical endings. 

Table 7. Clusters for the records with text fields with 
positive and negative keywords. 

 Positive keywords Negative keywords 

C1 audio, mould, be34, 
be52, be36, unmask, 
be54, sil, ref, tsa, gp, 
ca, OTHERS, rt, 
suitabl, be201 

masker, rev, tinnitu, 
appt, fta, help, review, 
aid, further, nfa, 
progress, 2000, ok, 
canc, counsel, cope, 
2001, dna  

C2 masker, rev, tinnitu, 
appt, fta, help, 
review, aid, further, 
nfa 

audio, mould, be34, 
be52, be36, unmask, 
be54, sil, ref 

 

Table 8. Clusters for the records with diagnosis fields 
with positive and negative keywords. 

 Positive keywords Negative keywords 

C1 OTHERS TINNITUS  

C2 None OTHERS 
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Table 9. Clusters for the records with hearing aid fields 
with positive and negative keywords. 

 Positive keywords Negative keywords 

C1 BE34, BE52, BE36, 
BE54, ITEPN, 
BE201, PPCL, 
ITENN, PPC2, BE53, 
BE38, BE51, 
ITEPH2, BW83, 
BE35, PPC2D, 
PFPPCL, OTHERS, 
BE37  

 ITEHN, ITEHH, BE19, 
ITENH, BE18, ITENL 

C2 ITEHN, ITEHH, 
BE19, ITENH, BE18 

 

BE34, BE52, BE36, 
BE54, ITEPN, BE201, 
PPCL, ITENN, PPC2, 
BE53, BE38, BE51, 
ITEPH2, BW83, BE35, 
PPC2D, PFPPCL, 
OTHERS 

4.  Clustering of Audiograms by SOM 

SOM (Self Organizing Map, also known as a Kohonen 
feature map) is an alternative multivariate neural 
technique which can examine interactions between a 
number of variables. SOM is an unsupervised learning 
process which clusters high dimensional data and gives 
output in groups or clusters. SOMs visualize or project 
high-dimensional data to low dimensions. They are 
used in pattern recognition, biological modeling, data 
compression and data mining. For example, Zehraoui 
and Bennani (2004) presented a SOM for sequence 
clustering and classification. Oakes et al. (2005) used 
SOM to cluster and classify unstructured and structured 
portions of audiology records.  

 

 

 

 

 

  

 

 

 

 

 

Figure 2 shows a typical SOM architecture, in which all 
neurons are arranged on a fixed grid of the output layer 
and contain a weight vector (not shown in the figure) 
similar to the input dimensions. After training, each 
neuron represents different types of input data. 
Topological order is maintained in SOMs, this means 
the neurons that have similar weight in the input 

dimension are also close to each other in the SOM 
output map. 

We used SOM for the clustering of our audiology 
records because of their strength in unsupervised 
learning and easy usage. In each case the input vectors, 
the basis of the clustering, were the patient audiograms. 
It should be noted that the values of quantization error 
and topographic error decrease as map size is increased. 
In Figure 3, the clustered labels of hearing aid type are 
shown and they can be seen to form clusters, for 
example, BE34 on the bottom left, BE19 on the top left, 
and PPCL in the bottom right corner.  

5.  Comparison between K-Means and SOM 

SOM and k-means are complimentary techniques in 
that SOM gives a visual way of looking at individual 
patients while k-means finds the prototypical members 
of clusters of similar patients such as those with similar 
audiograms. In SOM we labeled each patient record by 
a single word such as hearing aid type, while the 
clusters produced by k-means are labeled using the chi-
squared technique with number of keywords. However, 
exactly the same techniques could be used in both.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The findings of k-means with automatic cluster labeling 
and SOM confirmed each other.  Looking at the 
outcomes of SOM and k-means in Table 9 and Figure 3, 
we note that the hearing aid types BE34 and ITENN are 
both positive keywords of cluster 1 by k-means and 
they are also found close together in the SOM output. 
This is reasonable, since both these hearing aids have 
similar acoustic gain. Similarly, the keywords ITEHN, 
BE19, BE18 can be seen both in k-means cluster 2 and 
also in adjacent positions in the SOM. 

Figure 2. Kohonen SOM topology (Roussinov, & Chen, 1998) 

Figure 3. A snapshot of clustering of right ear hearing aids 

from right ear air conduction frequencies. 
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6.  Conclusion 

We have clustered audiology patient records and 
assigned text labels automatically to help in the 
interpretation of clusters. These text labels will be 
helpful in the construction of an audiology decision 
support system for the selection of hearing aids. In one 
experiment we clustered the audiograms by k-means 
clustering, and then used the chi-squared test to assign 
labels taken from the text fields in the database. In our 
second experiment, we used SOMs to cluster 
audiograms individually labeled with the type of 
hearing aid selected for each patient.  In the 
experiments reported here, we have used AC thresholds 
alone as the basis for clustering. In future we will use a 
combination of both AC and BC, since the difference 
between the two yields information about the cause of 
deafness. We will also produce automatic labels for 
clusters of audiograms produced by PCA and 
hierarchical clustering, using the method of Maqbool 
and Babri (Maqbool, & Babri, 2006). Although our data 
set consists only of audiology records, these are 
somewhat representative of medical records in general, 
as they consist of numeric, structured text and 
unstructured textual fields. 
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