
Cognitive Systems Research 3 (2002) 255–270
www.elsevier.com/ locate/cogsys

H ybrid preference machines based on inspiration from
neuroscience

Action editor: Franz Kurfess

*Stefan Wermter , Christo Panchev
University of Sunderland, Informatics Centre, SCET, St. Peter’ s Way, Sunderland SR6 0DD, UK

Received 15 December 2000; accepted 17 May 2001

Abstract

In the past, a variety of computational problems have been tackled with different connectionist network approaches.
However, very little research has been done on a framework which connects neuroscience-inspired models with
connectionist models and higher level symbolic processing. In this paper, we outline a preference machine framework which
focuses on a hybrid integration of various neural and symbolic techniques in order to address how we may process higher
level concepts based on concepts from neuroscience. It is a first hybrid framework which allows a link between spiking
neural networks, connectionist preference machines and symbolic finite state machines. Furthermore, we present an example
experiment on interpreting a neuroscience-inspired network by using preferences which may be connected to connectionist
or symbolic interpretations.
   2002 Published by Elsevier Science B.V.
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1 . Introduction they address are still restricted. In many ways there
is a challenging distance between lower cognitive

Recently, there has been some preliminary work neuroscience and higher structural concepts. How-
integrating principles from neuroscience into compu- ever, long-term progress needs cognitive science and
tational models e.g. (Maass & Bishop, 1999; Thorpe, neuroscience to be taken more seriously by computer
Fize, & Marlot, 1996; Wermter, Austin, & Willshaw, scientists for making progress in high-level processes
1999b; Taylor, 1999; Denham & Denham, 1999). like language understanding.
Although neuroscience principles have helped to Our approach attempts to go beyond the existing
develop new computational models, the problems connectionist approaches that are normally utilized

(Rumelhart, Hinton, & Williams, 1986; Feldman &
Ballard, 1982). Since 2000, the computational neuro-
science network EmerNet has explored emerging*Tel.: 144-191-515-3279; fax:144-191-515-3553.
computational neural network architectures based onE-mail address: stefan.wermter@sunderland.ac.uk(S. Werm-

ter). neuroscience (Wermter, Austin, & Wilshaw, 1999b;

1389-0417/02/$ – see front matter   2002 Published by Elsevier Science B.V.
PI I : S1389-0417( 01 )00061-4

mailto:stefan.wermter@sunderland.ac.uk


256 S. Wermter, C. Panchev / Cognitive Systems Research 3 (2002) 255–270

Wermter, Austin, & Willshaw, 2001) (http: / /ww- framework. It can be seen as a computational
w.his.sunderland.ac.uk/emernet). This paper is based machine which has possible links to higher level
on this context and attempts to outline a first hybrid symbolic machines or lower level neuroscience-in-
framework based on neuroscience, in particular for spired concepts. For instance, a connectionist prefer-
language processing. Since the processing of sequen- ence machine (Elman, Bates, & Johnson, 1996) can
tial patterns and preferences are an inherent property be interpreted symbolically as a finite state machine.
of language, we will develop this framework around It has been shown (Wermter, 2000a), that symbolic
different forms of sequential machines at symbolic, machines can be extracted from SRNs using our
connectionist and neuroscience levels. Our approach preference framework. Each state and each output
is inspired from the processing in the brain, inte- within this preference Moore machine was mapped
grates sequential machines at diverse levels, both towards the references of ann-dimensional space.
vertically and horizontally, and exploits recurrent That way, a symbolic machine represented a higher,
and pulsed neural networks for more neuron-like more abstract representation of the more detailed
processing. connectionist preference Moore machine. On the

Our overall preference machine framework (Fig. other hand, it has been demonstrated (Shavlik, 1994;
1) can be summarized as follows. At the highest Towell & Shavlik, 1994; Omlin & Giles, 1996b) that
level, there are symbolic structures, e.g. based on symbolic automata can be transformed for inducing
symbolic machines like Moore machines (Hopcroft connectionist sequential machines.
& Ullman, 1979) and most such representations lack The focus of this new approach here is to explore
graded preferences. At the middle level, connect- hybrid neural architectures, including techniques
ionist preference machines have graded preferences from cognitive neuroscience and neural computation
but lack detailed temporal processing (Wermter, in order to produce computational neural models of
2000b). At the neuroscience-inspired level, dynamic language processes and complex cognitive opera-
processing and preferences exist and provide the tions. These models can also create general notions
potential for temporal processing (Panchev & Werm- on language and the brain, and identify the in-
ter, 2000). formation requirements for extended models. So, the

A Preference Machine is a core element of this scope of this paper is not about biological neural
networks or neurobiological modeling. Our goal is
rather to extend the scope of hybrid approaches from
symbolic machines over connectionist machines
towards neuroscience-inspired machines.

A substantial part of the information being pro-
cessed in artificial and biological neural networks is
encoded in a distributed manner and is transferred, or
sometimes temporally stored, as pulsed signals be-
tween neurons. Neurons fire within a given time
window, indicating activity with the density or with
the particular temporal location of the spikes. Read-
ing such information from real systems or manipulat-
ing it in artificial systems is a complex task that
addresses many processing and representational
problems. In previous work we have introduced
preference-based processing (Wermter, 1999, 2000b)
and an interpretation of firing rate and pulse coding
schemes (Panchev & Wermter, 2000). Here we
would like to extend this work substantially towards
more complex neural network representations ofFig. 1. General framework of connecting neuroscience-inspired,

connectionist and symbolic computation. simple cognitive events.

http://www.his.sunderland.ac.uk/emernet
http://www.his.sunderland.ac.uk/emernet
http://www.his.sunderland.ac.uk/emernet
http://www.his.sunderland.ac.uk/emernet
http://www.his.sunderland.ac.uk/emernet
http://www.his.sunderland.ac.uk/emernet
http://www.his.sunderland.ac.uk/emernet


S. Wermter, C. Panchev / Cognitive Systems Research 3 (2002) 255–270 257

2 . Preference machines instance, the time-to-first spike coding is based on
the relative time between a neuron’s stimulus and its

An important aspect of our work is that we want response. Furthermore, the synchrony coding is
to ground incremental left-to-right processing of based on the synchrony of neurons which fire in a
language in constraints which are known from limited time window (Fig. 2). There is evidence that
cognitive and biological neuroscience. A very basic these various codes exist in the brain in parallel
form of computation can be characterized by finite- (Abott & Sejnowski, 1999; Maass & Bishop, 1999)
state machines (Hopcroft & Ullman, 1979). There- and this motivates our representation of combined
fore, we will focus on connecting symbolic struc- encoding schemes as preferences.
tures, connectionist and neuroscience-inspired neural
networks by using concepts based on finite-state Definition 1. (Complex preference, briefly c-pre-
machines. These concepts are focused around prefer- ference) A complex preference of levell is repre-

l3mence machines which are introduced in this section. sented by anl 3m-dimensional matrixa [ [0,1] .
Basically a synchronous sequential preference ma-
chine transforms sequential input preferences to The special case of a c-preference of level one is
sequential output preferences. These machine prefer- calledsimple preference. The level of a c-preference
ences can be used to integrate symbolic and neural indicates the number of simple preferences repre-
knowledge (Wermter, 2000b). In contrast to other sented in it. In (Panchev and Wermter, 2000), we
research work in the area of finite automata and showed that information represented in mean-firing-
connectionist networks (Manolios & Fanelli, 1994; rate and temporal neural encoding schemes can be
Omlin & Giles, 1994; Omlin & Giles, 1996a), we do interpreted as c-preferences where the simple prefer-
not only model an acceptor which learns to accept a ence at each level represents a given internal state of
correct input sequence but we are interested in the code. Furthermore, we showed that multiple
building robust learning preference machines which encoding schemes can be integrated and can be
can produce output. simultaneously processed in a c-preference where

We start with a definition of preferences. It is a each level (or several levels) represent a single
concept consisting of features which are present to scheme. In the following sections, we will build on
various degrees. In the past, a feature has often been this previous work to interpret complex neural
associated with mean firing rate of a neuron representations as c-preferences ofm-dimensional

m(McClelland & Rumelhart, 1986). However, there analog vectors in [0,1] or preference Moore ma-
are several other encoding schemes for neural activi- chines using c-preferences.
ty which are seen as complementary to the mean
firing rate coding (Maass & Bishop, 1999). For Definition 2. (Next corner reference) The next

Fig. 2. Examples of temporal neural codes (after Panchev & Wermter, 2000): (A) Time-to-first-spike coding. The neuron in the middle
responds faster to the stimulus and therefore indicates the strongest stimulation. The bottom neuron has the weakest response. (B)
Synchrony coding. The two neural assemblies (one of the top three neurons and one of the bottom three neurons) can represent two different
object /events. (C) Phase coding. The three neurons respond with the phase of the spikes with respect to the periodic background oscillation.
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l3mcorner referencer(a)[ h0,1j of the c-preference
l3ma [ [0,1] is determined fori [ h1, . . . ,lj and j [

h1, . . . ,mj as:

0 if a , 0.5ij
r (a)5Hij 1 if a $ 0.5ij

The introduction of the next corner reference
allows us to associate each c-preference with a

l3mparticular corner of the [0,1] hypercube, i.e. a
discrete symbolic representation.

Definition 3. (Preference value of a c-preference)
l3mA preference value of a c-preferencea [ [0,1]

Fig. 3. Preference valuesz of two-dimensional preferences (x y)
with respect to its next corner referencer(a) is (after Wermter, 1999).
defined as:

distance(a, r(a))
]]]]]pref(a)5 12 ] A class of preferences represents a high-dimen-Œlm
]] sional hypersphere of an unlimited number of prefer-2

ences with the same distance from the specified
where corner reference. Finally, we define a preference

]]]] machine as a device of sequential processing with2distance(a, r(a))5 O(a 2 r (a))ij ij c-preferences. For some input and state, a new state
i, jœ

and output is computed. Input, output and state are
is the distance between the c-preferencea and its multidimensional preferences.
next corner reference.

Definition 5. (Preference machine) A preference
]Œlm /2 is the maximum distance in thel 3m- machinePM is a synchronous sequential machine

dimensional c-preference space, that is the distancewhich is characterized by a 4-tuplePM 5 (I,O,S, f ),p

from the center of the hypercube to any corner. If the with I, O and S being non-empty sets of inputs,
c-preferencea is close to its next corner reference outputs and states.f : I 3 S → O 3 S is the sequen-p

then its preference value pref(a) will be close to 1 tial preference mapping and contains the state
and if it is close to the center, then pref(a) will be transition functionf and the output functionf . Heres o

close to 0. I, O and S are n-, m- and l-dimensional preferences
n m lwith values from [0,1] , [0,1] and [0,1] , respective-

l3mDefinition 4. (c-preference class) Leta [ [0,1] ly.
be a c-preference with next corner referencer(a)[

l3mh0,1j . Then the class of complex preferences ofa In summary, what we have accomplished so far is
is called c-preference classc(a) and contains all a preference framework for representing concepts in
those c-preferences with next corner referencer(a), multiple neural encoding schemes as al 3m-dimen-
which have the same distance fromr(a) as a. sional c-preference. These concepts can be inter-

preted symbolically based on preference values.
Thepreference value of a class of c-preferences is Furthermore, these concepts can be integrated with

the preference value of an arbitrary c-preference sequential machines. That way Preference Machines
which belongs to this class. This follows directly are grounded in possibly multiple neural encoding
from the definitions of c-preference classes and the schemes (e.g. mean firing rate coding and time-to-
preference value. Fig. 3 shows the preference values first spike coding) but at the same time they are
for the two-dimensional space. linked to sequential symbolic machines.
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3 . Preferences at neuroscience levels pretations of the behavior of that unit. We will focus
on two main approaches here outlining the general

In the remaining part of this paper we will principles of interpreting the spiking behaviour of
illustrate some links of the preference framework to cell assemblies as c-preferences. Later on, in Section
the neuroscience level. While in (Panchev and 4, we will give an example of a more specific
Wermter, 2000) we presented the concept of c- interpretation of the assemblies that combines fea-
preferences on a single neuron level, here we con- tures of the two approaches described here.
centrate on more complex cortical functional struc-
tures associated with cognitive functions in the brain: 3 .1.1. Cortical column as a threshold gate
cell assemblies and synfire chains. In the first interpretation, a cortical column be-

haves as a threshold gate, that is, if a sufficient
3 .1. Cell assemblies as c-preferences number of excitatory neurons fire, the column is said

to be active and the respective feature present. If
The concept of a cell assembly was introduced as there are not enough firing neurons, the column is

a functional and structural model for cortical pro- said to be inactive and so is the feature it represents.
cesses and neuronal representations of external Let us consider a model of synchronously firing
events (Hebb, 1949). Hebb presented the idea thatcell assemblies, withDt being a time interval in
complex objects and stimuli, as well as more abstract which all spikes would be considered as firing
entities like concepts, ideas and contextual relations synchronously. A sequence of synchronously firing
in the brain are represented as simultaneous activa-assemblies will be defined in a sequence of intervals
tion of large groups of neurons. Single cells can Dt , Dt , Dt , . . . , where thesth interval is defined1 2 3

belong to different assemblies and the cells in one 9 99 9 99asDt 5 h tut , t , t j, t and t are the beginnings s s s s

assembly are not necessarily close to each other. If, 99 9and the end of the interval, anduDt u5 t 2 t is thes s s

as a result of an external event, a sufficiently large length of the interval. In some implementations of
subset of the cells in the assembly are stimulated, thespiking neurons, the sequence of intervals might
whole assembly becomes active and may sustain 99 9represent a continuous time set, i.e.t 5 t , whiles s11

activity for some period of time even when the in others there might be an explicit time shift
external event has disappeared. between the separate intervals of synchronous firing,

¯Cell assemblies are a widely accepted paradigm 99 9i.e. t , t . For each interval we can definet ass s11 s

for feature binding mechanisms in the brain (Shastri, the mean time of the spikes inDt . Examining thes

2001). In many artificial neural networks, cell assem- spikes from timeuDt u beforet and uDt u after t , thats s s s

blies are explored as a model of associative is in interval 2uDt u aroundt , we can define aspikes s

´memories (Palm, 1986; Franse, Lansner, & Liljen- time preference of a neuron (threshold gate column)
¨ ¨strom, 1992; Pulvermuller, 1999). Different interpre- in the intervalDt as:s

tations of the paradigm can serve as a concept of
i ¯ut 2 t ushort or long term memory models. The concept of s s
]]12
Dtneural assemblies in combination with activity-de- s

ipendent (spatio-temporal) Hebbian learning provides a 5 if neuron (column)i has fired in 2uDt us s
a paradigm for long term memory (Wennekers & 05
Palm, 1999). if neuron (column)i has not fired in 2uDt us

Many artificial neural network models of cell
iassemblies use a simple neuron as the elementary Here,t denotes the firing time of neuron (column)i.s

1 2 Ncomputational unit of the network. However, there Then the vectora 5 (a , a , . . . , a ) is the c-s s s s

are models of associative memories with spiking preference vector of cell assemblies of single neu-
neurons that consider cortical columns as the func- rons or threshold gate columns in the time interval

´tional units (Fransen & Lansner, 1998; Palm, 1993). Dt . According to the above definition ofa , a mores s

Although in both approaches a neuron or column synchronous firing in the assembly will lead to
represents a single feature, there are different inter- values in the preference vector close to 1. Alter-
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natively, lower density of the spikes inside the time indicate low activity in the column and therefore no
window will lead to values close to 0.5. Finally, activation or suppression of the represented feature.
firing times outside the time window will lead to The vector constructed from the above defined
values close to 0. activation values for all columns in a network withN

1 2 NA c-preference class of cell assemblies of single columns a 5 (a ,a , . . . ,a ) is the c-preference ofs s s s

neurons or threshold gate columns can be interpreted cell assemblies of cortical columns using population
as a set of all preferences that represent the cell code. A particular c-preference would represent the
assembly for the same information with equal state of the network at a particular time and therefore
strength. This interpretation of the classes allows us contain a representation of the complex object
to abstract from the particular distribution of the (event) activated in the network at that time.
synchronous spikes in the time window usually Theclass of c-preferences of cell assemblies of
considered as noise in biological systems. cortical columns using population code will allow us

to abstract from the mutual fluctuations in the
activity of the features included in a particular

3 .1.2. Cortical column as a population of neurons
object. Such a class will include all c-preferences

A second interpretation of the behavior of a single
that represent the same object (event) with equal

cortical column is when a column is considered to be
total activity of the assembly. Furthermore, the

a population of neurons representing one particular
corner preference of the class will represent the

feature and the level of activation of that feature is
object (event) as a binary vector and classes with the

determined by the relative number of excitatory
same corner preference will represent the same entity

neurons that have fired at a particular time, i.e.
but with a different strength.

examining the population code of a single column.
Such a concept is a computationally efficient ap-

3 .2. Dynamic representations: synfire chains and
proach for encoding features with analog values. It

c-preferences
allows the combination of two different encoding
schemes within a single network: graded activation

Sequential processing is essential for human lan-
of features as a population code of a single column

guage and reasoning. The neuroscience evidence
and binding of features via synchrony firing of cell

suggests that there are dynamic structures in the
assemblies.

brain that are essential and effective for sequentialiLet us now consider such a columni with P
processing. After having introduced cell assemblies,iexcitatory andQ inhibitory neurons. For a particular
we now look into some more dynamic representa-

time intervalDt of synchronous firing, the numbers tions, i.e. synfire chains. The concept of synfire
of excitatory neurons in columni that have fired is

chains as a model of cortical function was introducedidenoted asp , and the number of inhibitory neuronss by Abeles (1982, 1991). It explains some phenom-iwould be q respectively. We can define a values ena of precise timings in spatio-temporal patterns in
representing the activity of the column as: frontal areas of the brain. A synfire chain consists of

a precisely timed repeating sequence of synchronous-
i ip q1 s si ly firing small pools of neurons. The firing time in a] ] ]a 5 11 2S Ds i i2 P Q chain can spread over a large time period – usually a

few hundred milliseconds, or up to one second. The
If most of the excitatory neurons in the column have neural pools are linked together in a feed-forward
fired and there is no activity of the inhibitory chain, so that a wave of activity propagates from
neurons, the activation value will be close to 1 and pool to pool in the chain. It has been shown that
therefore indicate a strong preference for the feature multiple spatio-temporal patterns can be stored in a
that the column represents. The opposite situation network constructed of synfire chains where one
will have a value close to 0 and would indicate neuron or cortical column can participate in several
strong suppression of the feature in the time interval. chains or several times in the same synfire chain

¨Finally, an activation value close to 0.5 would (Herrman, Hertz, & Plugel-Bennet, 1995).
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It has been suggested that the activity waves in the If the network has well-defined, sayN, pools of
synfire chains represent an elementary cognitive columns, the c-preference can be constructed based
event (Bienenstock, 1995). Synfire chains can be on the population activity of these pools. In this case

i iapplied as storage elements of an associative mem-P 5Q is the total number of columns in pooli, and
iory, recognition and recall of spatio-temporal pat- p denotes positive activity, i.e. is the number ofs

terns and as a possible physical substrate for short excitatorily activated columns of pooli in interval
iterm memory (Wennekers & Palm, 1999). Further- Dt . Similarly, q denotes the negative activity in thes s

more, it has been shown that synfire chains are able pool, i.e. the number of inhibitorily activated col-
to regenerate ordered sequences of patterns (Aertsen, umns.
Diesmann, & Gewaltig, 1996; Abeles, Vaadia, Ber-
gman, Prut, Headman, & Slovin, 1993; Bienenstock, 3 .2.2. Synfire chains as a preference machine
1995). Cell assemblies and synfire chains may also A c-preference will represent the activity of one or
provide a way to explain elementary ways for several pools in the chain at a particular time. To
structure processing in language using dynamic integrate the sequence of firing pools in the synfire

¨continuous stack mechanisms (Pulvermuller, 1999). chains, we develop a sequence of c-preferences
Synfire chains can be viewed as a possible exten- representing the activity at each time step. Then we

sion of the associative memories from static spatial can construct a preference Moore machine that
patterns to dynamic spatio-temporal ones. Further- would be able to represent the behavior of synfire
more, there are several properties of the synfire chains in the network. A direct interpretation of the
chains that result from their dynamic behavior. For representation of a cognitive event in the synfire
example, the firing patterns exhibit cyclic activity, chain (which is an ordered sequence of synchronous
the order of firing of the pools in a chain is believed firing of neuronal pools in the chain) would be a final
to be of significance, and different chains can share state (or set of states) of a preference Moore ma-
the same pool at different times without crosstalk chine. If the network has activated only one event,

¨(Hebb, 1949; Pulvermuller, 1999; Herrman, Hertz, & the final state would be the one representing that
¨Plugel-Bennet, 1995). We suggest that a synfire chain event. Similarly, if the network activates several

is best interpreted as a dynamic symbolic representa- cognitive events, the preference machine will have
tion and we propose the concept of preference multiple final states at the end, each representing a
machine as one possible solution. particular event. The intermediate state of the ma-

chine represents the history of the firing patterns of
the network. A repeated intermediate state sequence

3 .2.1. C-preferences in the synfire chains
indicates the cycling activity of the network. After

In an artificial neural network model, a synfire
this description of our general framework, we will

chain would represent a composite cognitive event.
turn to a concrete example in the next section.

The event consists of several entities which might
have explicitly defined semantics. Each pool in the
chain would represent a single composite concept 4 . Example: auditory network of spiking
(entity). Therefore we can represent the activation of neurons with c-preference analysis
the network ofN columns at a given intervalDt as as

1 2 Nc-preferencea 5 (a , a , . . . , a ), where each values s s s In this section we describe experiments with a
in the preference vector equals the population activi-

model of pulsed neural network and preference
ty of a given column in the network. Such an

analysis. These experiments are part of research to
interpretation is analogous to c-preferences of cell

explore the properties of networks of spiking neurons
assemblies of a cortical column with population code

and design models for processing complex temporal
and the formulas defined above are valid here:

sequences.
The recognition of events represented with com-i ip q1 s si plex temporal sequences is a critical task performed] ] ]a 5 11 2 .S Ds i i2 P Q in many perceptual and cognitive systems in the
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brain. It requires continuous combined spatial and plitude for the signal for the evente in the frequency
temporal integration of information. Despite the channelf is given by the equation
extensive ongoing research, there is no general

max(P )fcomprehensive understanding of how the biological ]]]A 5 (12s ) 1sef a amax(P)systems represent and process information over time
(Wermter, Austin, & Willshaw, 2001). Nevertheless, where max(P ) and max(P) are the maximum powerfseveral encoding and processing schemes are knownfor the frequency channel and for the whole utter-
to be particularly useful for certain tasks and have ance, respectively.s is a scaling factor that allows aabeen observed in the brain (Abott & Sejnowski, controlled boost for those channels with little power.
1999). Furthermore, the signal for each event has a decay

There are some important indications on the type time t constant being proportional to its amplitudeefof information representation and processing for and a global time constantt , i.e.lseveral sensory problems. There is a general agree-
t 5t Ament in neuroscience, and recently in the artificial ef l ef

neural networks communities, that the temporal
Therefore, for a single utterance, the data extracteddimension of the neural signals, i.e. the precise
from the 20 frequency channels consists of 60 inputrelative timing of the spikes, allows a powerful
signals describing the onset, peak and offset eventsencoding and processing apparatus to be used, and is
in the channel. Each signal is associated with anwidely applied across the brain. The model presented
amplitude and a time constant, and occurs at the timein this section uses the relative timing of the onset,
of the corresponding event in the frequency channel.offset and peak events of the amplitude at different

frequency channels of an input auditory signal
4 .2. Pulsed neural network model(Jurafsky & Martin, 2000; Denham & Denham,

2001).
4 .2.1. Neuron models and architectureWe describe an example experiment, where we

The details of pulsed neural networks in generalhave successfully applied the preference framework
(Maass & Bishop, 1999) are outside the scope of thisin order to extract and analyze the output of a
paper, but we will briefly describe our architecture,network of spiking neurons. In order to study this
neuron models and connectivity of our architecture.initially, we developed a model of a c-preference
Then we will focus more on the preference analysisanalysis of clusters of neurons (cell assemblies) in a
and experimental results.network of spiking neurons (Fig. 4). The task of the

The pulsed neural network is built in two layers.model is to recognize a brief complex sound. In
The details of the network presented here are theparticular, we focus on the task of recognizing
result of several experiments and tests with networkauditory input, in this case of spoken words of the
and neuron parameters. The input layer contains 60digits from one to nine.
units – one unit per each event (onset, peak, offset)
and 20 frequency channels (Fig. 6). At timet whenef4 .1. Preprocessing of input data
the corresponding event occurs for the first time in
the channel, the unit starts generating a decayingThe data consists of 10 single speaker’s utterances
continuous output current with an initial amplitudefor each digit, taken from the TIMIT database. As
I (t )5 A and time course given by the equationef ef efpart of the preprocessing, the speech signal is filtered

into 20 frequency channels on the Mel-scale span- dIefning from 100 Hz to 4 kHz (Fig. 5). Furthermore, we ]t 5 2 I (t).ef efdtconsider the power and the times of onset, peak and
offset of the amplitude in each channel. The gener- An example of the input layer activity for an
ated input signal corresponding to each of the three utterance of the word ‘‘one’’ is shown in Fig. 6.
events is described by the time at which this event The second layer of the network consists of fast
has occurred in that frequency channel. The am- spiking neurons modeled as leaky integrate-and-fire



S. Wermter, C. Panchev / Cognitive Systems Research 3 (2002) 255–270 263

Fig. 4. The model of pulsed neural network and preference analysis for auditory signal recognition.

(lIAF) neurons (Maass & Bishop, 1999). The neu- and event type. Each input unit is connected to at
rons are grouped in twenty clusters corresponding to least one neuron at the second layer. This organiza-
each of the twenty frequency channels. Inside each tion makes the neurons in a cluster primarily sensi-
cluster, the neurons are grouped in three columns – tive to events and activity in the corresponding
one for each type of event that is monitored in the frequency channel.
channels (Fig. 7). There are 8 neurons in each The neurons within a cluster in the second layer
column, making a total of 480 lIAF neurons in the are connected to each other with probability 0.6 and
second layer. the neurons in different clusters are connected with

probability of 0.4. The synapses are allowed to
4 .2.2. Connectivity change their sign, that is to become inhibitory from

Units in the input layer feed directly into the body excitatory and vice versa. The weights are kept
of the neurons in the second layer. Each input unit is normalized with a total length of the weight vectors
connected with a probability of 0.8 to the 8 neurons of 0.3 for the links inside the cluster and 0.2 for the
in the corresponding cluster for frequency channel links between different clusters. The connectivity
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Fig. 5. Examples of the speech input (upper graphs) and the frequency diagrams (lower graphs) of utterances for the words ‘‘one’’ (left
graphs) and ‘‘two’’ (right graphs) used in training.

probabilities and weight vectors lengths are empiri- active in parallel and enter a mode of decaying
cally derived in order to optimize the network oscillation. Towards the end of the input signal and
performance. for a short period afterwards, the clusters form a

weakly coupled oscillator with slowly decaying
amplitude. Considered as a cell assembly where each

4 .2.3. Processing cluster is an analog of a cortical column, the
The network was trained using 5 utterances for formation was observed to activate a set of features

each word. The auditory signal recognition takes part describing the recognized utterance (spoken word) as
in the second layer of the network. Depending on the a response of the network to the input signal. For
input signal, different clusters in the layer become identifying the set of these features for each word
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Fig. 6. Activation of the input neurons in processing the word ‘‘one’’ shown in Fig. 5 withs 5 0.3 andt 5200 ms. The horizontal axisa l

shows time in seconds. The 20 frequency channels are superimposed with step 1 at the ordinate. At each step, there are three graphs
representing the activation level of each of the three neurons in that channel.

Fig. 7. Firing neurons (white squares) in the second layer at the end of the input signal of the utterance of the word ‘‘one’’ shown in Figs. 5
and 6 (that is 617 ms). Lighter colors indicate higher potential and the white color indicates that the neuron has just emitted a spike.

and reading the network’s response, we used com- model. We also use features of c-preferences of cell
plex preferences. assemblies of cortical columns as threshold gates.

We consider each cluster of neurons in the second
4 .3. The preference analysis layer to be an analog of a cortical column, or more

precisely a population of columns which behaves as
For the purpose of this experiment we have a single functional unit. Therefore, our model has 20

adapted the general definition of c-preference for cell ‘‘cortical columns’’ participating in different cell
assemblies of cortical columns as population code assemblies. Most of the columns participate in
(see Section 3.1.2) into a more specific one taking several assemblies and in the experiment reported
into account the properties of the data and the here some columns are found not to be reliably
organization and dynamics of the neurons in our active in any assembly.
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The clusters in the model fire with a dynamic the periodDt and P is the maximum number of
(decaying) mean firing rate. This effectively means spikes observed in any column for that period. The
that a simple time intervalDt which could be used in value of activity of a column would be greater than
measuring the activity of the cluster /column over a 0.5 if the column has had on average at least one
representative number of intervals could not be spike per millisecond during the observation period,
found. Dt either has to be: (1) a dynamic interval and less than 0.5 otherwise. Normalization with the
possibly related to the decay rate or the total activity maximum number of spikes found in that period
of the network; or (2) the activity of a column has to allows us to abstract from fluctuations in the absolute
be averaged over a representative period of time. In power in the input speech signal and concentrate on
our approach, the activity of the columns was the relative activity of the columns.

1 2 20examined for a fixed period of time around the end The c-preference (a , a , . . . , a ) will represent
of the input signal. the cell assembly that has been active at the end of

Furthermore, in our model, there is no distinction the input speech signal. The next corner reference
between excitatory and inhibitory neurons in the would be a matching pattern for a symbolic repre-
column. As expected after learning, an examination sentation of the recognized word.
of the links within a column and between the Based on the recorded activity of the cluster in the
columns showed that there is an overall excitation network while processing the 45 training patterns (5
between the neurons in the same column and that training utterances for each word) and the analysis of
inhibition was primarily coming from neurons in the network weights, we derived partial next corner
other columns. In other words, a high number of references for each word (Table 1). These references
firing neurons in the column indicates higher total are automatically derived from the trained network
excitation of that column. Therefore a good approxi- output. This process is general and does not depend
mate value for the activation of the column would be on the particular network. A value of 0 in the partial
one that is proportional to the mean firing rate of the next corner reference indicates that the column does
population of neurons in it. not respond to speech signals of that word, 1

1Based on the above observations, we derived the
]indicates a strong response, and indicates that the2ifollowing equation for the activitya of column i in column has no reliable negative or positive response

our model to an input for the word. For example, the matching
i reference for the word ‘‘one’’ shows that on the1 p iS D] ]11 if p .Dt training examples, the neurons responding to events2 Pia 5 i in the 1st and 3rd frequency channel have lowp i5] activity and therefore these neurons will be expectedif p #Dt2P

to have a low response when any test speech signal
iwherep is the number of spikes from columni in of the word ‘‘one’’ is presented. In contrast, the

Table 1
Sample patterns for the words as partial next corner reference

Partial next corner reference in the 20 frequency channels

Word 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 1
] ] ]‘‘one’’ 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 02 2 2

1 1 1 1 1 1 1 1
] ] ] ] ] ] ] ]‘‘two’’ 0 1 1 1 1 0 0 0 0 0 0 02 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1
] ] ] ] ] ] ] ]‘‘three’’ 0 1 1 1 0 0 0 0 0 0 0 02 2 2 2 2 2 2 2

1 1
] ]‘‘four’’ 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 02 2

1 1 1
] ] ]‘‘five’’ 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 02 2 2

1 1 1 1 1 1
] ] ] ] ] ]‘‘six’’ 0 1 0 1 1 1 1 0 0 0 0 0 1 02 2 2 2 2 2

1 1 1 1 1
] ] ] ] ]‘‘seven’’ 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 2 2 2 2 2

1 1 1 1 1 1
] ] ] ] ] ]‘‘eight’’ 0 1 1 1 1 1 1 0 0 0 0 0 0 02 2 2 2 2 2

1 1 1 1
] ] ] ]‘‘nine’’ 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 02 2 2 2
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Table 2neurons responding to events in the 2nd, 4th, etc.
Recall and precision results from the recognition of auditorychannels show high activity at the end of the training
signals with our model

examples of ‘‘one’’. Finally, the neurons in the 15th,
Training set Test set17th and 18th columns do not show reliable (high or

low) activity in response to ‘‘one’’ and therefore are Word recall precision recall precision

not examined when processing test examples. Effec- ‘‘one’’ 0.8 1 1 1
tively, we use the c-preference analysis of the ‘‘two’’ 0.6 1 1 1

‘‘three’’ 0.6 1 1 0.83behaviour of the network on the training examples in
‘‘four’’ 0.8 1 0.6 0.6order to build a filter of the network output.
‘‘five’’ 0.8 1 0.8 1
‘‘six’’ 0.8 1 0.6 0.75

4 .4. Testing and results ‘‘seven’’ 1 0.83 0.4 1
‘‘eight’’ 1 1 1 1
‘‘nine’’ 0.8 0.67 0.8 0.67The performance of the model has been tested

with the remaining 45 patterns (5 untrained utter-
Total 0.8 0.95 0.8 0.86ances for each word). The spikes for each column in

the second layer of the network are being counted for
200 ms, starting at 100 ms before the end of the
input signal. It may be argued that the three times at able to capture the output behaviour of a neural
which we measure the signal are restricted. However, network of spiking neurons. For most of the digits,
this is the period where the activity of the cluster is we achieved recall of 0.8 or higher, which means
most representative. We examine the output of the that the model was able to recognize at least 80% of
network, not the input. There is a delay between the the test patterns. The precision for many of the
events in the input pattern and the response of the examples is 1 which indicates that almost all classifi-
cluster. Therefore, although the most significant cations made by the model are correct.
events in the input signal are observed just after
onset and just before offset, the significant activity in
the output cluster is towards the end of the signal and 5 . Discussion and conclusion
just after that. The output c-preference and the next
corner reference of the network’s response are Architectural abstractions at different levels are
computed based on spike numbers this. The resulting important in order to link higher level cognitive
output reference is tested for matching the sample functions like language processing with the neuro-
patterns shown in Table 1 using the following science evidence from the brain. The complexity of

1
]condition: if the value of the sample pattern is not cognitive and neurobiological processes makes it2

the value in the output reference has to be the same seem plausible that several representational levels
as the corresponding value in the sample pattern. If may be advantageous (Gutknecht, 1992; Sun, 1996).

1
]the value in the sample pattern is , i.e. the corre- In this context we have explored hybrid symbolic /2

sponding column is not significant for the recogni- connectionist machines and their relationship to
tion of that word, the value of the output reference neuroscience evidence. In particular we have ex-
for that column is not examined. plored the use of preference machines as one par-

Table 2 shows the results obtained for the training ticular type of hybrid sequential machines. Then we
and test sets. We used a standard evaluation metric of have introduced c-preferences which allow the inte-
recall and precision rates (Salton, 1989) for evaluat- gration of various hybrid encoding schemes like
ing the performance. The performance of the models mean firing rate, time-to-first spike or synchrony
depends mainly on the individual performance of the encoding and information representation structures
neural network and the c-preference analysis. The like cell assemblies and synfire chains. The intro-
good final results demonstrate the ability of the duction of complex preferences was motivated by
pulsed neural networks and that the analysis with these complementary encoding schemes. We argue
c-preferences is an adequate interpretation and is that it is necessary to integrate various neural
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encoding schemes of underlying neuronal processing It is envisaged that tasks like auditory processing,
robust syntactic analysis or semantic classificationand that symbolic, connectionist and neuroscience
could benefit especially from such approach. Previ-levels can be integrated using the preference frame-
ously, we have demonstrated how recurrent con-work. By considering the neuroscience level, im-
nectionist preference machines have been used forportant new insights can be gained for higher
classifying short text titles (Wermter, Panchev, &symbolic connectionist levels.
Arevian, 1999; Wermter, Arevian, & Panchev,There has been a lot of work on hybrid symbolic /
1999a) or shallow spoken language parsing (Wermterconnectionist architectures in the last decade (Werm-
& Weber, 1997). This work demonstrated the prefer-ter & Sun, 2000; Medsker, 1994a; Goonatilake &
ence framework at the connectionist and symbolicKhebbal, 1995; Medsker, 1994b; Hilario, Lallement,
levels (Wermter, 2000a). Furthermore, there is new& Alexandre, 1995; Sperduti, 1994; Rocha & Yager,
challenging work underway, which further extends1992; Sun, 1994; Sun & Bookman, 1995). Further-
the link from neuroscience-inspired level to highermore, there has been early, but very different sym-
preferences. For instance, we have integrated variousbolic work on preference semantics as a means for
neural encoding schemes using preferences (Panchevhigh level structural frames and concepts (Wilks,
& Wermter, 2000) and have explored a neurosci-1978; Wilks, Huang, & Fass, 1985). However,
ence-inspired mirror neuron system for analysingneuroscience concepts like cell assemblies and
finite state sequences (Womble & Wermter, 2001).synfire chains have not yet been integrated into

For future work, we plan to examine cell assem-cognitive hybrid architectures in the past. The main
blies and synfire chains further in the preferencecontribution of this paper is to create a first link and
framework. As we demonstrated, cell assemblies canto demonstrate how concepts from hybrid architec-
be interpreted and linked to preferences. Further-tures, in particular preference Moore machines, can
more, synfire chains can be linked to preferencebe linked to novel concepts from neuroscience.
Moore machines. So far, existing dynamic neurosci-

Furthermore, the preference framework has inte-
ence-inspired architectures have the ability to use

grated several neural encoding schemes.
temporal processing but learning and interpretation

The main focus of this paper is to provide of their knowledge in a connectionist or symbolic
theoretical background to hybrid sequential machines form is needed for two reasons: First, from a neuro-
based on inspiration from neuroscience. This fun- cognitive point of view, knowledge in the brain can
damental view has been taken since it has been be communicated and the integration of high level
argued that hybrid architectures of the past have beencognition and brain level architectures is necessary.
too task- and domain-specific and since more general Second, from a representational and computational
notions towards a theory of hybrid machines have to point of view, the link of dynamic neuroscience
be developed (Wermter & Sun, 2000; Medsker, networks with connectionist or symbolic machines
1994b). However, in one concrete example we have allows to take advantage of existing hybrid sequen-
demonstrated how these concepts can be applied to atial machines.
pulsed neural network for auditory processing. There
has been very little work on learning in pulsed neural
networks so far and therefore the development of A cknowledgements
such a network within the preference framework
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