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Abstract 
 
This work considers the applicability of applying the 
derivatives of stepwise linear regression modelling 
(specifically the p-values which indicate the importance of a 
variable to the modelling process) as a feature extraction 
technique.  We utilise it in conjunction with several data sets 
of varying levels of complexity, and compare our results to 
other dimensionality reduction techniques such as genetic 
algorithms, sensitivity analysis and linear principal 
components analysis prior to data modelling using several 
different neural network models.  Our results indicate that 
stepwise linear regression is highly effective in this role with 
results comparable to and sometimes superior then more 
established techniques 
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1. Introduction 
 
Data modelling techniques such as neural networks are 
highly efficient function approximators capable of 
modelling any non-linear function to a high degree of 
accuracy.  However high dimensional input spaces can 
interfere with the accuracy of the classification or 
prediction accuracy of the model being developed.  To 
address this problem, dimensionality reduction methods 
are now regarded as an essential activity prior to 
modelling the feature space as a means of ensuring that 
highly correlated attributes are eliminated from the input 
space.  Alternatively the most representative features 
from a particular attribute can be removed and condensed 
into a smaller attribute set.  

 
 Many of these techniques such as genetic algorithms [1] 
and self organising feature maps [2] are highly heuristic 
in nature, whilst principal components analysis makes 
assumptions as to the linearity of relationships between 
the data items in the input set [3]. Techniques such as 
sensitivity analysis [4] though highly effective are  

computationally intensive in their constant replacement of 
attributes in the modelling process in an effort to find the 
optimal input configuration.  This may be a serious 
constraint if speed is of crucial importance.  In this paper 
we extend previous work on the use of stepwise linear 
regression for classification problems [5] by considering 
the by-products of stepwise linear regression, namely the 
standard deviation and variance of the X input values in 
relation to the Y target output value, the degree of 
correlation between data in the input set and the target 
regression value, but most importantly the stepwise 
feature allows the user to observe which of the input 
features should be retained.  We utilise several publicly 
obtainable data sets which vary in both, the size of the 
input feature space and the degree of overlap in the class 
structure.  The paper is organised as follows.  Section 2 
introduces stepwise linear regression as a modelling 
technique, with emphasis on the residuals produced to 
determine parameter retention.  Section 3 considers other 
feature extraction/selection techniques such as genetic 
algorithms, linear principal components analysis and 
sensitivity analysis.  Section 4 considers neural network 
architectures used for regression modelling, specifically 
generalised regression networks, Radial basis function 
networks and multi-layer perceptrons.   Section 5 
discusses in more detail the data sets used.  Section 6 
outlines the methodology used and presents the results of 
each feature extraction/selection techniques.  The paper 
concludes by considering the results and their 
implications for data modelling. 
 
 
2. Stepwise Linear Regression 
 
Stepwise regression techniques are designed to add or 
remove variables which are inputs to the regression 
model.  The objective of which is to identify a useful 
subset of the predictors which can be regressed onto a 
single output variable as stated in (1) 
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where 'Y  represents the predicted value of Y, X are the 
input variables, and a and b determine the degree of 
correlation.  This formula assumes that all values of Y are 

independent of each other and that Y is a linear function 
of X. For a fixed combination of

 X values the variance of Y is fixed, whilst for any fixed 
combination of X values, the value of Y is normally 
distributed.  The maximum value of the correlation 
coefficient between observed Y values 
 
the predicted values for Y are the obtained values of 

that can be used to minimise the sum of 
squared errors (SS) of prediction of the residual sum of 
squares. 
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To simplify the explanation we will confine this 
discussion to two variables for X.  The required value of a 
is given by the equation. 
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where X and Y represent the mean values for the input 
parameters X and the regressed Y value.  Substitution of 
this value into (1) gives: 
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or: 
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Where x1 and x2 represent the two input variables.  
Minimisation of the residual sum of squares requires that 
the values for b  and b (the slope of each independent 
variable) satisfy (6) and (7) 
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and: 
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The solution of both equations for unknown values of b  

and b can be found by multiplying (6) by and (7) by 
gives according to (6) 
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By retaining the standard deviation and variance of the X 
values in relation to Y, together with the degree of 
correlation between variable allows the user to retain or 
remove data which is superfluous to the model.  The 
technique was previously used by the authors on a data 
set of gas turbine readings consisting of 18 exhaust 
emission sensors, and three other readings relating to fuel 
intake, the mixture of fuel air in the turbines combustion 
chamber, and the level of steam generated by the turbine.  
In classification mode our findings using stepwise linear 
regression in this way achieved comparable accuracy to 
other dimensionality reduction techniques whilst utilising 
around 30 percent of the features. [5] In this work we 
utilise the same data set but this time in regression mode, 
and compare its performance to three other data sets 
comprising of measurements of abalone sea creatures, 
prediction of Ph levels in drinking water sample, and the 
prediction of vibration levels from a high speed machine 
drilling tool. 
 
3. Other Feature Selection/Extraction 
techniques. 
 
We compare our results for stepwise linear regression 
with three well known feature extraction/selection 
techniques namely Linear principal components analysis 
[3] Genetic algorithms [1] and sensitivity analysis [4].  In 
previous experimental and practical work the authors 
have found each of these to be extremely effective for 
dimensionality reduction [5, 13].  We briefly outline each 
method below. 
 
3.1.     Linear Principal Components Analysis 
(PCA)  
 
For simplicity we illustrate Principal Components 
Analysis by projecting data from two dimensions to one. 
A linear projection requires the optimum choice of 
projection to be a minimisation of the sum-of-squares 
error [3, 7]. This is obtained first by subtracting the mean  
of the x values of the data set.  The covariance matrix is 
then calculated and its eigenvectors and eigenvalues are 
found.  The eigenvectors corresponding to the M largest 
eigenvalues are retained, and the input vectors are 
subsequently projected onto the eigenvectors to give 
components of the transformed vectors 

nx

nz  in the M-
dimensional space.  By retaining a subset M < d of the 
basis vectors so that only M coefficients are used 
allows for replacement of the remaining coefficients by 
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constants . This allows each x vector to be 
approximated by an expression of the form. 
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In this section we discuss neural network architectures 
specifically from a regression perspective.  Neural 
networks are known to be highly effective function 
approximators to an arbitrary level of accuracy, owing to 
their “input-middle-layer-output structure”.    In this study 
we have consider three architectures which highlight two 
different approaches to the problem of regression 
modelling in a high dimensional feature space.  Namely a)  
the use of models whose units compute a non-linear 
function of the scalar product of the input and a weight 

vector, and b) activation of a hidden unit which is 
determined by the distance between the input and 
prototype vector.  The former belongs to the class of multi 
layer feed forward neural networks such as Multi-layer 
perceptrons [9] whilst the latter encompasses the radial 
basis function [10] and Generalised regression [11] 
architectures.  We begin with a description of the Multi-
layer perceptron architecture. 

 
where iµ represents a linear combination of d 
orthonormal vectors.  
 4.1 Multi-Layer Perceptrons  
3.2 Genetic Algorithms  
 In these networks we are concerned with representing d 

inputs, to M hidden units and c output units.  The hidden 
units are transformed using a weighted linear combination 
of the d input values and adding a bias value, whilst the 
activation of hidden unit j is obtained by linear 
summation.  The activation functions can be of several 
types with the most commonly used being the sigmoid.  
The network outputs are obtained by transforming the 
activations of the hidden units using a second layer of 
processing elements.  Each output unit k is pooled into a 
linear combination of the outputs from the hidden units.  
This can be expressed by (11) as: 

Genetic algorithms represent an optimisation technique 
based upon the Holland algorithm, [8] which uses  
“elitism” (defined as the best string from each generation 
remaining unaltered) to breed increasingly superior data 
strings according to a pre-defined fitness function.  The 
breeding process also ensures that desirable qualities are 
passed to the next generation.  The fitness function is 
based upon the verification error plus the unit penalty 
normalised linearly before the selection process, which 
ensures the best-worst fitness ratio, is held at a constant 
2:1 ratio.  Constant selection pressure is maintained for 
the duration of the algorithm which assists locating 
“epistasis” (high levels of correlation) between attributes 
in the data set 
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3.3    Sensitivity Analysis  

 where is the activation of the kth output unit and is a 
function which absorbs the bias of the network into its 
weights in the linear combination of the outputs of the 
hidden units, and g is a weighted linear combination of 
the d input values. Figure 1 shows the architecture of a 
typical MLP network. 

ky g~In this study we use sensitivity analysis by treating each 
attribute in turn as if it were “unavailable” [4].  Each 
model has a defined missing value substitution procedure, 
which makes predictions in the absence of values for one 
or more attributes.  The sensitivity of a particular variable, 
v, is defined by running the network on a set of test cases, 
and accumulating the network error.  The network is then 
run again using the same cases, but this time replacing the 
observed values of v with the value estimated by the 
missing value procedure and again accumulating the 
network error.  The measure of sensitivity is the ratio of 
the error with missing value substitution to the original 
error.  The more sensitive the network is to a particular 
input the greater the deterioration and therefore the 
greater the ratio. 
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4. Neural Network Architectures for 
Regression Modelling 
 

 
 
 

Fig 1.  Multi-layer perceptron architecture for the famous Fisher iris data 
set problem with four inputs for petal and sepal length and width, and 

three outputs for the three types of flower. 
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 4.2     Radial Basis Function Networks.  
 
Radial basis function networks are designed to provide an 
interpolation function which should pass through every 
data point.  The objective being to generate a function 
which is smooth enough to provide the best generalisation 
and average over noise within the data.  In such networks  
the number of basis functions M is typically less than the 
number of data points N.   In addition the centres of the 
basis functions are determined not by the data, but during 
the training process, as are the width of each basis 
function.  Finally a bias parameter is included into the 
linear sum which acts as a compensator for the difference 
between the average value over the data set of the basis 
function activations and the related average value of the 
targets.  This can be expressed by (12) 
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where 

jφ is the individual basis function width parameter, 
and is the bias parameter. Figure 2 shows the typical 
architecture of an RBF network. 
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Figure 2 : Configuration of a typical radial basis function network 
 
 
4.3. Generalised Regression Neural Networks  

Data set Inputs Attributes Comments 
Abalone 8 4177 Highly  unstructured 

domain 

Turbine 21 240 Ill structured domain, no 
missing values 

Water 37 527 Ill structured domain, 
missing values 

Machine 
Tool 

401 141 Well structured domain, 
missing values 

 
Generalized regression neural networks (GRNNs) work 
in a similar fashion to Probabilistic neural networks 
(PNN’s), but are dedicated to perform regression tasks. 
[11]  As with the PNN, Gaussian Kernel functions are 
located at each training case.  Each case can be 
regarded,as evidence that the response surface is a given 
height at that point in input space, with progressively 

decaying evidence in the immediate vicinity.  The GRNN 
copies the training cases into the network to be used to 
estimate the response on new points.  The output is 
estimated using a weighted average of the outputs of the 
training cases, where the weighting is related to the 
distance of the point from the point being estimated (so 
that points nearby contribute most heavily to the 
estimate). 
 
The first hidden layer in the GRNN contains the radial 
units.  A second hidden layer contains units which help to 
estimate the weighted average.    Each output has a 
special unit assigned in this layer which forms the 
weighted sum for the corresponding output.  To obtain 
the weighted average from the weighted sum, the 
weighted sum must be divided through by the sum of the 
weighting factors.  A single special unit in the second 
layer calculates the latter value.  The output layer then 
performs the actual divisions (using special division 
units).  Hence, the second hidden layer always has exactly 
one more unit than the output layer.  In regression 
problems, typically only a single output is estimated, and 
so the second hidden layer usually has two units. 
 
The GRNN can be modified by assigning radial units 
which represent clusters rather than each individual 
training case:  this reduces the size of the network and 
increases execution speed.  Centers can be assigned using 
any appropriate algorithm such as sub-sampling or K-
means.  
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Hidden layer Output layer
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5. Experimental Data Sets 
 
We have used four different data sets for our experiments 
Two of them are available from the UCL database 
repository [12] specifically the Abalone and Water 
treatment databases. The third is the original gas turbine 
data set but this time used in regression mode.  The fourth 
is taken from a project within the University of 
Sunderland’s MINICON project for predicting time to 
failure of a high speed machine tool with a large number 
of inputs.  Table 1 gives further details of the data sets. 
 

 
Table 1:  Details of the data sets used 
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6. Methods and Results 
 
We began this experiment by inputting the data set to 
each architecture without the benefit of any feature 
extraction/selection.  This provided us with a benchmark 
of performance. Then we applied each of the 
dimensionality reduction techniques to the input sets, and 
trained each network on the reduced data sets.  Tables 2-5 
detail the results of our experiments.  The data sets were 
partitioned into training, verification and test set in the 
ratio 70-20-10 respectively.  The networks were trained 
on the training set, and the accuracy of their predictions 
verified using the verification and test sets.   We include 
the results of stepwise linear regression as part of the 
comparison.  The result is expressed as the variance 
between training and verification sets, i.e. 31% refers to a 
models which explains 31% of the model accuracy in the 
sample set.  This result is given in the Result field. 
 
 

Table 2: Results obtained from the Abalone data set 
 

 RBF MLP GRNN 
Technique Inputs Result Result Result 
Sen Anal 6 34% 33% 31% 
Gen Alg 6 34% 33% 31% 
PCA 2 19% 18% 19% 
S.L.R 6 34% 33% 31% 
Normal 8 31% 33% 33% 

 
Table 3: Results obtained from Gas turbine data set. 

 
 RBF MLP GRNN 
Technique Inputs Result Result Result 
Sen Anal 1 99% 99% 83% 
Gen Alg 20 37% 25% 18% 
PCA 7 14% 38% 38% 
S.L.R 13 78% 80% 76% 
Normal 21 88% 37% 34% 

 
 

Table 4:  Results obtained from Water database. 
 

 RBF MLP GRNN 
Technique Inputs Result Result Result 
Sen Anal 7 64% 72% 62% 
Gen Alg 3 81% 80% 80% 
PCA 15 66% 70% 46% 
S.L.R 13 73% 83% 53% 
Normal 37 75% 83% 51% 

 
 
 
 
 
 
 
 
 

 
 

Table 5: Results obtained from machine tool database. 
 

 RBF MLP GRNN 
Technique Inputs Result Result Result 
Sen Anal 89 16% 57% 24% 
Gen Alg 338 30% 39% 32% 
PCA 7 32% 38% 45% 
S.L.R 100 22% 46% 37% 
Normal 400 29% 41% 29% 

 
 
 

Table 6:  Equivalent results using stepwise linear regression. 
 

Data Set Inputs Result 
Abalone 6 53% 

Gas 13 78% 
Water 13 94% 

Machine 
Tool 

100 100% 

 
 

 
7. Observations and Conclusions 
 
This work has evaluated the effectiveness of stepwise 
linear regression primarily as a dimensionality reduction 
technique, but also from the perspective of regression 
modelling. Considering the feature selection/extraction 
aspect, we have selected a variety of databases which are 
both high dimensionality but also contain anomalies such 
as highly unstructured domains which as can be seen from 
the results in table 2 make accurate regression modelling 
extremely difficult.  The use of stepwise linear regression 
appears most effective when combined with multi-layer 
perceptron architectures, using either conjugate gradients, 
or a combination of back-propagation of error combined 
with longer training epochs of the conjugate gradient 
algorithm. 
 
In most cases it is comparable if not superior to most of 
the other methods considered however; most notably in 
the gas turbine data set sensitivity analysis is clearly 
superior.  The accuracy obtained in that analysis must be 
tempered by the caveat that sensitivity analysis is a time 
consuming process because of the necessity to substitute 
attributes in and out of the model according to the relative 
accuracy of the model.  We proffer a tentative conclusion 
that the measure of inter-correlation used by stepwise 
linear regression combined with its measures of variance 
are more effective here than using an objective function 
as in genetic algorithms, or relying upon a limited number 
of principal components analysis to model the feature 
space.  However this conclusion requires further work on 
a larger variety and number of data sets before it can be 
stated categorically. 
 
As a data modelling method stepwise linear regression 
performs exceptionally well on all but the abalone data 
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sets.   This suggests that there is perhaps more linearity in 
these data sets which make them more amenable to 
modelling using such linear techniques. 
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