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Abstract 
 

A criticism of neural network architectures is their susceptibility to 
“catastrophic interference” the ability to forget previously learned data when 
presented with new patterns.  To avoid this, neural network architectures have 
been developed which specifically provide the network with a memory, either 
through the use of a context unit, which can store patterns for later recall, or 
which combine high-levels of recurrency coupled with some form of back-
propagation.  We have evaluated two architectures which utilise these 
concepts, namely, Hopfield and Elman networks, respectively and compared 
their performance to self-organising feature maps using time- smoothed 
moving average data and Time delayed neural networks.  Our results indicate 
clear improvements in performance for networks incorporating memory into 
their structure. However the degree of improvement depends largely upon the 
architecture used, and the provision of a context layer for the storage and recall 
of patterns.  
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Introduction 
 
Both multi layer perceptrons (MLP’s) [1] and 
radial basis function networks [2] have been 
shown to be excellent function approximators, 
utilising either hidden units with sigmoidal 
transfer function, hidden units using a distance 
propagation rule and a Gaussian or some other 
transfer function respectively.  For this reason 
they have been employed with great success in 
both classification and regression analysis 
problems.  They are particularly effective in 
dealing with non-linear relationships between 
parameters.  However in their deployment they 
require much more caution then is necessary for 
an equivalent linear time series estimation 
technique for the following reasons:- 
 

• They require large amounts of sample 
data, due to the large number of 
“degrees of freedom” built into such 
models. 

 

• Several serious problems can arise 
during training, such as overfitting, sub-
optimal minima as a result of estimation 
(learning), etc., which are more severe 
than in the linear case (here overfitting 
can arise by choosing the wrong  value 
for a model parameter) 

 
• They have no means of providing for 

the linear case in a trivial way. 
 
The first point is particularly relevant for many 
real-world applications where limited amounts of 
data are available.  The second point concerns 
the type of learning algorithm employed, back-
propagation of error being the algorithm of 
choice to obtain an optimal model.   A crucial 
point in processing time varying signals is how 
to represent past inputs or “history”, and how 
this history affects the response to the current 
inputs.  This is achieved by storing inputs in the 
recent past and presenting them for processing 

mailto:dale.addison@sunderland.ac.uk


along with the current input [7] [8].  
Alternatively past events can be indirectly 
represented by a suitable memory device such as 
a series of possibly dispersive time-delays, 
feedback or recurrent connections, in the internal 
states of the neurons [3] [4] [5].  
 
In this work we have compared and contrasted a 
variety of networks which incorporate storage of 
previous and current patterns and applied them to 
the domain of novelty detection of electrical 
output from gas turbine data. The architectures 
used here are, Hopfield networks [3], Elman 
Networks [4], simple two stage Time delayed 
neural networks [5] and a modified Kohonen 
network which incorporates a temporal element 
in their input structure allowing smoothed inputs 
to be presented to the networks [6], [7].  The 
structure of this paper is as follows.  Section 1 
will describe the architectures outlined above.  
Section 2 will discuss the experimental method 
applied. The results will be considered in section 
3, and conclusions and further research will be 
suggested in section 4. 
 
1  Networks incorporating memory.  
In this section we briefly outline the means by 
which each of the architectures incorporates 
memory.  We begin with the Hopfield network 
which uses associative memory and recall, a 
concept which allows for the recall of entire 
patterns, based upon a fraction of that patterns 
presented to the network which acts as a “cue” 
for the recall phase. 
 
1.1 Hopfield networks 
The version of the Hopfield network 
functionality used here can be found in [3].  
Essentially it attempts to store a specific set of 
equilibrium points such that once an initial 
condition is provided, the network eventually 
comes to rest at that design point.  The network 
is recursive, in that the output is fed back as the 
input once the network is in operation.  
Hopefully the network will settle on one of the 
original design points.  The design utilised here 
attempts to minimise the chances of falling into a 
spurious equilibrium point by ensuring such 
points are made as small as possible [3]. 
 
1.2 Elman Networks 
Elman networks contain an internal feedback 
loop which, which makes it capable of both 
detecting and generating temporal patterns [4]. 
Elman networks have the ability to approximate 
any input/output function with a finite number of 

discontinuities owing to their use of a two layer 
sigmoid/linear architecture.  The provision of a 
context layer to which patterns can be copied 
directly following learning provides the memory 
comparison system for this type of network.  
Figure 1 illustrates the general architecture 
underlying networks with recurrent structures. 
 
1.3 Time delay neural networks. 
Time delay neural networks (TDNN’s) consist of 
a complete memory temporal encoding stage 
followed by a feed forward neural network [5].  
In this work, TDNN’s exclude those 
architectures which include hidden unit delays, 
concentrating on simple two stage models.  The 
TDNN architecture used here consists of a 
tapped delay line followed by a multi-layer 
perceptron [1].  The output of the tapped delay 
line is an N-dimensional vector, made up of the 
input signal at the current time, the previous 
input signal etc.  This has the advantage of ease 
of mathematical analysis, and training regimes.  
Figure 2 at the end of this paper explains the 
architecture in more detail. 
 
1.4 Time smoothed moving averages.  
The final technique used in this evaluation 
borrows from the work of [6] and [7]. We utilise 
a flow vector, f=[x,y, dx. dy], containing second 
order information, motivated by the notion that 
the rate of change in the level of electrical 
output, provides an obvious source of 
discriminatory behaviour.  The position first and 
second order elements to this vector, provide a 
vector which contains information regarding 
previous behaviour of the data.  A time 
smoothing function was then applied to the 
elements in the vector.  This can be done by 
using all instantaneous elements with a smoothed 
value for each.  The feature vector used in the 
following experiments was made up of a subset 
of these elements.  Using a simple (x,y) pair for 
clarity this becomes. 
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where the function s(.) indicates a time smoothed 
average of the quantity, and the first and second 
order differences, dx and x are given by. 2d
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The smoothing function s(.) implements a 
moving average window defined as. 
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The important point here being the use of a 
“short term memory” to store the recent position 
of the first and second order information 
regarding the status of the power output.  This 
data together with the current data is used as 
input to a Kohonen Self-organising Feature Map 
(SOFM) [9].  For comparison purposes the data 
set used contains all of the input vectors as used 
in the Kohonen networks as described in [10]. 
 
2 Method 
For training and testing purposes, the data 
provided comes from sensor readings from a gas 
turbine.  Each sensor produces a pattern 
containing 240 rows of data. Each sensor reading 
was combined into a suitable training set, the 
target being the level of electrical output 
produced by the turbine.  In the case of the 
Kohonen networks, this is not required and all of 
the data is incorporated into the input phase. 
Because of the size of the input feature space 
several dimensionality reduction techniques were 
applied to the data, to ensure non-redundant data 
was not incorporated into the models.  These 
issues do not apply to Elman and Hopfield 
networks.   For the Elman and Hopfield networks 
the input patterns were normalised to unit length, 
to ensure they fell within the required range of 0-
1. Each network was trained on the profile of a 
normal event data set, split into a training, 
verification and test set, which allows the 
accuracy of the network to be predicted 
Subsequently the networks were given several 
pattern sets, to determine its ability to 
discriminate between normal and abnormal data 
readings. 
 
3  Results 
The results of our experiments are contained in 
tables 1 and 2 which show the results for the 
time shifted Kohonen networks and the Elman,, 
Hopfield  and Time delayed networks 
respectively.  
 
 
 
 

Number 
of 

Inputs 

Percentage 
of Patterns 
classified 
correctly 

41 100% 

42 100% 

42 100% 

38 100% 

38 98% 

28 99% 

13 100% 

13 100% 

13 95% 

 
Table 1:  Performance of Kohonen networks 

using time shifted inputs 
 

Network 
type 

Percentage 
of  Patterns 
Correctly 
Classified 

Elman 100% 

Hopfield 25% 

TDNN’s 83.3% 

 
Table 2: Results of  Elman, Hopfield and Time 

delay neural networks (TDNN’s). 
 

The examples demonstrate that certain 
architectures are better at recognising novel 
patterns than others.  The Hopfield networks are 
capable of discriminating between normal and 
extremely obvious error patterns, but have more 
difficulty in discriminating between normal 
patterns and other sets containing only a small 
percentage of error patterns. The Elman 
networks, have shown excellent discriminatory 
ability, recognising normal patterns as well as 
discriminating effectively between different type 
of error patterns.  The self-organising feature 
maps with time delayed inputs also show good 
classification performance.  The time delayed 
networks were able to discriminate between error 
and normal patterns, but experienced similar 
problems to the Hopfield networks, in failing to 
recognise errors in pattern sets which were 
substantially normal, however their performance 
is far better than for the Hopfield network. 
 



4 Conclusions 
We have experimented with neural network 
architectures capable of storing and recalling 
previously learned patterns, which include a 
“memory” facility.  We have compared their 
performance to neural networks, which use some 
form of time delayed inputs, or time smoothed 
data to achieve the same effect.  Our experiments 
suggest that architectures relying solely on 
associative learning are incapable of 
discriminating between patterns other than those 
which are very diverse from the original pattern 
on which they have been trained.   Because of 
this Hopfield networks appear unsuitable for 
condition monitoring purposes owing to their 
eagerness to fall into a state space from which it 
is impossible to dislodge them.   
 
Elman networks appear more promising, as the 
combination of a context layer together with a 

method of adjusting the difference between 
required and actual results gives the system the 
required “jolt” to escape from minima’s.   The 
use of time delayed inputs to neural networks 
such as multi-layer perceptrons and Kohonen 
networks, suggest that good classification 
performance can be achieved.  However the 
verification error between the training and test 
sets is higher than may be expected, whilst the 
two stage time delay networks do not recognise 
all of the subsequent patterns with which they 
are presented.  Our results suggest that the 
Kohonen network with time shifted inputs and 
Elman networks provide comparable 
performance to the architectures used in [10].  
However the increase in dimensionality incurred 
by using a larger input set for the time shifted 
Kohonens may pose more sever problems for 
larger data sets than that used in this study. 
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Figure 1: Simple recurrent network, showing connections between  

hidden and context layer 
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Figure 2: tapped delay line as input to MLP 
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