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Abstract 

 
A text clustering neural model, traditionally, is assumed to 
cluster static text information and represent its inner structure 
on a flat map.  However, the quantity of text information is 
continuously growing and the relationships between them are 
usually complicated.  Therefore, the information is not static 
and a flat map may be not enough to describe the relationships 
of input data.  In this paper, for a real-world text clustering 
task we propose a new competitive Self-Organising Map  
(SOM) model, namely the Dynamic Adaptive Self-Organising 
Hybrid model (DASH).  The features of DASH are a dynamic 
structure, hierarchical clustering, non-stationary data learning 
and parameter self-adjustment.  All features are data-oriented:  
DASH adjusts its behaviour not only by modifying its 
parameters but also by an adaptive structure.  We test the 
performance of our model using the larger new Reuters news 
corpus based on the criteria of classification accuracy and 
mean quantization error.  
 
 

1  Introduction 
 
Clustering by document concepts is a helpful way for linking a query to relevant 
information.  One well-known project is WebSOM [1].  WebSOM employs a Self-
Organising Map (SOM) for clustering documents and presents them on a 2-
dimensional map.  The SOM, proposed by Kohonen in the 1980s, applies a pre-
defined topological structure and a time-based decaying learning rate to function as a 
powerful tool for non-linear projection, vector quantization, and data clustering tasks 
[2].  In terms of a real-world text clustering task, however, the quantity of text 
information is continuously growing so the information is not static.  This 
information usually has some relationship with time, for instance, news.  Some 
specific events often occur during a specific period and the recent information is 



more important.  Moreover, it is not easy to decide the number of clusters for a 
complicated text set, which should be further analysed based on a hierarchical 
architecture.   
 Therefore, a SOM clustering model with a very large map is not preferred.  A 
model which contains a time-based decaying learning function and pre-defined 
topological structure is not suitable for such a real-world text clustering task.  
Several alternative models have been proposed to enhance the practicability of the 
SOM.  However, none of the existing models meet all the needs of the features 
required for a real-world text clustering task.  This leads to the development of a new 
algorithm, the Dynamic Adaptive Self-Organising Hybrid model (DASH). 

The remainder of this paper is organised as follows.  In Section 2, we give a brief 
survey of the related competitive neural learning models.  In section 3, we introduce 
the features of the DASH and its algorithm.  Section 4 includes the experiments and 
comparisons using three scenarios which test our model based on the static data set 
and non-stationary data set.  A conclusion is given in section 5. 

 
 

2  The Competitive Neural Learning Models 
 
Due to the deficiencies of the SOM, several related unsupervised neural learning 
models have been proposed.  They are based on the competitive learning technique 
whose learning adjustments are confined to a neuron that is most activated to the 
stimulus currently being presented [2, 3].  This pure competitive learning has a 
feature of “winner-take-all”.  Compared with a neural system, the neighbours of the 
winner neuron are also activated to a stimulus.  The lateral relationships of neurons 
and the winner affect the extent of activation for the neighbours of the winner.  Thus 
both the winner and its neighbours are activated to a stimulus, which form a “winner- 
take-most” model. 

In a clustering task, we use a unit to represent the neuron, a connection to 
represent the relationship and an input data vector to represent the stimulus.  All the 
relationships of the units form a topology of a competitive neural model.  The winner 
is represented by the Best Matching Unit (BMU) which is defined as the unit of the 
model with the shortest Euclidean distance to its associated input vectors.  A 
common goal of these algorithms is to map a data set from a high-dimensional space 
onto a low-dimensional space, and keep its inner structure as faithful as possible.  
We divide these models into four groups, which are static models, dynamic models, 
hierarchical models and non-stationary distribution learning models.   

Static models, such as the Neural Gas (NG) [4], and dynamic models, such as the 
Growing Grid (GG) [5], Growing Cell Structure (GCS) [6], Growing Neural Gas 
(GNG) [7], Incremental Grid Growing (IGG) [8] and Growing SOM (GSOM) [9], 
try to define a new architecture with no need of prior knowledge for a topological 
structure or the number of output units.  They develop the map periodically.  Some 
models, e.g. the GCS, GNG and IGG also contain a unit-pruning or connection-
trimming function which is based on a pre-defined constant threshold, to further tune 
the structures.  Hierarchical models, such as the TreeGCS [10], Multilayered Self-
Organising Feature Maps (M-SOM) [11] and Growing Hierarchical Self-Organizing 



Map (GHSOM) [12], offer a detailed view for a complicated clustering task.  Non-
stationary distribution learning models, such as the Growing Neural Gas with Utility 
criterion (GNG-U) [13], Plastic Self Organising Map (PSOM) [14] and Grow When 
Required (GWR) [15] are focused on the ability of continuous learning under a 
dynamic environment. 

We focus on the models with a continuous learning or hierarchical training 
function.  For a model to offer automatic hierarchical clustering, it needs a function 
to further prune the map by removing unsuitable units to form several partitions on a 
map.  Hodge and Austin [10] use this technique to form synonym clusters as an 
automatic thesaurus.  However, the unit-pruning function seriously depends on a pre-
defined constant threshold.  Based on the unknown data distribution, this threshold is 
very difficult to determine.  Second, the partition is formed because of the nature of 
the input data.  We cannot foresee that a hierarchy must be built by a competitive 
model with the unit-pruning function.  A proper policy may build such a hierarchy by 
further developing a whole map from a unit with many input data mapped to this unit 
or with higher error information, e.g. [11] and [12].   

For the non-stationary data set, a trained unit or training unit should be replaced 
by a unit which is trained with new input samples.  A model with the unit-pruning 
function or with the connection-trimming function which should be based on the 
global consideration can handle this task.  That is, a model, e.g. the GNG and GWR, 
using the connection-trimming function based on a local aged consideration can be 
treated as an incomplete non-stationary model only.  On the other hand, the stop 
criterion of models should not be a time-dependent threshold, such as iteration or 
epoch.  However, this stop criterion is used for all models in our survey.  Moreover, 
if a model does not use a time-dependent stop criterion, an unsuitable constant unit-
pruning or a connection-trimming threshold may make the model train forever but 
learn nothing.  This constant value can be very small or very large, which is totally 
dependent on trial-and-error.  However, it is not a good idea to use such a constant 
threshold for a big data set.  We argue that a unit-pruning or a connection-trimming 
threshold should be automatically adjusted to suit different data sets during training. 

 
 

3  Dynamic Adaptive Self-organising Hybrid (DASH) 
Model 

 
3.1  The Features of DASH 
 
DASH is a growing self-organising model which contains a dynamic structure, 
hierarchical training, non-stationary data learning and parameter self-adaptation.  All 
features are data-oriented.  We need to define three main parameters, which have an 
impact on the style of the DASH architecture.  The first one is τ, which influences 
how well DASH represents the current data set.  The second one is Smin, a minimum 
number of input samples which a map represents.  The third one is a connection-
trimming threshold, β.  These three parameters are percentage-like.  Smin can also be 
a real number.  For example, a child map is not built when a unit is associated with 



the input vectors whose number is less than Smin.  βis a self-adjusting variable when 
the units do not grow continuously to meet the requirement of a map quality, the 
AQE, which is defined as the average distance between every input vector and its 
Best Matching Unit (BMU) [16].   

DASH starts with two units and stops when all units represent their associated 
input vectors well, or the number of inputs is too few to build a sub-map.  The 
recursive training continues for the individual unit whose AQE does not meet the 
requirement of DASH.  We use the Competitive Hebbian Learning (CHL) principle 
to connect the BMU and the Second Matching Unit (SMU) for an input stimulus [17].  
A connection is trimmed if it is relatively old compared to other connections and a 
unit without any connection is removed.  However, if the model has met its quality 
requirement, the connection-trimming function is restrained.  This is not a problem 
for training non-stationary data sets because the stop criterion is based on the map 
quality.  Thus, τaffects the size of a single map, Smin influences the depth of a 
hierarchy, and βcontrols the separation criterion of the clusters.  An example of the 
DASH structure is given in (Figure 1a). 

DASH also offers a cue to decide the number of clusters, which is usually 
determined by subjective human judgement in other competitive learning models.  
Because of the features of structure separation and hierarchical training, DASH treats 
a single training map as a two-level hierarchy, i.e. one for a whole sub-map and the 
other for the partitions in a sub-map.  For example, a map in layer 1 contains four 
partitions (Figure 1a).  This map is treated as a local root that has four branches and 
each branch has a different number of stems.  Finally, DASH offers the potential for 
shorter training.  A hierarchical training function can be seen as a distributed model, 
which trains a whole input set by training several smaller input sub-sets separately. 

 
3.2  The DASH Algorithm 
 
DASH consists of two main iterations and seven processes (Figure 1b).  The inner 
iteration is a learning procedure for each map in a hierarchy.  The outer iteration 
offers a stop criterion for the whole model.  In terms of the concept, DASH is a 
combination of GNG and GHSOM but with several unique features mentioned in the 
previous section.  For convenience, we describe the main structure of the model as 
follows: 

Let A={L1,L2,…Ll}, where A is the set of sub-maps.  Let L={U1,U2,…Uu}, where 
Ui is the unit i in the map L.  Each Ui has an error variable, erri.  Let Cij be the binary 
connection between Ui and Uj.  Each Cij has a variable, ageij, to store the connection 
age.  Let the input distribution be p(X) for the input set X.  Let X={x1,x2,…xn}, where 
xi is the input sample i in the input set X.  We define the weight vectors for an input 
sample and for a unit as xi and wi respectively. Then the precise processes of the 
DASH algorithm are as below. 

 
1) Global network initialisation 
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Figure 1. a) The hierarchical structure of 
DASH 

b) The flow chart of DASH algorithm 

1.1) Define a map quality index,τ , where 10 ≤<τ .  τ  decides the objective 
AQE for a child map.  It controls the extent of the size for a single map and is 
also the stop criterion for the child map training.  A smaller τ  builds a bigger 
map.  We suppose that before training there is a virtual map L0 above the first 
map L1.  L0 contains only one unit whose weight vector, w0, is the mean value 
of the untrained input data set, X, which contains N input samples. 
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Thus, the AQE of L0 is: 
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1.2) Define learning ratesα b and α s for the Best Matching Unit b, and its 
neighbours s, respectively, where 0 <αs<αb<1. 

1.3) Define an age threshold, β, for a connection Cij, where 10 ≤< β .  The β 
cooperates with the current highest age of connection to decide whether a 
connection is too old.  A β adjusting parameter, Jβ, is defined as well, which 
is used to modulate β based on the current data samples. 

1.4) Define Smin, a minimum number of input samples which a map represents.  
The default value is two because the minimum number of units is two in a 
map.  Smin can also be set as a proportion of the size of input data, where 
0<Smin<1.   In this case, Smin will be found by Smin×N.  Smin influences the 
depth of a DASH hierarchy.  A smaller Smin makes DASH expand deeper 
down a hierarchy.   

1.5) Let Ol be a temporal maximum number of units in a map for the layer l.  It is 
defined by Equation 3.  We use 3 as the minimum of Ol because a sub-map of 
DASH starts with 2 units, which allows the model with one spare unit to grow.  
We apply a constant, 100, in (Eq. 3) for two reasons.  The first is that the 
model is better if it can achieve the quality requirement using a smaller map.  
We force the model to train properly rather than adding units to pursue a 
smaller AQE.  The second reason is that a very large map is not preferred 
because it is hard to analyse or visualise.  Besides the parameter, Ol, we also 
define a γadjusting parameter, Jγ, to modify Ol, where 10 ≤< γJ .  Ol will be 
modified in the self-adjusting phase, if a map contains Ol units but does not 
meet the map quality.  
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2) Local network initialisation 
2.1) Determine an objective AQE based on the AQE in the direct parent map. 

τ×= −1ll AQEAQEobjective  (Eq. 4) 

2.2) Based on Ol, define how often the unit grows as follows: 
IterGrow=

1−l

l

O
N , where Nl is the number of current input data. (Eq. 5) 

2.3) Create two units and initialise weights randomly from p(X). 

2.4) Re-order the current data set randomly. 

3) Learning Phase 
3.1) Generate a data sample xi for the model. 

3.2) Calculate the Euclidean distance of each unit to xi and decide the Best 
Matching Unit, b, and the Second Best Matching Unit, s, by 



 niLn wxb −= ∈minarg  and (Eq. 6) 

nibLn wxs −= ∈ }/{minarg  (Eq. 7) 

and connect them as Cbs, if it does not exist.  

3.3) Update the weights to the BMU b, and other units n, with a connection from b: 
)()()1( nibbb wxtwtw −⋅+=+ α  and (Eq. 8) 
)()()1( nisnn wxtwtw −⋅+=+ α  (Eq. 9) 

3.4) Add 1 to the age variables for all connection C, but zero to Cbs. 
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3.5) Increase the error to the BMU error variable, errb: 

bibb wxterrterr −+=+ )()1(
 (Eq. 11) 

4) Pruning Phaseat: each n IterGrow iteration, where n is 1≥ . 
4.1) Find the maximum age of connections currently. 

agemax=arg max(age) (Eq. 12) 

4.2) Remove any connection whose age is larger than a portion of the maximum 
age of connections currently.  This will be carried out if the number of units is 
more than two. 
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4.3) Prune any unit without any connection but still keep the minimum number of 
units, 2. 

5) Growing Phase: at each IterGrow iteration, insert a new unit as follows:  
5.1) Find the unit q with maximum accumulated error: 

)(maxarg errq Lu∈=  (Eq. 14) 

5.2) Find the unit f, the unit with the highest accumulated error amongst the 
neighbours of q. 

)(maxarg errf
qNeighboursu∈=  (Eq. 15) 

5.3) Insert a new unit r to a map and initialise its weight by interpolating weight 
vectors q and f. 
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5.4) Set up the err variables for units q, f and r. 
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5.5) Connect unit r to unit q and f.  Set up the age variable for these two 
connections, i.e. Crq and Crf. 

qfrfrq ageageage ==  (Eq. 20) 

5.6) Remove the connection between unit q and unit f. 

6) Check the condition whether the map AQE meets the objective AQE at each 
IterGrow iteration. 
6.1) Evaluate the AQE for a map l:  
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where wb(i) is the weight vector of BMU for input sample i.  

6.2) If ll AQEobjectiveAQE ≤ , then stop training for this map, or go to the self-
adjusting phase. 

7) Self-adjusting Phase: at some IterGrow iteration, modify some parameters to suit 
the object AQEl. 
7.1) Increase the age threshold, βby the adjusting parameter, Jβ, if units are not 

growing. 
)2()()1( βββ Jtt −×=+ ,where 15.0 ≤< βJ . (Eq. 22) 

7.2) Decrease the age threshold, if the number of units reach Ol, which is the 
reference number of units in a map: 

βββ Jtt ×=+ )()1( , (Eq. 23) 

7.3) Increase the reference number of units in a map, if the number is reached. 
)2()()1( γJtOtO ll −×=+ ,where 15.0 << γJ . (Eq. 24) 

8) Put all units whose AQEs are greater than the objective AQE in the same layer 
into the training pool if the number of their associated input vectors is greater than 
Smin.  

9) Continue the hierarchical training until there are no training requirements in the 
training pool. 

 
4  Experiments and Comparisons 
 
4.1  The New Reuters Corpus 
We work with the new version of the Reuters corpus, RCV1, since this news corpus 
is a representative test for text classification, a common benchmark and a fairly 
recent comprehensive data source [18].  In this paper, we initially concentrate on the 



8 most dominant topics and the first 10,000 full-text articles associated with these 
topics for our data set. Because a news article can be pre-classified as more than one 
topic, we consider the multi-topic as a new combination of topics in our task.  Thus 
the 8 chosen topics are expanded into 40 combined topics for the first 10,000 news 
articles. We use a traditional vector space model such as TFxIDF to represent a full-
text document as a numeric vector [19]. Some feature selection techniques are 
necessary because of the huge dimensionality of vectors.  We remove the stop words, 
confine words shown in WordNet [20], which only contains open-class words, i.e. 
nouns, verbs, adjectives and adverbs and lemmatise each word to its base form. After 
this pre-processing, we still have 16,122 different words in the master word list.  We 
further pick up the 1,000 most frequent words from the master word list since this 
method is as good as some dimensionality reduction techniques [21]. We evaluate 
our model by the AQE and classification accuracy, which have also been used in the 
work of Kohonen et al. [22]. The AQE tests the distortion of the representation for 
the model.  Classification accuracy is used since it tests the ability of the model to 
simulate human categorisation when tackling pre-labelled data sets. 
 
4.2  Static Data Set 
We use 10,000 full-text documents as our test-bed.  We use a normalized TFxIDF as 
the vector representation approach [23].  In this experiment, three different τ, i.e. 
95%, 90% and 85% of DASH are applied.  For convenience, they are termed 
DASH95, DASH90 and DASH85 in this paper.  Different τ  means different 
objective AQEs for DASH, which affects the size of maps.  We compare the results 
with five other models, i.e. SOM, NG, GG, GCS and GNG.  We use 15x15 = 225 
units for each model, but this number is only an estimate for dynamic models, i.e. the 
GG, GCS and GNG.  All learning rates of models are initialised to 0.1.  Such a 
learning rate is decayed in some models, such as SOM and NG.  SOM fine-tuning 
training starts with a 0.001 learning rate.  Other models, such as the GG, GCS, GNG 
and DASH, also use an extra learning rate which is 0.001 for training runner-up units 
of BMU.  Except DASH, all models stop at 50,000 iterations.  The DASH stop 
criterion is defined by objective AQE.  According to the results in (Table 1), the 
classification accuracy of GG is the lowest.  Other models have similar results.   

Another evaluation criterion used in this paper is the AQE, which can be used to 
describe the degree of distortion for models.  The smaller AQE, the more cohesive 
the cluster.  We notice that the stricter structure of models, e.g. SOM and GG have 
higher AQEs.  That is, the performance of vector quantization is a significant feature 
for clustering.  The pre-defined structure for models, e.g. SOM and GG, is not the 
same as the real structure of the input data set.    

Other parameters for three DASH models are the same.  However, the β variable 
is self-adjusting based on the input data set.  DASH85 contains only one map whose 
units have all reached the stop criterion.  Compared with other DASH models, 
DASH85 applies a bigger map with 239 units.  Theβ parameter is adapted from 
95% to 17.6%.  Thus, this is a flat DASH.  The number of units in the first map for 
the DASH95 and DASH90 are 58 and 124, respectively.  Several units in the first 
map of the DASH95 and DASH90 do not meet the stop criterion.  Therefore, they 
develop the recursive training until the stop criterion is met.  In our experiments, 



DASH95 and DASH90 contain 30 and 14 sub-maps, respectively.  The performance 
of the DASH is comparable to other models and offers an extra hierarchical structure 
based on the static data set.  

   SOM NG GG GCS GNG DASH95 DASH90 DASH85 
AQE 0.930 0.837 0.881 0.820 0.823 0.818 0.790 0.802 
Accuracy 69.16% 69.54% 69.82% 68.18% 68.60% 66.60% 70.42% 68.37% 

Table 1. A comparison of several competitive methods based on the criteria of classification 
accuracy and AQE for 10,000 full-text news articles.  Parameters for DASH are: Smin: 1% and 
β: 95%.  Please note that β is an adjustable parameter during training.   

4.3  Knowledge Acquisition 
 
In this section, we keep the same pre-processing and vector representation 
approaches as that in the previous section but we want to test the ability of models to 
handle the non-stationary data set.  We use three experiments in this section.  We 
treat the new data set as new knowledge that complements the existing knowledge.  
The first 5,000 full-text documents are applied as an existing data set and the second 
5,000 full-text documents as a new data set.  The existing data set is used for all 
experiments in the beginning.  The new data set is introduced in experiment 1 at 
iteration 10,000, experiment 2 at iteration 30,000 and experiment 3 at iteration 
50,000.  SOM rough-training is stopped at iteration 30,000 and its fine-tuning 
training is stopped at 50,000 iterations.  The stop criterion of DASH is finding the 
objective AQE.  According to our experiments, the SOM does not suffer from the 
new data set seriously, if the distribution of the new data set is similar to that of the 
existing data set or the new data set comes from the same collection of the existing 
data set (Table 2).  In this case, the performance of the SOM is comparable to the 
non-stationary model, DASH. 

 10,000 iterations 30,000 iterations 50,000 iterations 
AQE 0.937  0.938 0.940 SOM Accuracy 69.06% 68.44% 69.08% 
AQE 0.771 0.780 0.802 DASH90 Accuracy 72.23% 71.42% 70.39% 

Table 2. A comparison of SOM and DASH.  A new data set is added to the existing data set at 
iteration 10,000 in experiment 1, iteration 30,000 in experiment 2 and iteration 50,000 in 
experiment 3.  Parameters for DASH are: τ: 90%, Smin: 1% and β: 95%.  Please note that β 
is an adjustable parameter during training. 

4.4  Knowledge Update 
 
In this section, we want to compare the performance of models under a non-
stationary environment as well, but we treat the existing knowledge as out-of-date, 
which should be updated by the new knowledge, i.e. the new data set.  We use the 
same pre-processing procedure mentioned above and use 10,000 full-text documents 
as our test-bed.  To mimic the non-stationary data set, we use the normalized 
TFxIDF vector representation as our new data set but use the non-normalized 
TFxIDF as the existing data set.  The averaged weights of the existing set are much 



higher than those of the new data set.  Thus, the AQEs are also much higher when 
models deal with the existing data set.  Like the strategy mentioned in the previous 
section, we introduce the new data set at iteration 10,000 for experiment 1, iteration 
30,000 for experiment 2 and iteration 50,000 for experiment 3.   According to our 
experiments, the SOM clearly suffers from the decayed learning rate (Table 3).  The 
new data samples are not learnt completely, so the accuracy drops while the AQE 
increases.  On the other hand, DASH removes all unsuitable trained units very fast 
and adjusts its new objective AQE automatically.  Thus, there is no big difference 
between the performance at each point when a new data set is introduced during 
training for DASH.      

 10,000 iterations 30,000 iterations 50,000 iterations 
AQE 0.948 1.352 2.513 SOM 
Accuracy 64.37% 21.52% 25.75% 
AQE 0.784 0.776 0.793 DASH90 Accuracy 71.40% 72.25% 69.30% 

Table 3. A comparison of SOM and DASH.  A new data set substitutes for the existing data 
set at iteration 10,000 in experiment 1, iteration 30,000 in experiment 2 and iteration 50,000 
in experiment 3.  Parameters for DASH are: τ: 90%, Smin: 1% and β: 95%.  Please note that 
β is an adjustable parameter during training. 

4.5  An Analysis of the Non-Stationary and Hierarchical DASH 
We use the second experiment in the previous section, which updates the existing 
data set at iteration 30,000 to further the analysis of our model.  Please note that a 
15×15 SOM is used in this experiment.  The DASH starts with 2 units and adjusts 
its architecture and parameters based on the current data set.  The DASH satisfies the 
objective AQE by developing 23 sub-maps.  A part of the hierarchical structure is 
shown in (Figure 2). The concepts of units in a neighbourhood are similar.  We use 
two terms whose weights are the most significant to represent the labels of the unit in 
the root map and use the second and third significant terms to represent its child map.  
Thus, a unit of the map in the lower layer of a hierarchy is associated with more 
terms, which represent news articles with more specific concepts. 

In the beginning of the training stage, the SOM has a smaller AQE because the 
number of units is much larger than that of the DASH (Figure 3a).  However, the 
AQE of the DASH is smaller than that of the SOM from iteration 8,000 (Figure 3).  
At this point, the DASH only contains 34 units while the SOM has 255 units (Figure 
4a).  When the existing data set is replaced by the new data set, the AQEs of both 
models are much smaller.  Based on the criterion of the AQE, the DASH 
outperforms the SOM.   

The non-stationary learning feature of the DASH can be illustrated by Figure 4.  
The DASH adjusts its architecture by the unit-growing and global connection-
trimming functions.  The number of units for the DASH is continuously growing in 
general.  When the existing data set is replaced by the new data set at iteration 
30,000, many unsuitable units are removed (Figure 4a).  This is performed by the 
connection-trimming variable, β.  We set an initial value of 95% for β.  It is 
adjusted automatically based on the current data set.  The final value of β is about 
0.4 (Figure 4b).  Some non-stationary competitive models such as GNG-U and GWR 



have been tried in these experiments.  However, it is not possible to use their unit-
pruning and connection-trimming constant thresholds for both data sets.  When a 
proper threshold is set for the existing data set, this threshold is always too large for 
the new data set.  Thus, models do not grow.  Conversely, if a threshold is suitable 
for the new data set, this threshold is always too small for the existing data set.  
However, we should not set such a threshold by presuming the distribution of the 
new data set.  Therefore, we only present our model and SOM in these experiments. 
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Figure 2. A part of the hierarchical structure of a DASH.  The two most significant 

terms are the shown in the upper map and the second and third most 
significant terms are show in its child map. 
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Figure 4. a) Units of SOM and DASH b) The βparameter of DASH 

5  Conclusion 
In this paper, we have presented a new type of self-organising dynamic growing 
neural network which can deal with non-stationary data sets and represent the inner 
data structure by a hierarchical view.  In terms of the concept, DASH is a hybrid 
model of GHSOM and GNG.  It contains several unique features, such as parameter 
self-adjustment, hierarchical training and continuous learning.  Based on these 
features, a real-world document clustering task has been demonstrated in this paper.  
We also analyse the deficiencies of current models.  Those models which are 
designed for the non-stationary data sets may not be suitable for clustering a real-
world task.  The main reason is the difficulty of determining constant unit-pruning 
and connection-trimming parameters.  Furthermore, those non-stationary models 
should not use a time-dependent stop criterion.  For more complex data sets, such as 
a document collection, a hierarchical structure is preferable.  This hierarchical 
training also benefits from a distributed model which trains several small maps 
separately instead of a huge map.  That is, the DASH is a new hierarchical neural 
model which functions as a non-stationary distribution learning facility. 
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