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Abstract – Most current approaches for document clustering 
do not consider the non-stationary feature of real world 
document collection. In this paper, in a non-stationary 
environment, we propose a new self-organising model, namely 
the dynamic adaptive self-organising hybrid  (DASH) model. 
The DASH model runs continuously since the new document set 
is formed consecutively for training while the old document set 
is still at the training stage. Knowledge learned from the old 
data set is adjusted to reflect the new data set and therefore 
document clusters are up-to-date. We test the performance of 
our model using the Reuters-RCV1 news corpus and obtain 
promising results based on the criteria of classification 
accuracy and average quantization error.  

 
I. INTRODUCTION 

 
Technological innovation has led to a rapid growth in the 

quantity of textual information. Such a wealth of information 
can overwhelm the user. By grouping similar sets of 
information, an organised document structure can reduce the 
search space and help users to access a number of related 
and potentially relevant documents [15].    

Many document clustering approaches, including 
statistical solutions and artificial neural networks, have been 
proposed for these tasks. However, most of these approaches 
are based on a common assumption that the documents are 
organised as a stationary collection (i.e., a fixed number of 
documents). Thus, although the particular structure of the 
current stationary document collection has been identified, 
this becomes outdated for new information. Therefore, 
motivated by the need for non-stationary organisation of 
information, this document clustering project has been 
proposed.  

The remainder of this paper is organised as follows. In 
Section 2, we define the stationary and non-stationary text 
models. In Section 3, we give a general description of self-
organising neural clustering models. In Section 4, we review 
current related neural clustering models in a non-stationary 
environment. In section 5, we introduce the DASH approach. 
In section 6, we evaluate our proposed model using the new 
Reuters Corpus under different scenarios. A conclusion is 
presented in section 7. 

 

II. STATIONARY AND NON-STATIONARY TEXT 
MODELS 

 
Traditionally, the factor of time is not involved in an 

artificial learning environment for clustering. Documents, 
e.g. news articles, usually have some relationship with time.  
Similar articles related to the same specific event are 
presented in a specific time period. On the other hand, topics 
of news articles are gradually changed over time and the 
latest event generally attracts more attention. Therefore, the 
size of the document population is always increasing in a 
real world so the environment is non-stationary. The 
appearance of a new document that is not shown in the 
stationary document collection is inevitable, and is likely to 
produce a wrong decision for document clustering.  

Most models which handle the task in a non-stationary 
environment are trained by introducing the input sample or 
the sub-set of samples one by one. This learning behaviour is 
more natural than batch learning in a non-stationary 
environment. Batch learning, which needs all input samples 
introduced to a model before learning, is impractical in a 
non-stationary environment since the new input samples do 
not yet exist and the large size of data is intractable for 
storage in computer memory.   

The limitation of learning models in a non-stationary 
environment has been addressed by introducing the concept 
of non-batch learning, for example online learning, lifelong 
learning, incremental learning and knowledge transfer, 
which all identify the same limitation of using batch learning 
in a non-stationary environment but from different 
viewpoints [6]. Online learning stresses that some input 
samples are unavailable in a non-stationary environment 
since the total number of documents is unknown. Lifelong 
learning emphasises learning throughout the entire lifetime 
of the model, which should cope with a changing 
environment. Incremental learning trains a model with the 
new input sample, without wiping the old prototype sample. 
Knowledge transfer is a machine learning method which 
learns from one task to another task and takes advantage of 
previous training experience if the latter task is related to the 
previous one. 

In a non-stationary environment, a text model should be 
able to learn continuously, keep up-to-date and provide the 
results at any time. Due to the nature of text processing 



which needs to transform each word or document to a vector 
based on the vector space representation approach, 
incremental learning by a sub-set instead of a single input 
sample is necessary. For training each sub-set, incremental 
learning by a single input sample can be used to offer the 
results at any training stage.   

Thus, in terms of a non-stationary text model for news 
articles in this paper, an open data set is divided into several 
sub-sets based on different periods of time. The later sub-set 
is related to its previous sub-set but usually contains slightly 
different news events. The model always learns from the new 
sub-set and still preserves knowledge learned from the old 
sub-set if it does not contradict the current task. Therefore, 
the results (i.e. document clusters) of this non-stationary text 
model are gradually changing over time and always reflects 
the latest inner relationships of news documents grouped by 
concept.   

In Fig. 1a, a fixed document collection is used for a text 
model in a stationary environment, which usually enforces 
batch learning. A new document that is not included in the 
original data collection (the training set + the test set) 
requires a re-training procedure to keep the model up-to-date.  
In contrast to a stationary text model, the non-stationary text 
model in Fig. 1b associates document time-stamps based on 
time. Each time-stamped packet contains several documents 
issued in the short period. The incremental learning model 
adapts to the new time-stamped data set by continuously 
adjusting the learned structure. 
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Fig. 1. Stationary text model and non-stationary text model 
 
III. SELF-ORGANISING NEURAL TEXT MODELS 
 
Inspired by the biological concept, in which neurons with 

similar functions are placed together, Kohonen proposes a 

self-organising map (SOM) using a pre-defined topological 
structure of units and a time-decaying learning rate such that 
adjacent units contain similar weights, so units self-organise 
into an ordered map [8]. Therefore, users can choose the 
relevant clusters of documents on the map to get relevant 
documents.  The robustness of the SOM algorithm and its 
appealing visualisation effects make it a prime candidate in 
neural text clustering. 

However, a model that depends on the time-decaying 
learning rate is not suitable in a non-stationary information 
environment because the learning is stopped after the 
learning rate reaches a very small value. Furthermore, the 
network structure including the topology and the number of 
units has to be set before training. It is hard to presuppose 
the inner structure of a large and non-stationary data set, so 
such a pre-defined SOM topology may not be appropriate. 

 
IV. RELATED SOM-LIKE MODELS IN A NON-

STATIONARY ENVIRONMENT 
 
Several related self-organising neural models have been 

proposed to enhance the practicability of SOM. A common 
goal of these algorithms is to map a data set from a high-
dimensional space onto a low-dimensional space, and keep 
its inner structure as faithful as possible.  These models are 
focused on the ability of continuous learning in a non-
stationary environment. For example, the growing cell 
structure (GCS) [5], growing neural gas (GNG) [3], 
incremental grid growing (IGG) [1], growing neural gas with 
utility criterion (GNG-U) [4], plastic self organising map 
(PSOM) [10] and grow when required (GWR) [11], contain 
unit-growing and unit-pruning functions which are analogous 
to biological functions of remembering and forgetting under 
a non-stationary environment. 

For the non-stationary data set, a trained unit or training 
unit should be updated by a unit which is trained with new 
input samples. This is performed by the unit-pruning or 
connection-trimming function. A model with the connection-
trimming function should be based on a global age 
consideration. The reason is that a local age variable of a 
connection does not grow when units of this connection are 
not activated. That is, the aged connection may be kept 
forever so that the capability of self-adjustment for a model 
to new stimuli is diminished. Thus, a model, such as GNG 
and GWR, using the connection-trimming function based on 
a local age consideration can be treated as an incomplete 
non-stationary model.   

On the other hand, an unsuitable constant unit-pruning or 
connection-trimming threshold may make the model train 
forever but learn nothing. This constant value can be very 
small or very large, which is totally dependent on trial-and-
error. Therefore, it is not a good idea to use such a constant 
threshold for a big data set. Unfortunately, the GCS, GNG, 
IGG, GNG-U, PSOM and GWR apply a constant threshold 
for detection of unsuitable units. We argue that a unit-



pruning or connection-trimming threshold should be 
automatically adjusted to suit different data sets during 
training. 

 
V. DYNAMIC ADAPTIVE SELF-ORGANISING HYBRID 

MODEL 
 

By inspecting limitations of existing neural text models, 
we propose the dynamic adaptive self-organising hybrid 
model (DASH). The complete DASH algorithm can be 
found in [7]. In this paper, we focus on the differences 
between this model and existing models. The DASH model 
adapts its main parameters and architecture to input samples 
in a non-stationary environment for document clustering. 
Learning in the DASH model is self-organised so units 
nearby represent similar documents. In terms of the concept, 
the DASH model is a hybrid integration of the growing 
neural gas (GNG) [3] and growing hierarchical self-
organising map (GHSOM) models [14]. The flowchart of 
DASH is shown in Fig. 2, which involves two main 
iterations and seven processes. The inner iteration is a GNG-
like learning procedure for each map in a hierarchy. The 
outer iteration is a GHSOM-like recursive training cycle. 
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Fig. 2. The flowchart of the DASH algorithm 
 
Like GNG, the DASH model starts with two units [Fig. 3] 

and applies the competitive Hebbian learning principle to 
connect the best matching unit and second best matching 
unit for an input stimulus [12]. A connection is trimmed if it 

is relatively old compared to other connections and a unit 
without any connection is removed. Like GHSOM, the 
recursive training continues for the individual unit whose 
average quantization error (AQE), which is the average 
distance between input vectors and their associated 
representative vector, is greater than the objective AQE.  

Unlike GNG, the DASH model applies a global 
connection-trimming function instead of a local one for the 
current data set to remove outdated relationships between 
units. Therefore, the isolated units are pruned, which makes 
the DASH model able to forget outdated knowledge. The 
local function is sub-optimal, but is used by GNG since the 
global one does not exist in a non-stationary environment. 
However, a quasi-global function can be provided by 
transferring knowledge task by task in a non-stationary 
environment. Some work regarding knowledge transfer 
between neural networks can be found in the literature, e.g. 
[17, 13]. The concept of knowledge transfer is especially 
suitable for document clustering in a non-stationary 
environment. The reason for this is that document vectors for 
the artificial neural model are produced based on some 
vector representation approach which transforms 
relationships between words and documents to weight 
vectors.    

Furthermore, this connection-trimming threshold is a 
constant for GNG but it is a self-adjusted variable based on 
input vectors for the DASH model. This threshold is 
increased if units are not growing in the DASH model Eq. (1) 
and is decreased if the number of units has reached the 
reference number of units in a map Eq. (2). The reference 
number of units is a temporal maximum unit number for the 
current map and is also increased when this number is 
reached Eq. (3). GNG grows every pre-defined constant 
cycle which is determined by trial-and-error. In contrast, this 
cycle is a part of the DASH model, which is mutually 
decided by the objective AQE and the number of input 
samples in the current map. Finally, GNG is a flat model, 
which represents all input vectors using a map, but the 
DASH model is a hierarchical model, which is able to train a 
whole input set gradually by training several smaller input 
sub-sets separately. The GNG-like growing behaviour of the 
DASH model is illustrated in Fig. 3a-3f.  

 
)2()()1( βββ Jtt −×=+ , (1) 

where ß is a connection age threshold, t indicates time, Jß is 
the ß adjusting parameter which is between 0.5 and 1. 
 

βββ Jtt ×=+ )()1( . (2) 
 

)2()()1( Oll JtOtO −×=+ , (3) 
where Ol is the reference number of units in a map and JO is 
its adjusting parameter which is between 0.5 and 1. 



The main difference between the DASH model and 
GHSOM is that GHSOM is designed for a stationary 
environment but the DASH model can be used in a non-
stationary environment.  This is because GHSOM is based 
on the traditional SOM training algorithm, which contains a 
time-based decaying learning rate.  Even though the stop 
criterion for the DASH model and GHSOM is the quality of 
clustering (i.e. the AQE), GHSOM still needs to decide the 
training length for each static SOM training.  GHSOM is a 
recursive Growing Grid (GG) model: another GHSOM is 
created from the unit in its parent GHSOM.  However, 
without a unit-pruning function, once units grow, they are 
part of the GHSOM architecture forever.  Unlike the 
GHSOM model, the DASH model is a recursive GNG model 
that contains both unit-growing and unit-pruning functions, 
which offer the elasticity for a competitive learning model 
used in a non-stationary environment.  The GHSOM-like 
hierarchical training of the DASH model is illustrated in Fig. 
3g and 3h. 
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Fig. 3. The growing processes for the DASH model.  Units 
are represented as circles and lateral connections between 
units are represented as lines.  Circle A indicates the unit 
with the biggest error and Circle B indicates the neighbour 
with the biggest error for Circle A.  The grey circle is the 
new unit at each stage. 

 
VI. EXPERIMENTS 

 
A. Experiment Design 
 

Two data sets are used for the simulation of a non-
stationary environment. For convenience, the first one is 
called the existing data set and the second one is called the 
new data set. The current version of the Reuters news corpus, 
RCV1, is used in this research and the eight most prominent 

topics are focused on. Since a news article can be pre-
classified as more than one topic, we consider the multi-
topic as a new combination of topics. Thus, the 8 chosen 
topics are expanded into 40 combined topics for the first 
10,000 news articles. 

We treat the first 10,000 full-text news articles in 
Reuters-RCV1 as the existing data set and treat the following 
10,000 full-text news articles as the new data set. Each data 
set uses a normalised TFxIDF vector representation method 
[16] based on its own period of time. In other words, they 
form different word-document matrices which are based on 
the first and the second 10,000 full-text documents for the 
existing data set and new data set respectively.  

The existing data set is used for all scenarios in the 
beginning and the new data set is introduced in scenario 1 at 
iteration 10,000, scenario 2 at iteration 30,000 and scenario 
3 at iteration 50,000.  In other words, the existing data set is 
updated by the new data set at iteration 10,000 for scenario 1, 
iteration 30,000 for scenario 2 and iteration 50,000 for 
scenario 3. For convenience, the first scenario is termed 
iter10000, the second scenario is termed iter30000 and the 
third scenario is termed iter50000. 

We use open-class words, i.e. nouns, verbs, adjectives 
and adverbs, remove the stop words, and lemmatise each 
word to its base form. We further pick up the 1,000 most 
frequent words from the master word list since this method is 
as good as most dimensionality reduction techniques [2].   

We compare the DASH model with SOM and GNG 
because these two models are typical models in the static 
neural clustering group and dynamic neural clustering group 
respectively. For comparison with the DASH model, the 
same training length, learning rate and the number of units 
used in the first layer of the DASH model should be used for 
SOM and GNG.  In our experiments, the objective AQE is 
90%, the initial connection-trimming threshold (i.e. ß) is 
95%, the ß adjusting parameter (i.e. Jß) is 90% and the unit 
reference number adjusting parameter (i.e. JO) is 90% for the 
DASH model. Under these settings, the DASH models need 
42,000, 46,000 and 62,000 iterations for scenario 1, scenario 
2 and scenario 3 respectively. Thus, these training lengths 
are also used for SOM and GNG. 
 
B. Evaluation 

 
We evaluate our model by AQE and classification 

accuracy, which have also been used in the work of Kohonen 
et al. [9]. AQE and classification accuracy for each scenario 
are shown in Fig. 4 and 5. According to these results, the 
overall DASH hierarchy outperforms other models with a 
higher classification accuracy and a lower AQE for all 
scenarios.  

According to Fig. 4, SOM suffers from a non-stationary 
environment when the new data set is introduced at a later 
training stage. In scenario 1, which uses 42,000 iterations 
and introduces the new data set at iteration 10,000, SOM 



gradually adjusts itself to suit the new data set during the rest 
training length (i.e. 32,000 iterations). The performance 
evaluated by classification accuracy criterion is even slightly 
better than other dynamic models (i.e. the DASH model and 
GNG). However, in scenarios 2 and 3, the rest training 
lengths are 16,000 (46,000-30,000) and 12,000 (62,000-
50,000) iterations respectively for training the new data set. 
SOM performs worse than the DASH model since its 
learning rate has decayed to a small value. In other words, 
the training length in scenarios 2 and 3 is not enough for 
SOM to keep the same performance in scenario 1. A 
comparison of models based on AQE criterion is illustrated 
in Fig. 5. AQE of SOM is 0.937, 0.948 and 0.956 in scenario 
1, 2 and 3 respectively. SOM has the worst results in all 
scenarios. This effect is more evident when the new data set 
is introduced at a later training stage. 

GNG also suffers from a non-stationary environment 
because a new data set that is introduced at a later training 
stage produces a greater AQE and lower accuracy [Fig. 4 
and 5].  Unlike SOM and GNG, the DASH model does not 
suffer from introducing the new data set at a later training 
stage. Classification accuracy for the first layer of the DASH 
hierarchy is 65.36%, 66.16% and 65.77% and AQE is 0.856, 
0.855 and 0.857 in scenario 1, 2 and 3 respectively [Fig. 4 
and 5]. 
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Fig. 4. A comparison of SOM, GNG and DASH evaluated 
by classification accuracy. DASH-first denotes the first layer 
of the DASH hierarchy and DASH-all denotes the whole 
DASH hierarchy. 
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Fig. 5. A comparison of SOM, GNG and DASH evaluated 
by AQE. DASH-first denotes the first layer of the DASH 
hierarchy and DASH-all denotes the whole DASH hierarchy. 

 
To demonstrate the convergence procedure step by step 

for three models, the first two principle components are used 
to project input samples and output units from a multi-
dimensional space to a two-dimensional space. Each model 
uses three convergence maps to illustrate the behaviour when 
the new input set is explored at iteration 30,000 [Fig. 6-8]. 
For illustration, each of the 10,000 news articles is 
represented by a small grey dot, each unit is represented by a 
circle and each connection of units is represented by a line. 

All models represent the existing data set well [Fig. 6a, 7a 
and 8a] and need to modify learned units to track the new 
shape of input samples due to the introduction of the new 
data set at iteration 30,000 [Fig. 6b, 7b and 8b]. However, 
SOM hardly adapts to the new data set because of the 
decaying learning rate and finally contains several dead units, 
which contain no associated input samples [Fig. 6c].  For 
GNG, a local connection-trimming procedure only removes 
unsuitable units connecting to recently activated units 
directly. In consequence, several unsuitable units which are 
too far away from recently activated units cannot be 
removed [Fig. 7c]. Unlike SOM and GNG, the DASH model 
removes unsuitable units and represents the new data set 
without dead units [Fig. 8c]. 

 

   
(a) iteration 29,000 (b) iteration 30,000 (c) iteration 46,000 
 
Fig. 6. SOM after 29,000, 30,000 and 46,000 iterations in 
scenario 2. Each map contains 144 units and each of the 
10,000 news articles is represented by a small grey dot. The 
first two principal components of 1,000-dimensional vectors 
are used as axes. 



 

   
(a) iteration 29,000 (b) iteration 30,000 (c) iteration 46,000 
 
Fig. 7. GNG after 29,000, 30,000 and 46,000 iterations in 
scenario 2. Each of the 10,000 news articles is represented 
by a small grey dot. The first two principal components of 
1,000-dimensional vectors are used as axes. 

 

   
(a) iteration 29,000 (b) iteration 30,000 (c) iteration 46,000 
 
Fig. 8. DASH after 29,000, 30,000 and 46,000 iterations in 
scenario 2. Each of the 10,000 news articles is represented 
by a small grey dot. The first two principal components of 
1,000-dimensional vectors are used as axes. 

 
VII. CONCLUSION 

 
In the non-stationary environment, a clustering model 

runs continuously since the new document set is formed 
consecutively for training while the old document set is still 
at the training stage.  Thus, output units of the map learned 
from the old data set are continuously adjusted to reflect the 
new data set. Based on the same or very similar resources 
(i.e. training length and the number of units), the DASH 
model outperforms SOM and GNG in a non-stationary 
environment by a greater classification accuracy and a lower 
average quantization error. There are three main reasons as 
follows.  Firstly, the DASH model uses fixed learning rates 
to keep the learning ability at any training stage so that the 
model can learn continuously. Secondly, the DASH model 
uses a global connection-trimming function to remove 
unsuitable units. This function helps the DASH model to 
represent input samples by its output units efficiently. 
Thirdly, the DASH model contains the self-adjusting 
connection-trimming threshold, which can be adapted by the 
old data set and be directly used for the new data set. This 
function helps the DASH model to use less training time 
than other models to achieve similar performance for the 
new data set. 
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