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Abstract. The following chapter explores learning internet agents. In

recent years, with the massive increase in the amount of available infor-

mation on the Internet, a need has arisen for being able to organize and

access that data in a meaningful and directed way. Many well-explored

techniques from the �eld of AI and machine learning have been applied in

this context. In this paper, special emphasis is placed on neural network

approaches in implementing a learning agent. First, various important

approaches are summarized. Then, an approach for neural learning in-

ternet agents is presented, one that uses recurrent neural networks for

the learning of classifying a textual stream of information. Experimental

results are presented showing that a neural network model based on a

recurrent plausibility network can act as a scalable, robust and useful

news routing agent.

1 Introduction

The exponential expansion of Internet information has been very apparent; how-
ever, there is still a great deal that can be done in terms of improving the
classi�cation and subsequent access of the data that is potentially available.
The motivation for trying various techniques from the �eld of machine learning
arises from the fact that there is a great deal of unstructured data. Much time is
spent on searching for information, �ltering information down to essential data,
reducing the search space for speci�c domains, classifying text and so on. The
various techniques of machine learning are examined for automating the learn-
ing of these processes, and tested to address the problem of an expanding and

dynamic Internet [26].

So-called \internet agents" are implemented to address some of these prob-
lems. The simplest de�nition of an agent is that it is a software system, to some
degree autonomous, that is designed to perform or learn a speci�c task [2, 30]
which is either one algorithm or a combination of several. Agents can be designed
to perform various tasks including textual classi�cation [34, 10], information re-
trieval and extraction [5, 9], routing of information such as email, news [3, 18, 6,



46], automating web browsing [1], organization [36, 4], personal assistance [39,
20, 17, 14] and learning for web-agents [28, 46].

In spite of a lot of work on internet agents, most systems currently do not have
learning capabilities. In the context of this paper, a learning agent is taken to be
an algorithmic approach to a classi�cation problem that allows it to be dynamic,
robust and able to handle noisy data, to a degree autonomously, while improving
its performance through repeated experience [44]. Of course, learning internet

agents can have a variety of de�nitions as well, and the emphasis within this
context is more on autonomously functioning systems that can either classify or
route information of a textual nature. In particular, after a summary of various
approaches, the HyNeT recurrent neural network architecture will be described,
which is shown to be a robust and scalable text routing agent for the Internet.

2 Di�erent Approaches to Learning in Agents

The �eld of Machine Learning is concerned with the construction of computer
programs that automatically improve their performance with experience [33].

A few examples of currently applied machine learning approaches for learn-
ing agents are decision trees [37], Bayesian statistical approaches [31], Kohonen

networks [24, 22] and Support Vector Machines (SVMs) [19]. However, in the
following summary, the potential use of neural networks is examined.

2.1 Neural Network Approaches

Many internet-related problems are neither discrete nor are the distributions
known due to the dynamics of the medium. Therefore, internet agents can be
made more powerful by employing various learning algorithms inspired by ap-
proaches from neural networks. Neural networks have several main properties
which make them very useful for the Internet. The information processing is
non-linear, allowing the learning of real-valued, discrete-valued and vector-valued

examples; they are adaptable and dynamic in nature, and hence can cope with a
varying operating environment. Contextual information and knowledge is repre-
sented by the structure and weights of a system, allowing interesting mappings
to be extracted from the problem environment. Most importantly, neural net-
works are fault-tolerant and robust, being able to learn from noisy or incomplete
data due to their distributed representations.

There are many di�erent neural network algorithms; however, while bearing
in mind the context of agents and learning, several types of neural network are
more suitable than others for the task that is required. For a dynamic system
like the Internet, an online agent needs to be as robust as possible, essentially
to be left to the task of routing, classifying and organizing textual data in an
autonomous and self-maintaining way by being able to generalize, to be fault-
tolerant and adaptive. The three approaches so far shown to be most suitable are
recurrent networks [46], Kohonen self-organizing maps (SOMs) [24, 22] and rein-
forcement learning [42, 43]. All these neural network approaches have properties
which are briey discussed and illustrated below.



Supervised Recurrent Networks Recurrent neural networks have shown
great promise in many tasks. For example, certain natural language processing
approaches require that context and time be incorporated as part of the model [8,
7]; hence, recent work has focused on developing networks that are able to create
contextual representations of textual data which take into account the implicit
representation of time, temporal sequencing and the context as a result of the
internal representation that is created. These properties of recurrent neural net-
works can be useful for creating an agent that is able to derive information from
text-based, noisy Internet input. In particular, recurrent plausibility networks
have been found useful [45, 46].

Also, NARX (Nonlinear Autoregressive with eXogenous inputs) models have
been shown to be very e�ective in learning many problems such as those that
involve long-term dependencies [29]; NARX networks are formalized by [38]:

y(t) = f(x(t� nx); : : : ; x(t� 1); x(t); y(t� ny); : : : ; y(t� 1));

where x(t) and y(t) are the input and output of the network at a time t; nx
and ny represent the order of the input and output, and the function f is the
mapping performed by the multi-layer perceptron.

In some cases, it has been shown that NARX and RNN (Recurrent Neural
Network) models are equivalent [40], and under conditions that the neuron trans-
fer function is similar to the NARX transfer function, one may be transformed
to the other and vice versa - the bene�t being that if the output dimension of a
NARX model is larger than the number of hidden units, training an equivalent
RNN will be faster; pruning is also easier in an equivalent NARX whose stability
behavior can be analyzed more readily.

Unsupervised Models Recently, applications of Kohonen nets have been ex-
tended to the realm of text processing [25, 16], to create browsable mappings
of Internet-related hypertext data. A self-organizing map (SOM) forms a non-
linear projection from a high-dimensional data manifold onto a low-dimensional
grid [24]. The SOM algorithm computes an optimal collection of models that
approximates the data by applying a speci�ed error criterion and takes into ac-
count the similarities and hence the relations between the models; this allows
the ordering of the reduced-dimensionality data onto a grid.

The SOM algorithm [23, 24] is formalized as follows: there is an initialization

step, where random values for the initial weight vectors wj(0) are set; if the total
number of neurons in the lattice is N , wj(0) must be di�erent for j = 1; 2; : : : ; N .
The magnitude for the weights should be kept small for optimal performance.
There is a sampling step where example vectors x from the input distribution
are taken that represent the sensory signal. The optimally matched 'winning'
neuron i(x) at discrete time t is found using the minimum-distance Euclidean
criterion by a process called similarity matching:

i(x) = argjmin k x(t)� wj(t) k for j = 1; 2; : : : ; N



The synaptic weight vectors of all the neurons are adjusted and updated,
according to:

wj(t+ 1) =

�
wj(t) + �(t)[x(t) � wj(t)] for j 2 �i(x)(t)
wj(t) otherwise

The learning rate is �(t), and �i(x)(t) is the neighborhood function centered
around the winning neuron i(x); both �(t) and �i(x)(t) are continuously varied.
The sampling, matching and update are repeated until no further changes are
observed in the mappings.

In this way, the WEBSOM agent [25] can represent web documents statis-
tically by their word frequency histograms or some reduced form of the data
as vectors. The SOM here is acting as a similarity graph of the data. A sim-
ple graphical user interface is used to present the ordered data for navigation.
This approach has been shown to be appropriate for the task of learning for
newsgroup classi�cation.

Reinforcement Learning Approaches This is the on-line learning of input-
output mappings through a process of exploration of a problem space. Agents
that use reinforcement learning rely on the use of training data that evaluates
the �nal actions taken. There is active exploration with an explicit trial-and-
error search for the desired behavior [43, 12]; evaluative feedback, speci�cally
characteristic of this type of learning, indicates how good an action taken is,
but not if it is the best or worst. All reinforcement algorithm approaches have
explicit goals, interact with and inuence their environments.

Reinforcement learning aims to �nd a policy that selects a sequence of ac-
tions which are statistically optimal. The probability that a speci�c environment
makes a transition from a state x(t) to y at a time t+ 1, given that it was pre-
viously in states x(0); x(1); :::; and that the corresponding actions a(0); a(1); :::;
were taken, depend entirely on the current state x(t) and action a(t) as shown
by:

�fx(t+ 1) = yjx(0); a(0);x(1); a(1); : : : ;x(t); a(t)g

= �fx(t+ 1) = yjx(t); a(t)g

where � (�) is the transition probability or change of state.
If the environment is in a state x(0) = x, the evaluation function [43, 12] is

given by:

H(x) = E

"
1X
k=0


k
r(k + 1)jx(0) = x

#

Here, E is the expectation operator, taken with respect to the policy used to
select actions by the agent. The summation is termed the cumulative discounted



reinforcement, and r(k + 1) is the reinforcement received from the environment
after action a(k) is taken by the agent. The reinforcement feedback can have
a positive value (regarded as a 'reward' signal), a negative value (regarded as
'punishment') or unchanged;  is called the discount-rate parameter and lies in
the range 0 �  < 1, where if  ! 0, then the reinforcement is more short
term, and if  ! 1, then the cumulative actions are for the longer term. Learn-
ing the evaluation function H(x) allows the use of the cumulative discounted
reinforcement later on.

This approach, though not fully explored for sequential tasks on the Internet,
holds promise for the design of a learning agent system that ful�lls the necessary
criteria - one that is autonomous, able to adapt, robust, can handle noise and
sequential decisions.

3 Analysis and Discussion of a Speci�c Learning Internet

Agent: HyNeT

A more detailed description of one particular learning agent will now be pre-
sented. A great deal of recent work on neural networks has shifted from the
processing of strictly numerical data towards the processing of various corpora
and the huge body of the Internet [35, 26, 5, 19]. Indeed, it has been an impor-
tant goal to study the more fundamental issues of connectionist systems, and
the way in which knowledge is encoded in neural networks and how knowledge
can be derived from them [13, 32, 11, 41, 15]. A useful example, applicable as it
is a real-world task, is the routing and classi�cation of newswire titles and will
now be described.

3.1 Recurrent Plausibility Networks

In this section, a detailed analysis of one such agent called HyNeT (Hybrid
Neural/symbolic agents for Text routing on the internet), which uses a recurrent
neural network, is presented and experimental results are discussed.

The speci�c neural network explored here is a more developed version of the
simple recurrent neural network, namely a Recurrent Plausibility Network [45,
46]. Recurrent neural networks are able to map both previous internal states and
input to a desired output - essentially acting as short-term incremental memories
that take time and context into consideration.

Fully recurrent networks process all information and feed it back into a sin-
gle layer, but for the purposes of maintaining contextual memory for processing
arbitrary lengths of input, they are limited. However, partially recurrent net-
works have recurrent connections between the hidden and context layer [7] or
Jordan networks have connections between the output and context layer [21];
these allow previous states to be kept within the network structure.

Simple recurrent networks have a rapid rate of decay of information about
states. For many classi�cation tasks in general, recent events are more important



but some information can also be gained from information that is more longer-
term. With sequential textual processing, context within a speci�c processing
time-frame is important and two kinds of short-term memory can be useful
- one that is more dynamic and varying over time which keeps more recent
information, and a more stable memory, the information of which is allowed
to decay more slowly to keep information about previous events over a longer
time-period. In other research [45], di�erent decay memories were introduced by
using distributed recurrent delays over the separate context layers representing
the contexts at di�erent time steps. At a given time step, the network with n

hidden layers processes the current input as well as the incremental contexts
from the n� 1 previous time steps. Figure 1 shows the general structure of our
recurrent plausibility network.
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Fig. 1. General Representation of a Recurrent Plausibility Network.

The input to a hidden layer Hn is constrained by the underlying layer Hn�1

as well as the incremental context layer Cn�1. The activation of a unit Hni(t)
at time t is computed on the basis of the weighted activation of the units in
the previous layer H(n�1)i(t) and the units in the current context of this layer
C(n�1)i(t). In a particular case, the following is used:



Lni(t) = f(
X
k

wkiH(n�1)i(t) +
X
l

wliC(n�1)i(t))

The units in the two context layers with one time a step are computed as
follows:

Cni(t) = (1� 'n)H(n+1)i(t� 1) + 'nCni(t� 1)

where Cni(t) is the activation of a unit in the context layer at time t. The self-
recurrency of the context is controlled by the hysteresis value 'n. The hysteresis
value of the context layer Cn�1 is lower than the hysteresis value of the next
context layer Cn. This ensures that the context layers closer to the input layer
will perform as memory that represents a more dynamic context for small time
periods.

3.2 Reuters-21578 Text Categorization Test Collection

The Reuters News Corpus is a collection of news articles that appeared on the

Reuters Newswire; all the documents have been categorized by Reuters into
several speci�c categories. Further formatting of the corpus [27] has produced the
so-called ModApte Split; some examples of the news titles are given in Table 1.

Semantic Category Example Titles

money-fx Bundesbank sets new re-purchase tender

shipping US Navy said increasing presence near gulf

interest Bank of Japan determined to keep easy money policy

economic Miyazawa sees eventual lower US trade de�cit

corporate Oxford Financial buys Clancy Systems

commodity Cattle being placed on feed lighter than normal

energy Malaysia to cut oil output further traders say

shipping & energy Soviet tankers set to carry Kuwaiti oil

money-fx & currency Bank of Japan intervenes shortly after Tokyo opens

Table 1. Example titles from the Reuters corpus.

All the news titles belong to one or more of eight main categories: Money and
Foreign Exchange (money-fx, MFX), Shipping (ship, SHP), Interest Rates
(interest, INT), Economic Indicators (economic,ECN), Currency (currency,
CRC), Corporate (corporate, CRP), Commodity (commodity, CMD), En-
ergy (energy, ENG).

3.3 Various Experiments Conducted

In order to get a comparison of performance, several experiments were conducted
using di�erent vector representations of the words in the Reuters corpus as



part of the preprocessing; the variously derived vector representations were fed
into the input layer of simple recurrent networks, the output being the desired
semantic routing category. The preprocessing strategies are briey outlined and
explained below. The recall/precision results are presented later in Table 2 for
each experiment.

Simple Recurrent Network and Signi�cance Vectors In the initial exper-
iment, words were represented using signi�cance vectors; these were obtained by
determining the frequency of a word in di�erent semantic categories using the
following operation:

v(w; xi) =
Frequency of w in xiP
j

Frequency of w in xj

for j 2 f1; � � �ng

If a vector (x1x2 : : : xn) represents each word w, and xi is a speci�c semantic
category, then v(w; xi) is calculated for each dimension of the word vector, as
the frequency of a word w in the di�erent semantic categories xi divided by
the number of times the word w appears in the corpus. The computed values
are then presented at the input of a simple recurrent network [8] in the form
(v(w; x1); v(w; x2); : : : ; v(w; xn)).

Simple Recurrent Network and Semantic Vectors An alternative prepro-
cessing strategy was to represent vectors as the plausibility of a speci�c word
occurring in a particular semantic category, the main advantage being that they
are independent of the number of examples present in each category:

v(w; xi) =
Normalized frequency of w in xiP
j

Normalized frequency of w in xj

; j 2 f1; � � �ng

where:

Normalized frequency of w in xi =
Frequency of w in xi

Number of titles in xi

The normalized frequency of appearance a word w in a semantic category xi
(i.e. the normalized category frequency) was again computed as a value v(w; xi)
for each element of the semantic vector, divided by normalizing the frequency of
appearance of a word w in the corpus (i.e. the normalized corpus frequency).

Recurrent Plausibility Network and Semantic Vectors In the �nal ex-
periment, a recurrent plausibility network, as shown in Figure 1 was used; the
actual architecture used for the experiment was one with two hidden and two
context layers. After empirically testing various combinations of settings for the
values of the hysteresis value for the activation function of the context layers, it
was found that the network performed optimally with a value of 0.2 for the �rst
context layer, and 0.8 for the second.



Type of Vector Representation Used in Experiment Training set Test set

recall precision recall precision

Signi�cance Vectors and Simple Recurrent Network 85.15 86.99 91.23 90.73

Semantic Vectors and Simple Recurrent Network 88.57 88.59 92.47 91.61

Semantic Vectors with Recurrent Plausibility Network 89.05 90.24 93.05 92.29

\Bag of Words" with Recurrent Plausibility Network - - 86.60 83.10

Table 2. Best recall/precision results from various experiments

3.4 Results of Experiments

The results in Table 2 show the clear improvement in the overall recall/precision
values from the �rst experiment using the signi�cance vectors, to the last using
the plausibility network. The experiment with the semantic vector representation
showed an improvement over the �rst. The best performance was shown by the
use of the plausibility network.

In comparison, a bag-of-words approach, to test performance on sequences
without order, reached 86.6% recall and 83.1% precision; this indicates that the
order of signi�cant words and hence the context are important as a source of
information which the recurrent neural network learns, allowing better classi�-
cation performance.

These results demonstrate that a carefully developed neural network agent
architecture can deal with signi�cantly large test and training sets. In some pre-
vious work [45], recall/precision accuracies of 95% were reached but the library
titles used in the work were much less ambiguous than the Reuters Corpus (which
had a few main categories and newstitles that could easily be misclassi�ed due
to the inherent ambiguity) and only 1 000 test titles were used in the approach
while the plausibility network was scalable to 10 000 corrupted and ambiguous
titles.

For general comparison with other approaches, interesting work on text cat-
egorization on the Reuters corpus has been done using whole documents [19]
rather than titles. Taking the ten most frequently occurring categories, it has
been shown that the recall/precision break-even point for Support Vector Ma-
chines was 86%, 82% for k-Nearest Neighbor, 72% for Naive Bayes. Though
a di�erent set of categories and whole documents were used, and therefore the
results may not be directly comparable to results shown in Table 2, they do how-
ever give some indication of document classi�cation performance on this corpus.
Especially for medium text data sets or when only titles are available, the HyNeT
agent compares favorably with the other machine learning techniques that have

been tested on this corpus.

3.5 Analysis of the Output Representations

For a clear presentation of the network's behavior, the results are illustrated
and analyzed below; the error surfaces show plots of the sum-squared error of
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Fig. 2. The error surface of the title \Miyazawa Sees Eventual Lower US Trade De�cit"

the output preferences, plotted against the number of training epochs and each
word of a title.

Figure 2 shows the surface error of the title \Miyazawa Sees Eventual Lower
US Trade De�cit". In the Reuters Corpus this is classi�ed under the \economic"
category; as can be seen, the network does learn the correct category classi�-
cation. The �rst two words, \Miyazawa" and \sees", are initially given several
possible preferences to other categories and the errors are high early on in the
training. However, the subsequent words \eventual", \lower", etc. cause the net-
work to increasingly favor the correct classi�cation, and at the end, the trained
network has a very strong preference (shown by the low error value) for the
incremental context of the desired category.

The second example is shown in Figure 3, titled \Bank of Japan Determined
To Keep Easy Money Policy" and belonging to the \interest" category. This ex-
ample shows a more complicated behavior in the contextual learning, in contrast
to the previous one. The words beginning \Bank of Japan" are ambiguous and
could be classi�ed under di�erent categories such as \money/foreign exchange"
and \currency", and indeed the network shows some confused behavior; again
however, the context of the latter words such as \easy money policy" eventually
allow the network to learn the correct classi�cation.

3.6 Context Building in Plausibility Neural Networks

Figures 5 and 7 present cluster dendrograms based on the internal context rep-
resentations at the end of titles. The test includes 5 representative titles for each
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Fig. 3. The error surface of the title \Bank of Japan Determined To Keep Easy Money

Policy"

category; each title belongs to only one category. All titles are correctly classi-
�ed by the network. The �rst observation that can be made from these �gures is
that the dendrogram based on the activations of the second context layer (closer
to the output layer) provides a better distinction between the classes. In other
words, it can be seen that the second context layer is more representative of the
title classi�cation than the �rst one. This analysis aims to explore how these
contexts are built and what the di�erence is between the two contexts along a
title.

Using the data for Figures 5 and 7, the class-activity of a particular context
unit is de�ned with respect to a given category as the activation of this unit
when a title from this category has been presented to the network. That is, for
example, at the end of a title from the category \economic", the units with the
higher activation will be classi�ed as being more class-active with respect to the
\economic" category, and the units with lower activation as less class-active.

For the analysis of the context building in the plausibility network, the ac-
tivation of the context units were taken while processing the title \Assets of
money market mutual funds fell 35.3 mln dlrs in latest week to 237.43 billion".
This title belongs to the \economic" category and the data was sorted with a
key which is the activity of the neurons with respect to this category. The results
are shown in Figures 4 and 6.

The most class-active unit for the class \economic" is given as unit 1 in
the �gure, and the lowest class-activity as unit 6. Thus, the ideal curve at a
given word step for the title to be classi�ed to the correct category will be a
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Fig. 5. The cluster dendrogram and internal context representations of the �rst context

layer for 40 representative titles.
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monotonically decreasing function starting from the units with the highest class-
activity to the units with lower class-activity. As can be seen, most of the units
in the �rst context layer (closer to the input) are more dynamic. They are highly
dependent on the current word. Therefore the �rst context layer does not build a
representative context for the required category at the end of the title. It rather
responds to the incoming words, building a short dynamic context. However, the
second context layer is incrementally building its context representation for the
particular category. It is the context layer which is most responsible for a stable
output and does not uctuate so much with the di�erent incoming words.

4 Conclusions

A variety of neural network learning techniques were presented which are con-
sidered relevant to the speci�c problem of classi�cation on Internet texts. A new
recurrent network architecture, HyNeT, was presented that is able to route news
headlines. Similar to incremental language processing, plausibility networks also
process news titles using previous context as extra information. At the beginning
of a title, the network might predict an incorrect category which usually changes
to the correct one later on when more contextual information is available.

Furthermore, the error of the network was also carefully examined at each
epoch and for each word of the training headlines. These surface error �gures al-
low a clear, comprehensive evaluation of training time, word sequence and overall
classi�cation error. In addition, this approach may be quite useful for any other
learning technique involving sequences. Then, an analysis of the context layers
was presented showing that the layers do indeed learn to use the information
derived from context.

To date, recurrent neural networks have not been developed for a new task
of such size and scale, in the design of title routing agents. HyNeT is robust,
classi�es noisy arbitrary real-world titles, processes titles incrementally from
left to right, and shows better classi�cation reliability towards the end of titles
based on the learned context. Plausibility neural network architectures hold a lot
of potential for building robust neural architectures for semantic news routing
agents on the Internet.
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