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Abstract. Spike synchronisation and de-synchronisation are important
for feature binding and separation at various levels in the visual system.
We present a model of complex valued neuron activations which are syn-
chronised using lateral couplings. The firing rates of the model neurons
correspond to a complex number’s absolute value and obey conventional
attractor network relaxation dynamics, while the firing phases corre-
spond to a complex number’s angle and follow the dynamics of a logistic
map. During relaxation, we show that features with strong couplings are
grouped by firing in the same phase and are separated in phase from
features that are coupled weakly or by negative weights. In an example,
we apply the model to the level of a hidden representation of an image,
thereby segmenting it on an abstract level. We imply that this process
can facilitate unsupervised learning of objects in cluttered background.

1 Introduction

Object recognition is a key task in everyday situations and for robotics appli-
cations. Unsupervised learning of object classes from natural data is performed
by young living beings and has a chance of becoming a convenient and flexible
method of learning to categorise sensory data by an artificial agent. A hierarchy
of increasingly complex feature detectors is one aspect of the visual recognition
process. In many models, such a feature extracting step performs an almost
linear vector transformation. So in order to achieve noticeable achievements in
their serial application, a strong non-linearity must be introduced at every level.

The non-linear response properties observed in cortical cells are explained in
model studies by intra-area horizontal connections. A mathematical advantage
to implementing these as an attractor network is that its activations recover
noisy input with maximum likelihood [1]. Contrast-invariant orientation tuning
curves and shift invariant responses can be obtained [2], as in V1 neurons.

Unsupervised learning of objects is possible if objects are shown on a plain
background, but still fails with a noisy background [3]. While the competitive
effect of the attractor network reduces background noise, in realistic conditions
further percepts are the rule in addition to the object to be learnt. We therefore
aim to separate these simultaneous percepts in the dimension of phase in order
to separate an object from its background. In a hierarchical model this would
allow higher levels to learn only the object at certain phases or only background
elements at other phases and will facilitate unsupervised learning of objects.

Detailed spiking neuron models are attractive for segmentation purposes. In
addition to the neurons’ firing rate their code provides information that can
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be used for mutual binding and segregation. Computationally it is efficient to
incorporate these additional capabilities of spikes in a single variable per neuron
which we call a neuron’s phase. A process to adjust this variable efficiently is
deterministic chaos with a dual role of (i) supplying a process of pattern creation
by synchronising the phases of coupled units and at the same time (ii) revolting
against convergence into stereotyped synchronised states [4].

Our approach has the following characteristics: (i) Coupling strengths are
represented by connection weights that can be trained to represent correlated
activations and which can be negative. (ii) The weighting of the neural inputs
is performed by complex number algebra. Complex-valued neural networks have
advantages for chaotic and brain-like systems, image processing and quantum
devices [6]. We identify the absolute value of a complex neuron activation with
its firing rate and the phase of its activation with the phase at which its spikes
are emitted. (iii) The rates follow a conventional update dynamics of a recurrent
neural net. (iv) A logistic map provides the chaotic dynamics to synchronise and
separate the phases, as in the “Divide and Conquer” model [5]. (v) Finally, we
show an application where an image is segmented on its “hidden”, first cortical
representation on area V1, similar to the competitive layer model [7].

2 Real Valued Relaxation Procedure

We use one layer of fully connected units to define a recurrent update dynamics
for the neurons’ rates and phases. After some, possibly random, initialisation of
the firing rates, the rate rk of any unit k is governed over time steps t by

rk(t + 1) = f(
∑

j wkjrj(t) − θk) (1)

where wkj is the connection weight from unit j to unit k and θk is its threshold.
The transfer function is f(x) = 1/(1 + e−x). A learning rule for the weights and
thresholds is given in [8] and weights which sustain a bell-shaped hill of activation
rates will have a Mexican hat shaped profile. Thus, we have a continuous valued
attractor network and since weights are approximately symmetric, wkj ≈ wjk,
our intuition is that activations rk relaxate to a stable state corresponding to a
minimum of some energy function. In the following, we will introduce a second
variable, the phase ϕk, with different dynamics.

3 Complex Valued Interactions

A complex number as displayed in Fig. 1 a) can be written as z = x+iy = r eiϕ

with i2 = −1 and the relations r2 = x2 + y2 and tanϕ = y
x . We express our

neuronal activation as zk = rk eiϕk where the complex number’s length rk is the
neuron’s firing rate and its phase ϕk is the phase at which the neuron spikes.
Similar phases of two neurons would correspond to similar firing times if their
rates were the same, however, we regard these phases as abstract.
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Fig. 1. a) A complex number z can be expressed by Cartesian coordinates x, y or polar
coordinates r, ϕ. We identify its length r with a neuronal firing rate and angle ϕ with
a firing phase. The ranges of ϕ are displayed as used in the text. b) The logistic map.
Iterations according to ϕ(t + 1) = 3.9 ϕ(t) (1 − ϕ(t)), indicated for t = 0 . . . 3 starting
at ϕ(t=0) = 0.4, will lead to a desired chaotic behaviour.

The dynamics of the rates follows Eq. 1 and is independent of the phases. In
the following we will first define how phases between neurons interact (Eq. 2)
and then impose a local update dynamic on every neuron (Eq. 3).

At the beginning of the relaxation procedure, the neurons’ phases ϕk are
initialised with random values between 0 and 2π. Then at each relaxation step
a neuron receives an influence from all other neurons, which we express as:

zwf
k =

∑
j wkj rj eiϕj (2)

This weighted field is a complex number which is a sum of the complex number
contributions by the other neurons weighted by the connection weights wkj which
are real values. Using eiϕj = cosϕj + i sin ϕj it can be expressed as:

zwf
k =

∑
j wkjrj cosϕj + i

∑
j wkjrj sinϕj ≡ xwf

k + i ywf
k

We obtain the phase of the neuron’s weighted field as: ϕwf
k = atan ywf

k

xwf
k

which

we shift to range between 0 and 2π according to Fig. 1 a).

4 Logistic Coupled Map

The logistic map maps a value between 0 and 1 to another, different value within
this interval, as shown in Fig. 1 b). Iterative application leads to desired chaotic
development of these values for most settings of the map parameter A between
3.57 and 4.0. Nevertheless, if several values undergoing this mapping are coupled,
they can maintain proximity and thus display structured mutual behaviour while
displaying chaotic individual behaviour [4].

Since the logistic map takes values ranging between 0 and 1 while the neurons’

phases range from 0 to 2π, we make the technical definitions: Φk ≡ ϕk

2π , Φwf
k ≡ ϕwf

k

2π .
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We will now use the scaled phase Φwf
k of the weighted field at each neuron k in

order to determine its scaled phase Φk at the next iteration time step. This is
done via the logistic map:

Φk(t + 1) = AΦwf
k (t) (1 − Φwf

k (t)) (3)

where its actual phase value ϕk is scaled back to the range from 0 to 2π. We have
set A = 3.9. Having obtained the phases at the next time step, another iteration
for the phases is performed starting with computing the weighted field (Eq. 2).
While the rates develop concurrently according to Eq. 1 to a stable state, the
phase values never converge.

5 Network Activation with Synchronising Phases

Figure 2 a) shows the activations of a network with 25 units as their rates have
converged to a stable state according to Eq. 1. This is in no way influenced by
the phases but only by the weight profile, which is also displayed for one neuron.

The weight profile with strong positive weights between neighbouring units
should synchronise the phases between such connected units. A single unit’s
phase behaves random-like from one time step to the next. Fig. 2 b) shows a
plot of time averaged phase differences between pairs of units, while the network
is maintaining the rates shown in Fig. 2 a). It shows that adjacent units within
the hill of activation have similar phases, while adjacent units at its boundary
have differing phases. The phases are thus clustering regions of strong activity
that are linked by strong positive weights (phase influence is weighted by weights
times rates, cf. Eq. 2). Regions with negative connections to such a cluster have
differing phases, as we see units with zero activation sharing an own phase. Note
that since adjacency is defined functionally by mutual strong positive connec-
tions, long-range connections could mediate synchronisation over large distances.
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Fig. 2. a) shows the weight profile (dotted line) of neuron number 15 and a bell-shaped
hill of activation rates as sustained by the network (solid line). b) shows the average
phase separation sepk+1,k = 〈|ϕk+1 − ϕk|〉 between neighbouring units (solid line) and
sep15,k = 〈|ϕ15−ϕk|〉 between any unit and unit 15 (dotted line), where the 〈.〉-brackets
denote a time average over 500 iteration steps while sustaining the rates in a).
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6 Segmentation in a Feature Space

In the following experiment we apply the attractor network to the activations
of neurons which have been trained to extract features from natural images and
which thereby resemble V1 “simple cells” [2]. Given an image as input, these
units have sparse activations with values between 0 and 1 while responding to
edges and colour features. V1 lateral weights have been trained on the same set
of natural images to memorise these codes in the attractor activation patterns.
The resulting weights are short-range excitatory and long-range inhibitory along
cortical distance, as well as in feature space of orientation and spatial frequency
[2]. This leads, during relaxation, to focused patterns of the activation rates on
the simulated V1, after initialising with a somewhat irregular activity pattern
obtained from presenting an image. From this V1 representation, a virtual re-
construction of the image can be obtained by projecting these rates back to the
image. Fig. 3 a) shows an example.

Fig. 3 c) shows the hidden units’ activations where each frame shows only
those units’ activations rk which have a phase ϕk within a range shown in Fig. 3
b). The active units in each frame are thus a subset of all active units shown in
Fig. 3 a), middle. It can be seen that within any selected phase range, preferably
units from a certain region are active. The functions of the neurons within these
active clusters can be seen by projecting their rates to the image. As a result,
Fig. 3 d) shows partial reconstructions of the image which is hereby segmented
into elements which belong together by having similar phases on the model V1.
At different phases we find elements of the background (frames 1 and 2) or of the
ball at the right (frames 4 and 5). This implies a segmentation which accounts
for learnt proximities (via the V1 lateral weights) in an abstract representation
of an image with the potential of separating objects from their background.
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Fig. 3. a) shows full representations. Top, the original image, middle, the rates of the
full hidden code and bottom, the reconstruction of the image from the full hidden code.
b),c),d) show partial phase-dependent representations. b) shows Gaussian-like functions
on an axis of 0 to 2π used to determine which phases contribute to the hidden code
presented in c) and thus to the image reconstruction in d). c) shows the partial hidden
code corresponding to selected phases and d) shows their partial reconstruction from
those units in c) which are active at the selected phases.
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7 Discussion

We have demonstrated a network of simplified rate and phase coding neurons
which segments a neural code efficiently using the connection strengths between
the units. The computational load is that of a network in which two activa-
tion values develop concurrently. The most demanding operations are the scalar
products in Eqs. 1 and 2, while all other computations are local.

Since image segmentation involves top-down directed information flow, how
does our model for intra-area lateral connections deal with this? Previously
we have extended the lateral connections to link a “what”- to a “where” area
for object localisation [9]. In the cortex, such lateral connections correspond to
those originating from pyramidal cells in layers 2/3 of the cortex and arriving in
the same layer, possibly in a different area. Hierarchically arranged areas have
characteristically asymmetric connections, however, they also have characteris-
tic horizontal connections and only with increasing hierarchical level difference
the intensity of these horizontal connections decreases [10]. Thus, connections of
a horizontal character may relay top-down information. If we would apply the
lateral connections of our model to a larger hierarchical model, therefore, we
might observe top-down influences such as stabilisation of consistent attractors.
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